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LOWER BOUNDS ON THE COMPLEXITY OF SOME OPTIMAL
DATA STRUCTURES*

MICHAEL L. FREDMAN

Abstract. A technique is presented for deriving lower bounds on the complexity of optimal data
structures which permit insertions and deletions of records, and queries of the form

Query (Region); Return value(r) (Region s F),
key(r)
Region

where value(r) (the value associated with a record r) lies in a commutative semi-group S, and F denotes a set of
regions of the space of possible keys. This technique is illustrated with several examples.
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1. Introduction. A widely studied area of concrete computational complexity
concerns the existence of efficient data structures for dynamically maintaining a set of
records T and permitting various types of range queries to be performed. Recently, a
number of sophisticated data structures and general design techniques have been
developed (see the References for a representative listing) leading in some instances to
very good upper bounds. This paper attempts to provide a theoretical framework for
the derivation of lower bounds on the inherent complexity of these kinds of compu-
tational problems.

Given a record r, we let key (r) denote the key associated with r. We assume that the
keys of records are members of a space of keys K. We refer to a subset of K as a region.
We let value(r) denote the value associated with a record r, which is assumed to lie in a
commutative semi-group S (set of elements closed under a commutative and associative
addition operation). Let F denote a set of regions of K. A range query problem, defined
by a pair (K, F), concerns the design of a data structure for representing a set of records
T and facilitating efficient implementation (on-line) of the following computational
tasks:

Insert (k, x); insert a record r, with key(r)= k and value(r) x, into T (assuming
T does not contain a record whose key is k). (k s K).

Delete(k); remove from T the record r with key(r)=k, should one be
present. (k K).

Query (R); compute the sum of the values associated with all records in T
whose keys lie in the region R. (R F).

We concern ourselves only with data structures and manipulation algorithms which
are structurally and functionally independent of the semi-group S. Hence, the pair
(K, F) suffices to specify uniquely a range query problem.

The choice of the semi-group S depends on the intended purpose of a data
structure. For example, if a query is used to count the number of records whose keys lie
in a specified region, then S would be chosen to be the integers with the usual addition
operation. If a query is used to list the records whose keys lie in a specified region, then S
would be chosen to be a collection of sets of records under the operation of set union.
We assume that the manipulation algorithms of a data structure interpret the operation
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symbol "+" appropriately within the context of the choice for S. Similarly, the symbol
"=", which denotes equality testing between two registers storing values in S, is
assumed to be appropriately interpreted. No other operations involving elements of S,
apart from input, output and assignment statements, are permitted; consistent with our
assumption concerning functional independence from S. (A precise model of compu-
tation is provided in 2.)

A popular range query problem, referred to as the orthogonal range query
problem, is defined by choosing K to be the d-dimensional vector space over the reals
and F to be the set of hypercubes which can be expressed as a cross-product of d
intervals, one in each dimension. In [4] we have derived a lower bound for this problem,
showing that for each data structure and for each n there exists an intermixed sequence
of n manipulations (insertions, deletions, and queries) having complexity f/(n (log n)d).
This result is best possible, as there exist data structures (see [8] and [9]) which achieve
an O(n (log n)a) upper bound. The method used in [4] can be regarded as an application
of the general lower bound technique described in this paper ( 3). Three new
applications of the technique are provided in 4. In each of these applications, K
denotes the Euclidean plane (vector space of dimension two over the reals). In the first
application, F consists of the set of all half-planes. In the second application, F consists
of all circular regions (of the form {(x, y)l(x- a)2+ (Y- b)2- d}). In the third appli-
cation, F consists of all parabolic regions of the form {(x, y)ly --< a (x b):}. We derive
an (r/4/3) lower bound on the inherent worst case complexity of a sequence of n
manipulations in each of these three cases. This bound is significant in that the average
cost l’(r//3) per manipulation is much larger than any fixed power of log n. Hence, the
orthogonal range query problem is intrinsically much easier than these other problems.

In 5 we discuss a class of data structure problems closely related to the range
query problems. Besides being of interest in their own right, they shed considerable
light on the proof technique used to analyze the range query problems.

2. Computational model. A data structure will utilize registers, Vo, Vl, /)2, "’’,

which store elements in the commutative semi-group S. The allowable operations on
these registers are vi := V+Vk; Vi := CV, where c is a positive integer constant;
OUTPUT v; and v := INPUT. Since we require that a data structure work correctly,
independently of the choice for S, no other kinds of operations, tests, etc. on the vi are
allowed. (We could allow equality testing between two registers, vg and v., but choose
not to in favor of keeping the exposition of the computational model concise. This
omission does not affect the validity of our subsequent theorems or their proofs.) A data
structure will have an associated set of control states, Z. At any given instant, the
structure will be in a control state in Z. When performing an insertion of a record having
a specified key k, and an associated value x S, we assume that x is placed in v by means
of the operation vg := INPUT. The effect of an insertion results in a change of the
control state, and the execution of a sequence of operations on the vi registers. The
resulting control state q and the choice of the operation sequence tr are a function
(q, tr)=Ft(p, k) of the current control state p and the key k. When performing a
deletion of the record whose key is k, a change in control states takes place and an
operation sequence on the vg is performed. The resulting state q and the operation
sequence cr are function (q, or) Fo(p, k) of the current state p and k. When performing
a query specified by a region R F, a (possible) change in control state takes place, and
an operation sequence on the vi is performed. The resulting state q and the sequence tr

are given by (q, tr) Fo (p, R). (If no record lies in R, then no output will be generated
by the operation sequence or.) We assume that there is an initial state po which
corresponds to the empty set.
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(As an example, consider the following data structure for one dimensional range
queries, which involves a balanced binary tree scheme with records stored in the leaves.
Each internal node has a key field in which a discriminator between the left and right
subtrees is stored; as well as a value field vi, in which gets stored the sum of the
semi-group values of the records in the leaves beneath the node. A control state consists
of a tree with specified keys .stored in the key fields of its nodes, and a specified
correspondence between the value fields of its nodes and the vi registers. Insertions and
deletions structurally alter the tree. The resulting operation sequences are chosen to
appropriately update the quantities stored in the semi-group value fields of the nodes,
taking into account rotations, etc. of the tree structure.)

We define complexity to be the number of operations performed on the vi registers,
not charging for the cost of computing the functions FI, Fo, and Fo. This measure
underestimates "real" complexity, but for the purpose of proving lower bounds, this
fact is of no consequence.

A data structure and its algorithms are defined by specifying functions FI, Fo, Fo. It
can be shown (we leave the proof to the reader) that particular functions F1, Fo, and Fo
correctly implement their intended semantics, as defined by (K, F), for every com-
mutative semi-group S; if and only if they are correct when S is chosen to be the integers
under the usual addition operation.

3. Lower bound technique. Let G be a graph with vertex set V(G)= U t.J R
where U {ul, U2, Urn} and R {rl, r2," , rl}, and an edge set E(G) which is a
subset of U x R, so that G is bipartite. A complete bipartite subgraph P of G is any
subgraph of G satisfying E(P) (V(P) f’) U) x (V(P) f’) R)

_
E(G); i.e., for each pair of

vertices Ug and r in V(P), the edge (ui, r.) is in both E(P) and E(G). Our method for
deriving lower bounds is based on the following theorem.

THEOREM 1. Let (K, F) be a range query problem and let n be a positive integer. Let
k 1, , k,, be keys in K and R 1, , R, be regions in F, m <-_ n/3. Let G be the bipartite
graph with V(G)={Ul,...,u,}CJ{r,...,r,,} and E(G)={(ui, rj)]l<=i, j<=m and
kg Rj}. Assume that each edge e E(G) has a nonnegative weight We, and that these
weights satisfy

E We v(P)I,
eeE(P)

for each complete bipartite subgraph P of G. Then for each data structure which solves
(K, F), there exists a sequence ofn manipulation operations which, when executedfrom the
initial state po representing the empty set, has total complexity at least Y,eEO) We

The proof of Theorem 1 uses the following lemma.
LEMMA 1. Let G be a bipartite graph of the type described at the beginning of this

section, and let A, A,, B1, ", Bl be sets satisfying

(1) AiBi ifandonlyif (ui, ri)EE(G).

Let We, e E(G), be nonnegative weights associated with the edges of G which satisfy

(2)
eE(P)

for each complete bipartite subgraph P of G. Then

eE(O) i=1 i=1
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Proof. Let A1U...UA,,UBIU...UBI={Xl, X2,...,xt}. Let Pi, l<--i<-t,
denote the complete bipartite subgraph of G with vertices V(Pi)= {ujll <_-j_-< m and
xieA}U{r]l <-] <- and xi eBi}. Given an edge e (u, r)eE(G), then AfqB .
If we choose so that xi e Aj f’l Bk, then e E(Pi). Hence

Therefore,

E(G)= 6 E(Pi).
i=1

(3) E We ’ E We"
ee:E(G) i=1 eE(Pi)

Applying (2) to the inner sum in (3), we obtain

(4) E We <-_ E Iv(P,)l.
eE(O) i=1

However,

(5) v(P,)I- E IA, I+ E IU, I.
i=1 i=1 i=1

The proof is completed by combining (4) and (5).
Proofof Theorem 1. Choose S to consist of sets of pairs (k, i), where k is a key and

is a positive integer, under the operation of set union. Assume that the semi-group value
of the record having key k, when inserted for the ith time (having been deleted (i- 1)
times), is {(k, i)}. Then the value returned by Query (R) is a set of pairs 0, and the set,
{kl(k, i)e 0 for some i}, consists precisely of the keys which lie in R of the records
currently in T (T is the set represented by the data structure). Without loss of
generality, we may assume that the value initially stored in each vi (in state p0) is the
empty set. We now argue that if an instruction to delete the record with key k is
performed, then without loss of generality we may assume that at the commencement of
this deletion instruction, each vi whose contents contain a pair (k, ]) for some/’, is reset
to & (this resetting not regarded as an operation). This follows from the fact that under
the stated assumptions, the value stored in each such vi immediately prior to the
deletion will never again be of any use; or stated differently, vi cannot be used to
advantage on the right hand side of an operation until after it has subsequently been
reassigned a value. (Even if a record having key k is later inserted, its associated value
{(k, ]’)} will be different from the value {(k, j)} associated with the record having key k
just prior to its deletion.)

In any state p consistent with T having records whose keys precisely comprise
{kl,. ., k,}, let B(p) denote the set of Vh whose values are summed to produce the
output generated by Query(R)(1 <-_j<-m), and let Ai(p) denote the set of Vh whose
values contain a pair of the form (ki, l), for some (1 <- =< m). Then
(6) Ai(p) f’) B(p) # f if and only if ki e R.
(This follows from the manner in which Rj f’l{k,..., k,} can be deduced from the
output generated by Query(R), as explained in the previous paragraph.) By the
hypothesis of Theorem 1, Lemma 1, and (6), we conclude that for some j, 1 <= j-< m,
either

(7) IAi(P)I E We We
eeE((3) (2m)

or IB(p)I--> Y
eeE(O) (2m)
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We now construct, using the following algorithm, a sequence of at most n
manipulations, which, when executed from state P0, require at least Y’.eZ()we/4
operations.

A. The first m manipulations are insertions to "load" into T records whose keys
comprise {kl,’’’, k,,}.

B. Repeat the next step m times and stop.
C. (Comment: After having executed from state po the manipulations constructed

thus far, the set of keys of the records in T is precisely {kl, ", k,,}. With p
denoting the state at this point, (7) implies that either [A;(p)I or In(p)]=>
eE(G) We/(2m) for some ], 1 --<] --< m.)
Let p denote the state resulting from having executed the manipulations
constructed thus far. Find a f (should one exist) such that 1-<f-< m and
]B/(p)] _-> etZ(t) We/(2m), and (C1) choose Query(R/) to be the next manipu-
lation. Otherwise, find a ] such that l<=]<=m and ]A/(p)[>=eE() We/(2m),
and (C2) choose Delete(k/), Insert(k/, {(k/,/)}) (l chosen appropriately) to be
the next two manipulations.

We now verify that the total number of operations t, involving the vi registers, that
are performed when executing the manipulations constructed by the above algorithm,
exceeds -’,eE(G) We/4. Let m denote the number of iterations of step C in which the
branch (C1) is followed. Then >- ml eE(G) We/(2m). Let e denote the total number of
times some vi register with a nonempty value is reset to as a consequence of
performing deletions (as explained above), and let m2 denote the number of times
branch (C2) is followed. Then e _-> m2 eE(G) We/(2m), and so (since ml + m2 m)

We(8) t+e>- , .
eE(G) 2

Because all/)i initially have empty values, the number of times a/-)i storing a nonempty
value is reset to cannot exceed the number of times it has appeared on the left-hand
side of an operation. Therefore t_-> e. Combining this with (8) completes the proof of
Theorem 1.

4. Applications. In this section we illustrate the use of Theorem 1 with several
applications. These applications involve the Euclidean plane as a key space; we choose
K to be {(x, y)lx, y Reals}. Given a data structure which solves (K, F), we let C, denote
the worst case total complexity of an arbitrary sequence of n manipulations, imple-
mented with the structure, and initiated from state p0 representing the empty set.

4.1. Half-planes. In this application, our set of query regions consists of all
half-planes of K; we define 1-’H {{(X, y)lax +by _>-c}l(a, b) (0, 0)}.

THEOREM 2. A data structure which solves (K, FH) has complexity C, (na/3).
The following lemmas are required to prove Theorem 2.
LEMMA 2. Let b(j) denote Euler’s function: b(j) ](ill <= <- ] and gcd(i, ]) 1}l.

Then
3 2(a) Y. (f) =---m + O(m log m),

"IT

and

2 3(b) E y,(j)=m +O(m).
j<=m 7"

The formula (a) is a classical result of number theory (see [6, page 268]). The proof
of (b) is only a slight modification of that of (a), given in [6].
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Let [m], m -> 1, denote the set of m2 points, {(i, j)]l -< i, j -< m}. Given a line in the
Euclidean plane, we refer to the number of points of [m ]2 through which passes as the
rank of relative to [m]2.

LMMA 3. There exist m distinct lines in the Euclidean plane, the sum of whose
ranks, relative to [m]2, is [),(m8/3).

Proof. Let l(i, ], a, b) denote the line passing through the points (i, ]) and (i + a,
j +b). First, we show that the lines inF, {/(i,/’, a, b)[1 -<a <- [m 1/3], 1 --<_i --<a, 1 <=] <--

m/2, l<-b<=a, and gcd(a,b)=l} are distinct. For suppose that l(i,f,a,b)=
l(i’, f’, a’, b’). Since gcd (a, b) 1 and gcd (a’, b’) 1, we conclude that a a’ and b b’
(otherwise the slopes, b/a and b’/a’, would differ). Since (i,f) l(i’,f’, a’, b’) and
gcd (a’, b’) 1, we conclude that ’=- i(mod a), and therefore, since 1 -< i, i’-<_ a, it
follows that i’. With i’, a a’ and b b’, it must hold that f f’.

[m/2J 2 2 5/3)The number of lines inF, is given by [m/2J Y.=I aqb(a)<=m +O(m <-

m z (when m is sufficiently large). The rank of l(i, f, a, b) relative to Ira]2 is at least
min (m/a, m/2b)>= m/2a. Hence, the sum of the ranks of the lines in F,, relative to

-[m 1/3

[m]a, is at least /m/2] (m/2) =1 b(a) (m8/3). By arbitrarily extending Fm to a
family of m lines, we end up with a collection of lines which satisfy the lemma.

Proo[ of Theorem 2. Let A-//-3], so that I[A]l<-_n/3. Choose keys
k,... ,kin, m =A, so that {k,... ,km}=[A]. Choose a set of rn =A lines,
{/," lm}, the sum of whose ranks relative to [A] is II(A/3) (n4/3) (the existence
of which follows from Lemma 3). Let R 1, , Rm be closed half-planes chosen so that
the boundary of R is l, 1 _-< i-<_ m. Using the terminology of Theorem 1, applied to
/,""", km and R, Rm, define We, e (ui, r), as follows:

1 if ki lies on l,
(9) We=

0 otherwise.

Observe that YeZ( We (tl4/3), in accordance with our choice for the lines
l,. , l,. Theorem 2, therefore, follows from Theorem 1 provided that ez(m We <----
v(P)I for each bipartite subgraph P of G, which we now demonstrate.

We can associate with a complete bipartite subgraph P a polygonal region II
formed by the intersection of the half-planes associated with the r vertices in V(P). The
edges adjacent to a vertex u in V(P) contribute a positive amount to eZ(m We if and
only if ki lies on the boundary of II. If k lies in the interior of a one-dimensional face of
l-I, then this contribution is 1 (only one edge adjacent to ui has positive weight.) Now
consider those vertices u in V(P) for which ki is a zero-dimensional face of II. The
edges (u, r) adjacent to ui, which have positive weight, are of two types" (I) the line l.
associated with r contributes a one-dimensional face to l-I, and (II) the line l associated
with r. has no contact with II except at ki. There are exactly two edges (ui, r) adjacent to
u of type (I). Moreover, the total number of edges of type (I), as ui ranges over the
vertices in V(P) for which ki is a zero-dimensional face of l-I, is bounded by I{uilui
V(P) and ki is a zero-dimensional face of II}[+l(rlr V(P) and l. contributes a
one-dimensional face to II}l. The total number of edges of type (II) is bounded by
I(r lr v(P) and li intersects I1 in only one point}l. Therefore, we conclude that
EeE(P) We [{UilUi w(e) and k lies on the boundary of II}l/l{r;Ir v(e) and li
intersects II in at least one point}l-<- Iv(P)I. This completes the proof of Theorem 2.

4.2. Regions with curved boundaries. Given any half-plane H, there exists a
circular region CH such that H f’) [m] CH f’l [m ]2. (We simply choose a circle with a
sufficiently large diameter so that its boundary is well approximated by its tangent lines.)
This observation yields the following corollary to Theorem 2.
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COROLLARY 1. Let Fc {{(x, y)l(x a)2 + (y b)2 d}la, b arbitrary, d >-_ 0}. A
data structure which solves (K, Fc) has complexity Cn (n4/3).

Proof. The bipartite graph induced by our choice of keys and regions in the proof
of Theorem 2, can be realized by picking, instead, regions of Fc, while retaining the same
set [A]2 of keys: The choice of regions is based on the mapping H CH, mentioned
above. Since the same graph can be realized, the same lower bound can also be derived.

The method used to prove Corollary 1 can be generalized as follows.
THZORFM 3. LetR be a subset of the plane, let C be an open disk, and assume that

C 71R Boundary (R) is open. Assume further than C 0 Boundary (R) is given by
{(x, f(x))]a <x < b} wheref(x) has a continuous derivative in (a, b) which is notconstant.
Let FR contain R and all of its translations in the plane. Then any data structure which
solves (K, FR) has complexity Cn ’(F/4/3).

Proof. Let s and sz, s s2, be two values in the range of f’(x). Let a and b be two
nonzero vectors with slopes sa and s2 respectively. Given m -> 1, let [m]2(a,/) denote
{ia +/711 =< i,/’_-< m}. The vectors d and / can be chosen to have sufficiently small
magnitudes so that for each half-plane H, there exists a translate Rn of R such that
H f’l [m ]2(ci,/) RH (’1 [m ]z(a,/). Lemma 3 easily generalizes to allow substitution of
[m]2(d,/) for Ira]2. The remainder of the proof of Theorem 3 closely follows that of
Theorem 2 and Corollary 1.

A special case of Theorem 3 is given in the following corollary.
COROLLARY 2. Let Fe ={{(x, Y)IY <=b-(x-a)}la, b arbitrary}.. (Fe contains

regions having a parabolic shape.) Any data structure which solves (K, F,) has complexity
Cn ’-(H4/3).

5. Semi-dynamic data structures. Our lower bound method of 2 ultimately
reduces to an analysis of the cardinalities of sets which satisfy the intersection conditions
described in (1). In this section we define a computational problem whose analysis,
relative to a particular computational model to be presented, is equivalent to an analysis
of collections of sets satisfying (1).

Let S be an arbitrary commutative semi-group, and let V {v, re,..., v,} be a
set of variables which store values in $. Let T1, T2,..., T be finite subsets of
{1, 2,. , m}. We consider data structures for representing V which facilitate efficient
implementation of the following on-line tasks:

(10)
Update (, x); vi := vi+x, (xS, l<=j<=m),

Retrieve (/’); Return Z /)i, (1 <-/" <- n).
iT

We can view (10) as a type of range query problem by means of the following
correspondence. Let K {1, 2, , rn} and F {T,. , T}. The set V corresponds
to a set of records whose keys comprise K. The semi-group value associated with the
record with key is stored in vi. The task Retrieve (j) is equivalent to the task Query (T.)
of the range query problem (K, F). Instead of allowing insertions and deletions, the
option of changing the value associated with a record is provided by implementing
Update (/, x). Hence, the set of record keys remain static, but the values associated with
records may be modified.

5.1. Computational model. We wish to consider straight line algebraic programs
which work correctly, independently of the choice of the commutative semi-group $.

With this in mind, we define the following model. Our data structures are to consist of
registers Z, Z2,’’’ which store values in $. We consider programs which have the
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following formats (Ui and R are finite subsets of {Zl, Z2," "}).

Update (/’, x) Retrieve ()

(11) For each Zi Ui do Return Y Zi
Zi R

Z := Zg + x

We define the complexities of these programs to be the set cardinalities [Ui[ and IRi],
respectively. The following lemma provides a condition on the sets U and R equivalent
to correctness of the programs in (11).

LEMMA 4. The programs in (11) are semantically equivalent to the programs in (1 O)
if and only if

1 ifiTi,(12) Igcqel-
0 otherwise.

Proof. Necessity. Consider an execution of the program sequence Retrieve (/’),
Update (i, x), Retrieve (f), and let W1 and W2 denote the two respective outputs. Then
(10) implies that

if T,
(13) W2

W1 otherwise.

Choose $ to be the set of integers and x 1. Then (13) holds only if (12) holds.
Suflficiency. Because the Retrieve programs in (11) generate no side effects, it

follows that (13) implies equivalence. But (13) holds if (12) holds, completing the proof.
The average complexity of the programs in (11) is given by

(14) Ig, l+ Ieel
(re+n)

Lower bounds on this average can be derived by making use of Lemma 1. Upper bounds
can be derived by explicit construction. The average complexity defined in (14) loosely
corresponds to the measure C,/m associated with data structures which solve range
query problems.

We illustrate the theory set forth in this section with a semi-dynamic variant of the
parabola problem discussed in Corollary 2. Another example, which concerns a
semi-dynamic variant of the orthogonal range query problem, appears in [4].

5.2. Parabolic regions of [n ]z. For the purpose of this example, we prefer to use a
notation different from, but logically equivalent to that used in (10), namely, one based
on the use of multiple subscripts, e.g.,

(15)
Update (i, j,x); IAii := vii+x, ((i,]) [m]2),

Retrieve (k, 1); Return Y vii, ((k, l) [m]2).
i,j) Tk,l

Our problem is specified by setting Tk {(i,/’)1(i,) fro]2 and _-< l-(i- k)2}. We refer
to this problem as the semi-dynamic parabola problem. Given a solution in the
framework of (11), we define its average and worst case complexities to be, respectively,

C
(I Uii[ + IRiil)

2 and C max ({1 Uii[} U {IRaqi})
id=l 2m
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(again, using double subscripts instead of single subscripts). Our results are the
following.

TI-IF.ORZM 4. There exists a data structure within the framework of (11), which
solves the semi-dynamic parabola problem, such that

(16) (= O(m’/2).
For every such data structure,

(17) C

Proof. First, we prove the lower bound (17). Let G denote the graph with
V(G) {ul(i, ]) [m]2} U {ril(i,/3 e [m ]2}, and E(G) {(uii, r)l] <-- (k i)2}. For an
edge e (uij, rk) E(G), define

1 if/" (k i)2 (i.e., (i, j) lies on the boundary ofthe parabolic region Tk),
(18) We

0 otherwise.

By Lemma 4, (uij, r) E(G) if and only if Uii f’) Rll . Hence, if we can show that

EeE(G) We <--I V(P)I for each complete bipartite subgraph P of G, then Lemma 1 implies
that "eE(G) We/(2me) is a lower bound for C. By (18), we have that

EWe E 1--E E 1
eE(G) (id)[m] <--i,i<=m

(k,l)[m] <=]-(k-i)2m
=]-(k-i)

>- E Y.
l<=i<--m/2 i<k<=i+/(m/2)
m/2<j<--m

Hence (17)follows once we have shown that 2eeE(P) We V(P)I. We observe that the
parabolic regions Tkl are convex, and that the parabolic boundaries of two such regions
intersect in at most one point. This observation allows us to argue the inequality
involving P in essentially the same way it was argued in the proof of Theorem 2.

Next, we prove the upper bound (16). In [5] a data structure referred to as a
semi-(u, r) system is described. This data structure solves the problem in (10) specified
by setting m=n=(U+r)-i and T.={1,2,...,/’} for 1-<_]_-<m. A semi-(u,r)
system falls within the framework of (11) and its maximum update complexity,
Cup max {Ig, lll--< <_- m}, is u; and its maximum retrieve complexity,
Cre max {IRII1 <-- _<- m}, is r.

A data structure which solves the semi-dynamic parabola problem can be designed
as follows. Organize each column {vii, vi.2,," "’,, vi,,} of the vii variables in (15) as a
semi-(u,r) system with r=2 and u=/,g2mJ (for a fixed column i, T.={(i, 1),
(i, 2),..., (i, ])}, for l <-_] <-_ m). To perform Update (i,], x), perform Update (],x)in
the semi-(u, r) system corresponding to column i. The complexity of this task is no
greater than u 0(ml/2). To perform Retrieve (k, l), perform Retrieve (l-(k- i)2) in
the semi-(u, r) system corresponding to column i, for each such that 1 _-< _-< m and
l-(k-i)2>O; and sum the outputs generated. At most 2,]}+ 1 O(m /2) Retrieve
commands within semi-(u, r) systems are performed when executing Retrieve (k, l),
each with complexity at most 2. Hence Retrieve (k, l) has complexity O(m/2). This
establishes (16), completing the proof of Theorem 4.
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SOME NP-COMPLETE PROBLEMS SIMILAR
TO GRAPH ISOMORPHISM*

ANNA LUBIWt

Abstract. The GRAPH ISOMORPHISM problem has so far resisted attempts at determining its
complexity status--it has not been shown to be NP-complete nor in P. In this paper several altered or
generalized versions of the ISOMORPHISM problem are presented and shown to be NP-complete. One of
these is the problem of determining whether a given graph has a fixed-point-free automorphism. Some
speculation is made on the possible implications of these results on deciding the complexity status of
ISOMORPHISM. Various classes and hierarchies of problems in NP are discussed.

Key words, graph isomorphism, graph automorphism, NP-complete, isomorphism-complete, fixed-
point-free automorphism

1. Introduction. The problem of determining whether two graphs are iso-
morphic-GRAPH ISOMORPHISM or simply ISOMORPHISM--has attracted
considerable interest for both practical and theoretical reasons. Because any efficient
algorithm for GRAPH ISOMORPHISM is of value in practical applications, much
effort has gone into the search for polynomial time algorithms. Surveys of methods
attempted can be found in [14] and [4]. In spite of the fact that no such algorithm has
been found, ISOMORPHISM has not been shown to be NP-complete either, and there
is some evidence that it is essentially different from the known NP-complete problems
(see [1] or [12]). GRAPH ISOMORPHISM is of theoretical interest because of this
uncertainty: the problem is in NP but no one has shown that it is in P or is NP-complete.
A possible explanation for the lack of results is offered by Ladner’s proof in [9] that if
P NP then there are problems in NP which are neither in P nor NP-complete.
ISOMORPHISM is a prime candidate.

Many problems have been shown to be polynomial-time equivalent to GRAPH
ISOMORPHISMmthese are called ISOMORPHISM-complete problems, and a list of
them can be found in [2]. One approach to investigating the complexity of GRAPH
ISOMORPHISM is to try to "map the boundary" between P and the class of
ISOMORPHISM-complete problems by considering the ISOMORPHISM problem on
restricted sets of graphs. For example, ISOMORPHISM restricted to bipartite graphs,
to regular graphs, or to line graphs remains ISOMORPHISM-complete (see [2]), but
polynomial algorithms have been found for ISOMORPHISM restricted to trees, or
planar graphs [7], or interval graphs [11].

A second approach is to explore the boundary between ISOMORPHISM-
complete and NP-complete problems. This can be done by finding two problems, one
ISOMORPHISM-complete and the other NP-complete, which are related in a way that
makes comparing them worthwhile, or by finding a chain of related problems containing
such a pair. The most obvious example is to compare the NP-complete problem of
SUBGRAPH ISOMORPHISM with its subproblem GRAPH ISOMORPHISM.

A second example involves LARGEST COMMON SUBGRAPH: given two
graphs G1 V1, El) and G2 V2, ’2), and an integer k, do there exist subsetsE

_
E1

and E& c_E2 with lEVI [E&[--> k such that the two subgraphs G (V1, E) and
G& =(Vz, E&) are isomorphic? This problem is NP-complete (see [5]). GRAPH
ISOMORPHISM is the subproblem with IEll- [EEl k.

* Received by the editors May 10, 1979, and in revised form November 27, 1979.
t Department of Computer Science, University of Toronto, Toronto, Canada M6S 2H3.
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The third example is substantially different in that neither of the two problems is
transparently an isomorphism problem--a rarity for ISOMORPHISM-complete
problems. It was shown by Levi [10] and recently rediscovered by Kozen [8] that the
CLIQUE problem restricted to a certain family of graphs is ISOMORPHISM-
complete. Comparisons can be made between this and the general CLIQUE problem.

In this paper NP-completeness results will be proved for several problems similar
to GRAPH ISOMORPHISM. Most of the problems are generalizations of a sub-
problem of ISOMORPHISM which is not known to be ISOMORPHISM-complete.
This is the [GRAPH] AUTOMORPHISM problem: given a graph, does it have a
nontrivial automorphism? AUTOMORPHISM-complete problems are those prob-
lems which are polynomial-time equivalent to GRAPH AUTOMORPHISM.

The observation that ISOMORPHISM is polynomially equivalent to the problem
of determining whether a graph has an automorphism which does not fix a particular
vertex leads to other generalizations. One is AUTOMORPHISM WITH RESTRIC-
TIONS: given a graph G =(V, E) and a set of restrictions R

_
V x V, is there a

nontrivial automorphism of G which uses none of the restricted pairs, that is, an
automorphism such that if (u, v)R then O(u) v? Both this problem and the more
general ISOMORPHISMWITH RESTRICTIONS are NP-complete, as will be shown.
In fact, AUTOMORPHISM WITH RESTRICTIONS remains NP-complete when it is
simplified to FIXED-POINT-FREE AUTOMORPHISM" given a graph, does it have a
fixed-point-free automorphism? In this case the only restrictions on the automorphism
are that it may not map any vertex to itself. NP-completeness is preserved under the
further simplification to ORDER 2 FIXED-POINT-FREE AUTOMORPHISM"
given a graph, does it have a fixed-point-free automorphism of order 2? One thing to
note about this last result is that the corresponding problem for groups rather than
graphs is solvable in polynomial time.

The second section of this paper consists mainly of the formal definitions and
NP-completeness proofs for the above problems. In the following section some further
results are presented. A chain of problems consisting of AUTOMORPHISM WITH
RESTRICTIONS and some of its subproblems provides a nice characterization of the
hierarchy of four (possibly equivalent) classes of NP shown in Fig. 1. A large class of

NP-complete
VII

ISOMORPHISM-complete NP
VII

AUTOMORPHISM-complete CI NP
VII
p

FIG. 1

problems containing FIXED-POINT-FREE AUTOMORPHISM is also given. The
generalized problem of determining whether a graph of n vertices has an automorphism
moving (i.e., not fixing) at least e. n 1/’ vertices is shown to be NP-complete for
arbitrarily small fixed e and arbitrarily large fixed k.

The final section of the paper contains a discussion of the differences between
ISOMORPHISM and its various NP-complete generalizations, with the objective of
explaining why ISOMORPHISM may not be NP-complete. Both SUBGRAPH ISO-
MORPHISM and LARGEST COMMON SUBGRAPH involve generalizing ISO-
MORPHISM in a way which allows more freedom in mapping the initial graph to the
target graph, but the results in this paper show that ISOMORPHISM can also be made
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hard--i.e., NP-complete--by restricting the possible maps from the initial graph to the
target graph, as in ISOMORPHISM WITH RESTRICTIONS. The common factor in
these two cases seems to be a destruction of the essential structure of the ISO-
MORPHISM problem. Perhaps this structure makes ISOMORPHISM easier than the
NP-complete problems.

The notation "u v" for an automorphism of a graph G (V, E), with u, v V,
will be used to mean "0(u)= v and 0(v)= u".

2. Generalizations of the AUTOMORPHISM problem. The AUTOMOR-
PHISM problem and some NP-complete generalizations of it are defined in this section.
The fact that AUTOMORPHISM WITH 1 RESTRICTION is ISOMORPHISM-
complete has been part of the folklore for some time; a proof is included here for
completeness.

AUTOMORPHISM.
Instance: a graph G (V, E).
Question" Does G have a nontrivial automorphism?

AUTOMORPHISM WITH 1 RESTRICTION.
Instance: a graph G (V, E) and a vertex v V.
Question: Does G have an automorphism 0 with O(v) v?

PROPOSITION. AUTOMORPHISM WITH 1 RESTRICTION is ISOMOR-
PHISM-complete.

Pro@ Cook reducibility is used. To solve AUTOMORPHISM WITH 1
RESTRICTION in polynomial time using an ISOMORPHISM oracle:

Let G V, E) and v V be the given inputs to the problem. Let G1 be a copy of G
with a unique label attached to the vertex v. Take a second copy of G and attach the
same label, in turn, to each of the vertices in V\{v}. At least one of the resulting graphs is
isomorphic to G1 if and only if there is an automorphism 0 of G such that O(v) v.

To solve ISOMORPHISM in polynomial time using an oracle for AUTOMOR-
PHISM WITH 1 RESTRICTION:

Let G1 and G2 be the given graphs. Assume that they are connected (otherwise
consider their complements). Uniquely label a vertex v of G1 and give each of the
vertices of G2, in turn, the same label, asking each time if the disjoint union of the two
resulting graphs has an automorphism 0 satisfying O(v) v. The answer will be "yes" at
least once if and only if G1 62.

The problems ISOMORPHISM WITH RESTRICTIONS and AUTOMOR-
PHISM WITH RESTRICTIONS both contain FIXED-POINT-FREE AUTO-
MORPHISM as a subproblem; so to prove that these three problems are NP-
complete it is sufficient to prove that the last one is. The proof given will in fact support
the claim that ORDER 2 FIXED-POINT-FREE AUTOMORPHISM is NP-complete
(but note that this problem may not be a subproblem of the other three).

ISOMORPHISM WITH RESTRICTIONS.
Instance: two graphs Ga (V, Ea) and G2 (Vz, E2), and a set R

_
V1 x V2.

Question: Is there an isomorphism 0 of G1 onto G2 such that 71R ?
(Here is regarded in the formal sense, as a set of ordered pairs of vertices.)

AUTOMORPHISM WITH RESTRICTIONS.
Instance: a graph G (V, E) and a set R V x V.
Question: Does G have a nontrivial automorphism such that f’l R ?
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FIXED-POINT-FREE AUTOMORPHISM.
Instance: a graph G (V, E).
Question: Does G have a fixed-point-free automorphism?

ORDER 2 FIXED-POINT-FREE AUTOMORPHISM.
Instance: a graph G (V, E).
Question: Does G have a fixed-point-free automorphism of order 2?

THEOREM. FIXED-POINT-FREE AUTOMORPHISM is NP-complete.
Proof. The problem is in NP.
THREE SATISFIABILITY (3SAT) will be used for the transformation. Let

U {Ux, , un} be the set of variables and C {c1," , c,} be the set of clauses in an
instance of 3SAT. Let L UU{Sg: Ug U} be the set of literals. Any truth-value
assignment T U {t, f} can be extended in the obvious way to L. Assume without loss
of generality that the clauses of C are distinct and that each clause contains exactly three
distinct literals. (The clauses may be padded with new variables to achieve this.) Let
Ci {qi, ri, Si}, with qi, ri, Si L.

A graph G must be constructed so that G has a fixed-point-free automorphism if
and only if C is satisfiable. G will have two interconnected parts: a "truth-value setting
component" and a "satisfiability component". Fixed-point-free automorphisms of the
truth-value setting component will correspond to truth-value assignments to L. The two
components will be connected in such a way that the action of an automorphism of G on
the satisfiability component is completely determined by its action on the truth-value
setting component. The satisfiability component will contain vertices corresponding to
the clauses in C, and an automorphism which fixes no points of the truth-value setting
component will continue to fix no points of the satisfiability component if and only if the
corresponding truth-value assignment satisfies all the clauses.

The truth-value setting component G will contain the subgraph G[ (V, E)
specified as follows"

Vl {ui(O), ui(O), ui(1), ui(1),/i(O),/i(O), tii(1),/ii(1), xi, yi},
i=l

El [,_.J {(xi, ui (1)), (ui (1), ui (1)), (Ui (1), Ui (0)), (Ui (0), Ui (1)),
i=l

(Ui(1), yi), (yi, Ul (0)), (U(0), /i(1)), (/i(1), /i(0)), (/i(0), L/i(0)), (ui(O),xi)}.

Figure 2 shows one component of G. To form G1, enough vertices and edges must
be added to G to ensure that for each i, xi and yi can map only to each other. Attaching

Xi

ui(O)(1)

ul(0), u,(1)

FIG. 2
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one copy of a unique graph with no nontrivial automorphisms (an asymmetric graph) to

xi and one copy to yi will accomplish this. These n "label" graphs must be asymmetric,
so that the number of truth-value assignments to L is equal to the number of
fixed-point-free automorphisms of the truth-setting component

G1 contains a vertex s(0) for each literal s L, and vertices s(1) and s’(0) to which
s(0) can be mapped by fixed-point-free automorphisms of G1. A fixed-point-free
automorphism g, of G and a truth-value assignment T to L will be said to correspond if,
VsL,

s (0) <-+ s (1) iff T(s)=t;

and

s(0)-+ s’(0) iff T(s) f.

Any fixed-point-free automorphism of G must satisfy g,(xi) xi, 1 <= <= n. Then

x <-+ yi. For each there are exactly two possibilities"

g/i (0) <"’> Ui(1) U, (0) <-"> b/’ (0)

/i (0) <--->/I (0) /i (0) <-->

OR

b/i (0) <"’> u,(1) /../i (1) <’/./i (1)

ti, (1) <-+ t7i (1) b/i (0) <-’ t7i (1).

The first possibility corresponds to T(ui)= t, T(Eti)=f, and the. second to T(ui)
T(i)--t, SO the fixed-point-free automorphism of 61 determines a unique cor-
responding truth-value assignment T’L-+{t, f}. Conversely, every such truth-value
assignment determines a unique corresponding fixed-point-free automorphism of G1.

Note that Vs eL, s(O) +s’(O) iff s(1) -s’(1).

G1 will now be expanded to the graph G {V, E) as follows:

V gl J {ci (j)" 1 <= m, 0 <- j <= 7}
U{ci(j)" l <=i <=m, O<-j <- 7},

E E11,.J {(ci(j) c’i(j))" 1--<--i--<--m,O=</’=<7}

U {(Ci(0), q/(0)), (ci(O), r,(0)), (ci(O), si(O))
i=1

(ci(O), q (0)), (ci(O), rl (0)), (ci(0), s’i (0)),

(c,(1), q/(O)), (ci(1), r,(O)), (c/(1), s,(1)),

(Ci(7), q’i (1)), (Ci(7), r’, (1)), (Ci(7), sti (1))}.
See Fig. 3. G can be constructed in polynomial time.
Note that if abc is the binary representation of j then c(j) is connected to q(a),

ri (b ), si (c ), and to their primed counterparts q (a ), r’i (b ), s’i (c ). The vertices c’i (j) ensure
that no automorphism of G can map a vertex ci(f) to a vertex of G1, so that if 4’ is an
automorphism of G then 4’ restricted to G1 is an automorphism of Ga. Because of the
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] a 2 2+c,b
a,b, ce{O, 1}

ri(b rI(b)

FIG. 3

assumptions that the ci’s are distinct and that each ci contains three distinct literals,
any automorphism of G1 can be extended in one and only one way to an automor-
phism of G.

Let 41 and T be a corresponding fixed-point-free automorphism of G1 and
truth-value assignment to L, respectively. Let be the extension of 1 to G. Then T
satisfies Ci E C if and only if d/(ci(])) ci(]), 0

_
] <- 7, since:

O(ci(])) ci(]) for some ] E {0,. 7}, ] abc in binary representation,

with a, b, c e {0, 1}

’(c) for some a, b, c {0, 1}:>qi(a)qi (a), ri(b) ri (b), si(c)<--> si

:qi(O)4" q (O), rt(O)-- ri (O), si(O)<--- s (O)

T(qi)= T(ri)= T(si)=f

CrOci is not satisfied.

To complete the proof it must be shown that C is satisfiable if and only if G has a
fixed-point-free automorphism.

Suppose C is satisfied by T’L- {t, f}. There is a corresponding fixed-point-free
automorphism of G1, which can be extended uniquely to an automorphism 4’ of G. T
satisfies each Ci C SO J(Ci(j) 7 Ci(j) for 1 _-< <_- m, 0 = ] <_-_ 7. Hence is a fixed-point-
free automorphism of G.

Conversely, suppose is a fixed-point-free automorphism of G. Then restricted
to G1 is a fixed-point-free automorphism of G1 and has a corresponding truth-value
assignment T L {t, f}. T must satisfy each ci C since d(Ci(j)) Ci(j) for 1 <- -< m,
0 -< j -<_ 7. Hence T satisfies C. 1-1

For the graph G constructed in the above proof, Aut G is an Abelian 2-group, of
order 2, with the set of generators consisting of the automorphisms Oi, 1,..., n,
where I[li(l,li(O))-- U/(1), and I[i(uj(O))’- L/ (0), for j i. The order partition of Aut G is
also easy to determine.

Since all fixed-point-free automorphisms of G have order 2, a consequence of the
above proof follows.

COROLLAR’ 1. ORDER 2 FIXED-POINT-FREE AUTOMORPHISM is NP-
complete.

In the proof, truth-value assignments satisfying C and fixed-point-free automor-
phisms of G correspond one-to-one (the transformation is parsimonious), so as a
second consequence:
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COIOLLAIY 2. The problem o]: counting the number ofixed-point-free automor-
phisms of a graph is # P-complete.

Proof. The problem of counting the number of satisfying truth-value assignments
for an instance of THREE-SATISFIABILITY is #P-complete (see [15]).

The theorem also suffices to prove that any problem containing FIXED-POINT-
FREE AUTOMORPHISM as a subproblem is NP-complete:

COROLLARY 3. ISOMORPHISM WITH RESTRICTIONS and AUTOMOR-
PHISM WITH RESTRICTIONS are NP-complete.

The fact that AUTOMORPHISM WITH RESTRICTIONS is NP-complete can
be proved independently. The proof is a more pleasing one and is outlined here. Once
again 3SAT is used for the transformation. Let U {ul," , un} and C {ca,...,
be the variables and clauses of an instance of 3SAT as in the proof above. The graph G
to be constructed will again have a truth-setting component G1, and a satisfiability
component. The main changes are in G1 which will be built up of copies of the graph
shown in Fig. 4.

W

FIG. 4

If u, v, w are variables and $ is labelled as shown, with vertices u, v, w, u’ v W

then a truth-value assignment T" {u, v, w}- {t, f} and a (possibly trivial) automorphism
of $ will be said to correspond if, Vx {u, v, w},

T(x)= t, iff x -->x’.

S is an "exclusive-or gadget" in the sense that every automorphism of S
corresponds to a truth-value assignment satisfying u v w, where is the exclusive-
or operator.

For the present purpose n copies of S are needed, one copy Si, shown in Fig. 5, for
each Ui Uo Requiring that I[l(Xi) Xi, for an automorphism q of Si, forces Xi <’-’> Yi, in turn

forcing u - tli or l i but not boththat is, the corresponding truth-value assign-
ment must set exactly one of ui, i true.

As before, the satisfiability component will contain 8 vertices ci(]), 0 =< ] _-< 7, for
each clause ci C. If ci {qi, ri, si}, ci(O) will have edges to qi, ri, si in G1; Ci(1) will have
edges to qi, ri, s t.

i, ci(7) will have edges to ql, ri, si. Additional vertices and edges are
needed in G to structure it sufficiently enough that automorphisms of G take each $i to
itself.
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Si

FIG. 5

The set of restrictions R is defined as follows:

R {(xi, xi): 1 <- <- n} {(ci(0), c/(0)) 1 <_- =< m}.
By an argument similar to the one in the previous proof, we can show that C is

satisfiable if and only if G has an automorphism with R .
3. Extended classes of problems. Both AUTOMORPHISM WITH RESTRIC-

TIONS and FIXED-POINT-FREE AUTOMORPHISM can be considered as single
problems from larger classes of related problems with varying complexity standings.

AUTOMORPHISM WITH RESTRICTIONS has a range of subproblems from
the hierarchy of four classes of NP shown in Fig. 1NNP-complete, ISOMORPHISM-
complete fq NP, AUTOMORPHISM-complete VI NP, and P. Let G (V, E) and
R

___
V V be an instance of the problem.
If for some fixed number k, inputs to the problem are restricted to those for which

[El-<-k, then the problem is solvable in polynomial time. (In essence it becomes
BIPARTITE MATCHING.)

If R is constrained to being the null set the problem is exactly automorphism.
If for some fixed number k-> 1, R is restricted by IRl<-k, the problem is

ISOMORPHISM-complete.
In full generality the problem is NP-complete, and the corresponding counting

problem is #P-complete.
FIXED-POINT-FREE AUTOMORPHISM also has a large range of related

problems. For g a function g t with g(n) <= n, In t, define the problem:

g-FIXED-POINT-FREE AUTOMORPHISM.
Instance: a graph G (V, E) with VI n.
Question: Does G have an automorphism which moves (i.e., does notfix)

at least g(n) vertices?

This problem is in NP if g satisfies the requirement that the time needed to compute
[g(n)] is bounded by a polynomial in n for all n . Henceforth only functions
satisfying this requirement will be considered.

When g(n)= n, fn, the problem is FIXED-POINT-FREE AUTOMORPHISM.
The problem is trivial for g-=0, and for g(n)= 1, In, the problem is AUTOMOR-
PHISM. If g(n) is bounded by some constant K _-> 1, the problem is at least as easy as
ISOMORPHISM and at least as hard as AUTOMORPHISM. The following results are
more substantial.
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THEOREM. /f g(n) e. n for any fixed e, 0 < e <= 1, g-FIXED-POINT-FREE
AUTOMORPHISM is NP-complete.

Proof. The problem is in NP.
FIXED-POINT-FREE AUTOMORPHISM will be used for the transformation.

Let G =(V, E), with IV n, be a graph given as an instance of FIXED-POINT-FREE
AUTOMORPHISM. Assume that G is connected (otherwise consider the complement
of G). Also assume that n _-> 2. If n 1, G has no fixed-point-free automorphisms.

A new graph G’= (V’,E’) with Iv’l n’ must be constructed so that there is an
automorphism of G’ moving at least e n’ vertices if and only if G has a fixed-point-free
automorphism. Let n’ be any integer such that n 1 < n’. e <- n, i.e., (n 1)/e < n’ <_-

n/e. Since e <-1 this interval will contain at least one integer.
If n’= n, let G’= G.
If n’=n +1, let G’=(V’,E’)with V’= Vt.J{vl}, Vl- V, andE’=E.
For all other cases let G’=(V’,E’) with V’= V U{Vl,..., Vn’-n}, Vi-V, and

E’= E 12 {(u, vl)" u V} t2 {(vi, vi+l)" 1 <- <_- n’- n 1}. See Fig. 6.

n’=n+l

G

n’>n+l

(
FIG. 6

G’ can be constructed in polynomial time. Any automorphism ff of G must fix the
vertices v,. , vn,_, so restricted to G must be an automorphism of G.

If G’ has an automorphism p moving at least n’. e vertices then, since n’. e > n 1,
moves at least n vertices. But 6 must fix the n’-n vertices Vl," , v,_. Hence

moves all n vertices of G, and restricted to G is a fixed-point-free automorphism of G.
Conversely, if G has a fixed-point-free automorphism it can be extended to an

automorphism of G’ fixing exactly the vertices Vl, , v,_n. Then , moves n vertices
and n >= n’. e, so G’ has an automorphism moving at least n’.e vertices. I3

The class of functions for which g-FIXED-POINT-FREE AUTOMORPHISM is
NP-complete can easily be expanded.

THEOREM. If g(n)= e. n /’, ]:or any fixed e, 0<e <_-1, and fixed m e N, then
g-FIXED-POINT-FREE AUTOMORPHISM is NP-complete.

Proof. Using the same proof as above, the requirement for n’ will be n- 1 <
(n ,)l/m e _-< n; i.e., [(n 1)/e] < n <- (n/e)’. Since rn and e are fixed, n is bounded
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by a polynomial in n, so G’ can be constructed (exactly as above) in polynomial
time. [3

The next question is" what is the complexity of g-FIXED-POINT-FREE
1/mAUTOMORPHISM when g is a function which grows more slowly than g(n) e. n

and yet is unbounded, for example, g(n)= log2 n ?

4. Conclusions and open problems. Although SUBGRAPH ISOMORPHISM
allows more freedom than ISOMORPHISM in mapping one graph to another, and
AUTOMORPHISMWITH RESTRICTIONS allows less freedom, the common factor
is a destruction of the essential structure of the ISOMORPHISM problem. It is possible
that because of its structure GRAPH ISOMORPHISM is not NP-complete.

The concept of "structure" in a problem is a difficult one to define precisely. In
ISOMORPHISM one facet of the structure of the problem is that the automorphisms of
a graph induce an equivalence relation on the vertices of the graphu v if there is an
automorphism of G with O(u)- v. The set of equivalence classes of this relation
constitutes the automorphism partition of the graph. The problem of finding the
automorphism partition of a graph is ISOMORPHISM-complete (see [14]). This result
and the fact that the number of automorphisms of a graph G (V, E) is equal to the
number of automorphisms of G which fix v V multiplied by the number of elements in
v’s cell of the automorphism partition of G are the essential steps in the proof that the
problem of counting the number of isomorphisms between two graphs is ISO-
MORPHISM-complete. This result is due to Babai [1] and Mathon [12].

The counting versions of most (perhaps all) known NP-complete problems belong
to the class of #P-complete problems (see [15] and [16], or [5] for definitions and
results). # P-complete problems do not appear to be polynomial time equivalent to
NP-complete problems. This evidence of a difference between ISOMORPHISM and
the known NP-complete problems depends strongly on the "structure" of ISO-
MORPHISM.

When ISOMORPHISM is generalized to an NP-complete problem, the structure
is destroyed. In SUBGRAPH ISOMORPHISM it is not so much broken down as
hidden under a wealth of other possibilitiesthere is a choice not only of how to map
one graph onto another, but also of which subgraph of the larger graph to consider. In
AUTOMORPHISM WITH RESTRICTIONS the structure is simply destroyed;
specifically, the relation on the vertices induced by the set of allowable automor-
phisms may no longer be reflexive, symmetric, or transitive. For example, if R is a set of
restrictions for a graph G (V, E) and (x, y) R, for some x, y V, there may be an
automorphism of G with VI R Q and 0(y) x, so that y x, but x c y since there
can be no automorphism O of G with V1R - and O(x)= y. Symmetry is lost. In
FIXED-POINT-FREE AUTOMORPHISM the only restriction is that no vertex may
map to itself so only the reflexive property is destroyed (though the transitive property
suffers as a consequence). In all ot these problems destroying the structure of ISO-
MORPHISM causes the counting version of the problem to become #P-complete.

It is quite possible that ISOMORPHISM is neither in P nor NP-complete. If this is
the case there will be problems in NP strictly between P and ISOMORPHISM-
complete, and problems in NP strictly between ISOMORPHISM-complete and NP-
complete (Ladner proves more general statements than these in [9]). Some possible
candidates for problems in these "inbetween" classes are described below.

Open Problems:
1. Is the AUTOMORPHISM problem ISOMORPHISM-complete? In P?
2. Is fixed-point-free automorphism of groups NP-complete?

This seems doubtful. Order 2 fixed-point-free automorphism of groups is solvable in
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polynomial time since a group G has a fixed-point-free automorphism if and only if G
is abelian and 0(x)=x -1, Vx G (see [6]). It is still an open question whether
isomorphism of groups is ISOMORPHISM-complete or in P. An O(nlgn) algorithm is
known (see [13]).

The problem of fixed-point-free automorphism on lattices can easily be shown to
be NP-complete. (The maximum and minimum elements are allowed to remain fixed
of course.)

3. What is the complexity of g-FIXED-POINT-FREE AUTOMORPHISM for
g(n) log2 n ? The problem would seem to be at least as hard as ISOMORPHISM but it
is not obviously ISOMORPHISM-complete or NP-complete.

4. For K N consider the problem:
Kth ISOMORPHISM.
Instance: two graphs G1 and Gz, and K- 1 distinct isomorphisms ;, 1 <_-i =<

K- 1, of Ga onto G2.
Question" Is there another isomorphism? That is, is there an isomorphism of

G onto G such that , 1 <_- <_-K- 1.
For K 1 the problem is ISOMORPHISM; for K 2 it is AUTOMORPHISM.

The general problem in which K is allowed to vary as part of the problem is
ISOMORPHISM-complete, so Kth ISOMORPHISM is always at least as easy as
ISOMORPHISM, but is it ISOMORPHISM-complete? AUTOMORPHISM-
complete? Do the problems get easier or harder as K increases?

Acknowledgments. I would like to thank Charles Colbourn for his enthusiasm, and
Derek Corneil for his encouragement and considerable assistance.
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CHARACTERIZATIONS OF PRESBURGER FUNCTIONS*
OSCAR H. IBARRA AND BRIAN S. LEININGERt

Abstract. Let r be the smallest class of functions on the natural numbers containing the functions

U’ (xl," ", x,,) xi, S(x) x + 1, A(x, y)= x + y, D(x, y) x y, C(x, y) (1 y)x, Tk(X)= [x/kJ and
losed under composition. It is shown that is exactly the class of functions definable by Presburger formulas.
Moreover, for Presburger functions with finite output range, A(x, y) and C(x, y) can be deleted from the list
of initial functions. Characterizations of and its subclasses in terms of simple programs are also given. An
example is the following: A function is in :g if and only if it is computable by a program which contains only
instructions of the form x x + 1, x x 1, x y, and do x end, where do’s cannot be nested.

Key words. Characterization, Presburger formula, Presburger function, simple program, straight-line
program

1. Introduction. For a set F of initial functions, let Comp(F) be the smallest class
of functions containing F and closed under function composition. Let F be the
following list of functions"

(1) U’ (xl, , xn) xi for each positive integer n and 1 =< -<_ n
(2) Z(x) O
(3) S(x)=x + l
(4) A(x, y)= x + y
(5) P(x, y)=x- ll
(6) C(x, y)= (1 y)x
(7) Tk(x) [x/kJ for each positive integer k
(8) R,(x) =remainder (x/k) for each positive integer k
(9) D(x, y)= x y.

In [11], it is shown that Comp(1-8) (called simple functions in [11]) is precisely the class
Of functions computable by L1 programs. (L1 is the "loop(l)" language consisting only
of instructions x 0, x x + 1, x y, do x end where do’s cannot be nested [10].)
Our main results in this paper are the following:

(a) Comp(1-9)= Comp(1, 3, 4, 6, 7, 9) is exactly the class of functions definable
by Presburger formulas.

(b) The functions 1, 3, 4, 6, 7, 9 are independent in the sense that none of the
functions can be obtained from the others by composition.

(c) The set of functions in Comp(1, 3, 7, 9) with finite output range (i.e., the output
can only assume values 0, 1,..., m for some m) is exactly the class of Presburger
functions with finite output range. Moreover, the functions 1, 3, 7, 9 are independent.

The proof of (a) uses a result in [6] (see also [7]) which relates Presburger formulas
to simple programs. Before we can state this result we need a few definitions.

DEFINITION. Presburger formulas are defined inductively as follows (see, e.g., [4]):
(a) ao+Yi=l aixi =b0+i=l bixg is a Presburger formula for every integer m ->_ 1,

variables xl, , x,,, and nonnegative integers a0, a
(b) If F and Fz are Presburger formulas, then so are their conjunctionF ^ Fz and

their disjunction F1 v Fz.
(c) If F is a Presburger formula, then so is its negation -F.

* Received by the editors June 11, 1979 and in final revised form April 18, 1980. This research was
supported in part by the National Science Foundation under Grant No. MCS78-01736.

" Department of Computer Science, Institute of Technology, University of Minnesota, Minneapolis,
Minnesota 5545 5.

u v u -v if u => v, 0 otherwise.

22
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(d) If X is a free variable in a Presburger formula F, then (=lxi)F and (lxi)F are
Presburger formulas.

(e) Only expressions derivable using rules (a)-(d) are Presburger formulas. A
Presburger formula with m -> 1 free variables will be denoted by F(Xl," , x,,).

DEFINITION. Let N be the set of nonnegative integers. A total function
f:NnN"(n, m >= 1) is a Presburger function if there is a Presburger formula
F(xl,’",xn, yl,’",y,,) such that for each (i,...,in) in Nn, if f(il,’",in)
(/’, , ],,) then F(ia, , in, h, ",],,) is true and F(il, ., in, kx, ., k,,) is false
for all (k,..., k,,) # (ix,. ., ],,).

Next, we give the syntax of a simple programming language which has been shown
to characterize Presburger functions [6], [7].

Let XL be the programming language which has the following instruction set:

(1) x-x+l
(2) x - x -1
(3) if x 0 then exit
(4) do x

end
(5) x ,-- 0
(6) xy
(7) go to
(8) if x 0 then go to

An XL program P is any finite sequence of (possibly labeled) instructions of the form
(1)-(8) satisfying the following conditions:

(a) do... end pairs only enclose instructions of the form (1)-(3) and (5)-(8).
Thus, nested do’s are not allowed.

(b) if x 0 then exit instructions can only appear inside do. end constructs.
(c) Labels in instructions of the form (7) and (8) are forward labels.
(d) No instruction in the scope of a do... end construct can be labeled. (The do

itself can be labeled.)
Each program variable can hold any nonnegative integer. The variable x controlling the
do x end construct can be modified inside the do without changing the number of
iterations. The if x 0 then exit causes an exit out of the do containing it if x 0. The
program halts after processing the last instruction. Two fixed (not necessarily disjoint)
sets of program variables are designated input variables and output variables, respec-
tively. Before the start of program execution, all noninput variables are initialized to
zero while the input variables are set to some input values. Assume that the program P
has input variables x, , xn and output variables yl, , y,, (n, m => 1). The function
fv defined by P is given by: fp(il,..., i)=(j,..., j,,) if P with Xl,"" ", Xn set to
ix, in halts with values/’, ,/’, in yx,. ., y,,. The subset of XL consisting only of
instructions x -x + 1, x -x- 1, if x 0 then exit, and do x... end is called the SL
language. The language consisting only of instructions x - 0, x - x / 1, x - y, and
do x end is called the loop(l) language (L, for short) [10].

The connection between SL programs and Presburger formulas is given by the
following theorem which was proved in [6], [7]. (See also [1] for related results.)

THEOREM 1.
(a) A function is a Presburger function if and only if it is computable by an SL

program.
(b) Every XL program can be converted into an equivalent SL program.
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We will use Theorem 1 to prove our characterization results. For convenience, we
first prove an intermediate result about SL programs which is of independent interest.
This is done in the next section.

2. A straight-line program characterization of SL. Let Q be the programming
language consisting only of instructions"

x,-x+l

x.-x+y

XX--y

x -(1--y)x

x lx/kJ, k a positive integer

The variables x and y in the above instructions need not be distinct. We will show that
every SL program can be transformed into an equivalent Q program, and conversely.

Notation. If E is an arithmetic expression computable by a Q program and x is a
variable, x .- E will denote a Q program for assigning to x the value of the expression E.
For example, we can write x - ([(1 -y)x + 11 -x)+y.

The following lemma will simplify proofs of later results.
LEMMA 1. Each of the following instructions can be coded in Q: x -0, x ,-c,

x x + c, x x c, x ay, x - ax + by, x - ax by, if pl then x - E, if pl and p2 then
x E, where a, b, c are positive integers, pl, p2 are predicates of the form y > O, y O,
y < O, y > z, y z, y < z, and E is an expression computable in Q.

Proof. The codings in Q are straightforward. For example, if y > 0 then x E can
be coded as

x (1 y)x + (1 -(1 y))z

The instruction if p and p2 then x E can be coded as

z-E

h.-2

if P then h h 1

it p2 then h h 1

x ,--(1 h)z +(1 -(1 h))x

The proof that every SL program can be converted into an equivalent Q program is
given in four lemmas.

Notation. Q will denote the language consisting only of instructions x x + 1,
xx+y, and xx-y.

LEMMA 2. Let P be an SL program without do... end constructs (and hence no if
instructions) which uses only variable x. Then P can be reduced to an equivalentprogram
P’ which takes one of the following forms:

(1) empty
(2) xx +c
(3) x -x -c
(4) xx-c
xx+d
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where c and d are positive integers. Hence, P can be converted into an equivalent Q
program.

Proof. Apply the following algorithm to P:
Step 1. First reduce P into an equivalent program P’ whose instructions are of the

types x x +ca and x x- cz and they alternate (ca and cz are positive
integers).

Step 2. If P’ has one of the forms (1)-(4), stop.
Step 3. Find two instructions in P’ of the form

XX +Cl

X <...X "-.-C2

where ca and C2 are positive integers. If ca c2, delete these two instruc-
tions and go to step 2. Otherwise, replace these two instructions by the
single instruction x -x +(ca-cz) if ca >c2 or by the single instruction
X ’-X "--(C2--Cl) if C2 > 1 and go to step 2.

Clearly, the algorithm terminates with P’ taking one of the forms (1)-(4).
Moreover, such a P’ is equivalent to P.

Notation. Let a be a program containing only instructions of the form xi - xi + 1 or

Xi <-" Xi 1. For any variable x, Ix, a] will denote the program obtained from a by
deleting all instructions not involving variable x.

LEMMA 3. Let P be an SL-{if} program of the form
do z

end

Let Xl, Xn be the variables appearing in . Assume that if z appears in a, then xn z.
Then P can be converted into an equivalent Q program.

Proof. Clearly, P is equivalent to the program

do z

end

do z

Xl, O]

Xn, Og

end

By Lemma 2, each [xi, a can be reduced to one of the following forms:

(1) empty

(2) Xi <’" Xi "- Ci

(3) Xi <-" Xi Ci

(4) Xi <’- Xi Ci

Xi <’- Xi -" di
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Hence, each

do z

end

reduces to one of the following forms:

(5) empty

(6) Xi <’- Xi -- CiZ(7) Xi <-" Xi CiZ

(8) y z -(z 1)

x(x-cy)+(d-c)(z 1) + dy

(for the case di >= Ci)

(9) yz "-(z-l)

Xi <’" (Xi ciy) (Ci- di)(z 1) + diy

(for the case ci > di)

The result follows. []
THEOREM 2.
(i) Every SL-{if} program can be converted into an equivalent program, and

conversely.
(ii) Every (SL-{if}){x -0} program can be converted into an equivalent

{x -(1 -y)x} program, and conversely.
Proof. (i) follows from Lemmas 2 and 3 and the fact that the instructions x x + 1,

x - x + y, and x - x y are clearly computable by SL- {if} programs. The proof of (ii) is
similar. In Lemma 3, xi bi is a possible form (bi a nonnegative integer). The reduced
form is: if z > 0 then Xi <’- bi. This uses the instruction x - (1 y)x when translated (see
Lemma 1). 71

Next, we consider SL do. end constructs with if instructions.
LEMMA 4. Let P be an SL program of the form

do z

if x 0 then exit

if x2 0 then exit

if x, 0 then exit

Om+l

end
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where m >-_1 and c1," ",c,+1 contain only instructions of the form xx + 1 or
x -x- 1. (Some ai’s may be empty.) The variables xl,..., x, need not be distinct.
Assume that z > 0 and one of the it’s causes the exit. Then P can be converted into an
equivalent Q program.

Proofi The construction uses a technique in [6]. For i-1,..., m, consider the
program

do w

o1

oi

it xi 0 then exit

oi+1

Om+l

end

where w is a new variable. Let ti the least number of times the "if xi- 0 then exit"
instruction is encountered if it causes the exit for some value of w. ff the if instruction
cannot cause an exit for any value of w, let ti z. Then the following program is
equivalent to P:

t-Z

compute tl

if > tx then - tl

compute t,

if > tm then - tm

h-O

hmO
if t then h - h + 1

t/- tl

if t2 and u > t2 then h2 h2 q- 1

if u 3> t2 then u - t2

if t. and u > t, then h, - h. + 1

if u > t. then u - t.

tmin{q,... ,t,,}

Sets hi 1 where is the smallest
index such that ti t. All other hj’s
are set to 0.
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w<--0

if hi > 0 then w - w + 1

do w

oi

end

w-O

if hi > 0 then w - 1

do w

oi+1

Orn+l

end

repeat this code for 1, 2,. , m

The next lemma shows that the task "compute tg" can be computed by a Q program.
Hence, by Lemmas 1-3, the above program can be reduced to an equivalent Q
program. Iq

LEMMA 5. Let P be an SL program of the form

do z

if Xi "--0 then exit

2

end

where z > 0 and a 1, az contain no if instruction and only reference variable Xi. Then ti can
be computed by a Q program.

Proof. We consider two cases.
Case 1. The program

O2
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reduces to the empty program or to the form xi xi + ci or the form

Xi <’" Xi Ci

Xi <-" Xi "- di

where ci and di are positive integers. Then ti can be computed by the code

t/--- Z

if X 0 then ti 1

Case 2. The program

O2

reduces to the form Xi <-" Xi "--Ci. Then the code to compute ti is

"+" (Ci 1)/! + 1
i J

By Lemma 1, ti can be computed by a Q program. [3
We are now ready to prove the main result of this section.
THEOREM 3. Every SL program can be converted into an equivalent Q program, and

conversely.
Proof. By Theorem 2, we only have to show that every SL program of the form

do z

end

if x 0 then exit

m

if x. 0 then exit

Om+l

can be reduced to an equivalent Q program. Now the above program is equivalent to the
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program

z’z+l

do z’

z’ z’ 1

if z’= 0 then exit

if xl 0 then exit

02

Om

if x. 0 then exit

Om+l

end

where z’ is a new variable. Then z’> 0 and the exit will be caused by an if instruction.
Then, by Lemma 4, the do z’... end construct can be reduced to an equivalent Q
program.

The converse is obvious. I-]

From Theorems 1 and 3, we have
CoroIIAR 1. Every XL program can be converted into an equivalent Q program,

and conversely.
COROLLArV 2. A one-output function f(Xl,’’’, xn) is computable by an XL

program if and only if it can be written as an arithmetic expression with operands
Xl, ", xn and nonnegative integer constants, and operations: plus 1, integer division by
a positive integer constant, addition, proper subtraction, and the operation (1 -y)x.

Let CL be the language consisting only of instructions x x + 1, x - x 1, x y,
and do x end, where do’s cannot be nested. CL was introduced in [2-1 and was shown
to have a complete and consistent Hoare axiomatics. Clearly, every O instruction can be
coded in CL. Then by Corollary 1, we also have

COROLLARY 3. Every CL program can be converted into an equivalent Q program,
and conversely.

We will show that the language Q is minimal in that all instructions in Q are
independent. First, we prove the following more general result.

LEMMA 6. Let R be the language consisting of instructions x x + 1, x x + y,
xx 1, x x "-y, x .- [x/kJ, x rem (x/k), and x (1 -y)x. (k is a positive integer,
rem (x/k)= remainder of x divided by k, x and y need not be distinct.) Then each of
the following instructions cannot be expressed in terms of the remaining instructions:
xx+l,xx+y,x [x/kJ,x,-x-y, andx(1-y)x.

Proof.
(a) x x + 1 cannot be deleted from R:
Clearly, every function g(x) computable by an R-{x x + 1} program has the

property that g(0) =0. Hence, the function f(x)= 1 for all x is not R-{x -x + 1}
computable.
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(b) x x + y cannot be deleted from R:
If g(x) is R-{x <--x +y} computable by a program with r instructions, then

g(x) <= x + r. Hence, f(x) 2x is not computable in R-{x x + y}.
(c) x <-- [x/k cannot be deleted from R:
Suppose g(x) is computable by an R-{x [x/kJ} program P with r instructions.

Let K product of all k’s (possibly with repetition) appearing in instructions of the
form x <- rem (x!k). If no such instruction appears in P, let K 1. Then one can easily
verify (by induction on r) that for all x of the form x Kxo with Xo> 2r, g(x) can
uniquely be written in one of the following forms: g(x)=0, g(x)=c, g(x)=ax,
g(x) ax + c, g(x) ax -c, where a and c are positive integers satisfying 1 -< a, c <- 2rK.
It follows that f(x)= [x/2J is not R-{x IxJ} computable.

(d) x <-- x y cannot be deleted from R:
Let g(x, y) be computable by an R-{x x y} program with r instructions. Let

K product of all k’s appearing in instructions of the form x Ix/k or x <-- rem (x/k).
Then by induction on r, we can show that for all x and y of the form x Kxo, y Ky0
with x0, yo>2rK, g(x, y) can be written uniquely in one of the following forms:
g(x, y)=0, g(x, y)=c, g(x, y)=axo, g(x, y)=axo+c, g(x, y)=axo-c, g(x, y)=ay0,
g(x, y) ayo+c, g(x, y) ay0-c, g(x, y)=axo+byo, g(x, y)=axo+byo+C, g(x, y)=
axo+byo-c, where a, b, and c are positive integers satisfying 1 <-a, b, c <=2rK. It
follows that f(x, y) x y is not computable by an R-{x <-- x y } program.

(e) x <-- (1 y)x cannot be deleted from R:
Suppose g(x, y)= (1 -y)x is computed by an R-{x <--(1 -y)x} program P with r

instructions. Without loss of generality, we may assume that y is restricted to values 0
and 1. Let z be the output variable and K be as defined in part (d). Then one can verify
(by induction on r) that for all x of the form x Kxo with x0 > 2rK, the value of z at the
end of the program can be written uniquely in one of the following forms" z 0,
z c (y), z axo, z axo + c (y), z axo c (y), where a is a positive integer satisfying
1 <=a <=2rK and c(y) is an arithmetic expression involving only variable y and 0 <-

c(y) <= 2rK for y 0, 1. It follows that z cannot output (1 -y)x for all y 0, 1 and
x Kxo, x0> 2K. Hence, f(x, y) (1 y)x is not computable in R-{x <-- (1 y)x}. [-1

We also need the following lemma.
LEMMA 7.
(a) The instruction x x 1 cannot be expressed in terms of x <- x + 1, x <- x + y,

x - Ix/k ], x rem (x/k), and x <-- (1 y)x.
(b) The instruction x <--rem (x/k) cannot be expressed in terms of x <--x + 1,

x <--x + y, x <--x- l, x <- [x/kJ, and x <-(1- y)x.
Proof.
(a) Suppose g(x) is a function computed by a program P without instructions of the

form x x 1. Let r be the number of instructions in P and K product of all k’s
appearing in instructions of the form x lx/kJ or x <-- rem (x/k). Then, clearly, for all
Xo >- 2K + 2, g(Kxo) can be written uniquely as g(Kxo) c or g(Kxo) axo + c (c is a

nonnegative integer _-<2K and a is some positive integer). If g(Kxo)=C then,
obviously, P does not compute x 1. If g(Kxo)= axo + c, we have two cases. If a => K,
then g(Kxo) >- Kxo. If a < K then g(Kxo) axo + c <= (K 1)Xo + c Kxo + (c Xo) <=
Kxo-2. In either case, P does not compute x 1.

(b) Let g(x) be computed by a program P without instructions of the form
x <-rem (x/k). Let r be the number of instructions of P and K product of all k’s
appearing in instructions of the form x [x/kJ. One easily checks that g(x) is either a
constant for all x >= Kr or g(x) is unbounded for x >= Kr. It follows that P cannot compute
rem (x/ k ). [3
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We can now state the following theorem.
THEOREM 4.
(a) Every function computable by an R program is computable by a Q program.

Thus, R and Q are equivalent languages.
(b) Q is minimal.
Proofi Part (a) is obvious since the instructions x -x- 1 and x -rem (x/k) are

expressible in terms of Q instructions. The independence of the instructions in Q
follows from Lemma 6. [3

In 11], it is shown that a function is computable by an L1 program if and only if it is
computable by an (R- {x - x y }) t_J {x - 0} program. From Lemmas 6 and 7 and the
fact that x - 0 is computed by the code: x rem (x/2); x - x- 1, we have

THEOREM 5. A ]’unction is computable by an L1 program if and only if it is
computable by an R {x - x y } program. Moreover, R {x - x y} is minimal.

3. Characterizations of Presburger functions. Let Comp(B), where B are the
functions: U’ (11," , xn) xi, $(x) x + 1, A(x, y) x + y, D(x, y) x y, C(x, y)
(1 y)x, and Tk (x) lx/k J. Let * be the class of multiple-output functions obtained
from as follows: An n-input, m-output function f:Nn-N is in * if there are
one-output functions fl," , f, in such that f(Xl, , x,) (fl(xl, , x,), ,
f,, (11,. , x,,)). Let be the class of one-output Presburger functions and * be the
class of multiple-output Presburger functions.

The following lemma is immediate from the definition of language Q.
LEMMA 8. A one-output (multiple-output) function is computable by a Q program if

and only if it is in (*).
We can now prove the main result of this section.
THEOREM 6. - and* *. Moreover, B is minimal in the sense that none of

the functions in B can be obtained from the others by composition.
Proof. The first statement follows from Theorems 1 and 3 and Lemma 8. The

minimality of B follows from Theorem 4 and the fact that the function U(x 1, ’, x,)
x is needed to specify the input parameters

Our next result concerns the characteristic functions of Presburger formulas.
THEOREM 7. Let1 be the set offunctions in with output range {0, 1}. Then f is in

1 if and only if it is the characteristic function of some Presburger formula.
Proof. Let Fl(Xl, , x,) be a Presburger formula. The characteristic function AF

of F1 is defined by

/.FI(Xl, Xn)---
0

if FI(Xl, , x,) is true

if FI(X 1, Xn) is false.

Define a Presburger formula F over the variables xl, , x,, y by

F(Xl, Xn, y) (El(X1, Xn) A y 1) v (-qFI(Xl, ", Xn) ^ y 0).

Then the function defined by F is f(Xl,"" ", Xn)--/FI(Xl,""", Xn). By Theorem 6
AFI(XI,""", x,)is in o1.

Now suppose/(x1,’’’, x,) is in o%1. Then by Theorem 6, there is a Presburger
formula F(xa, , x,,, y) defining f. Construct the formula

Fx(xl," ", x,) :ly((y 1) ^ F(xl,. ., x,,, y)).

Now Fl(Xl, Xn) has the following property:
(i) If Fl(Xl, , x) is true, then y 1 and F(Xl,. , x,, 1) is true.
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(ii) If Fx(xl,’",xn) is false, then F(Xl,...,xn, 1) is false and, hence,
F(xl,..., xn, 0) is true.
It follows that f(xx,. ",xn) is the characteristic function of Vx. I-I

The next theorem characterizes * -Comp*(B) in terms of simple programs:
THEOREM 8. The following statements are equivalent for a function f.

(i) f is in *.
(ii) f is XL computable.
(iii) f is SL computable.
(iv) f is CL computable.

Moreover, SL and CL are minimal languages.
Proof. The equivalences follow from Lemma 8, Theorem 3, and Corollaries 1 and

3. The independence of the instructions in SL and CL are easily verified using the
techniques of Lemmas 6 and 7 (see [6]). [-1

Similarly, we have the following result using Theorem 2.
THEOREM 9.
(i) f is in Comp*(B -{C(x, y), Tk(x)}) /f and only if it is SL-{if} computable.
(ii) f is in Comp*(B-{Tk(x)}) if and only if it is (SL-{if}) U {x 0} computable.

Moreover, SL-{i[} and (SL-{i[})LI {x 0} are minimal languages.
Remark. We should mention here a related work of Harrow [8] (see also [9]). Let C

be the smallest class of functions containing the functions U(Xl,." ,x,)=xi,
Z(x)=0, $(x)=x+l, A(x,y)=x+y, D(x,y)=x "-y, and closed under the
operations of composition and strict limited minimum (see [5], [8] for the definition
of the last operation).2 In [8], the following result was shown: A set R N" is a
Presburger set (i.e., there is a Presburger formula F(xa,... ,xn) such that R
{(i, , in)lF(il," , in) is true}) if and only if there exists a function f(X1," Xn) in C
such that R ={(i1,"" ", in)[f(i,’", i,)=0}. Thus, by Theorem 7, 1 =the set of
characteristic functions of Presburger formulas the set of functions in C with output
range {0, 1}.

4. Presburger functions with finite output range. In this section, we prove a
somewhat surprising result: Any Presburger function with a finite output range can be
defined as a composition of functions U’ (x,..., x,)= xi, S(x)= x + 1,D(x, y)= x y,
and T (x) I_x/k ]. Thus, for such functions, the initial functions A (x, y) x + y and
C(x, y)= (1 "--y)x are not needed. The proof involves looking at the computing
properties of a very simple programming language V which consists only of the
following instructions"

x <--y +1

X-X--y

x -lx/k]

where x and y are (not necessarily distinct) variables and k is a positive integer. Clearly,
any V computable function is Q computable. Note that x y can be coded in V as:
xy+l;zz-z;zz+l;xx "--z.

We will show that any Q program whose output variables can only assume values
0, 1,. , m (for some rn) can be transformed into an equivalent V program. This will
follow from a sequence of lemmas. The first six show the V computability of some
"special" functions. To simplify the proofs, we will freely use programming constructs
(and/or arithmetic expressions) which can easily be coded in V, leaving the translation
to the reader.

Actually, the class was called gl(x y) in [8].
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LEMMA 9. Letx and y be nonnegative integer variables. Then the followingfunctions
are V computable:

1
(1) -nx=

0

1
(2) x ^ y

0

1
(3) xvy=

0

1
(4) x < y

0

1
(5) x>y=

0

(6) (x=y)=
0

if x =0,
otherwise;

ifx >0 and y >0,
otherwise;

ifx >0 or y >0,
otherwise;

/fx < y,
otherwise;

/fx >y,
otherwise;

/fx y,
otherwise.

Proof. The V programs are easily constructed. For example, z 1 x computes -x
while w (1 (1 x)) (1 y) computes x ^ y. Part (3) follows from (1) and (2).
Similarly, u 1 -(1 -(y -x)) computes x < y, etc. 13

LEMMA 10. f(X) rem(x/k) is V computable for any positive integer k.
Proof. The following program puts in y the value rem(x/k):

(*)

wk -1

y_lx+l
WW--y

W-W--y

Y k

WW--y

y*-k-1

y-y--w

Clearly, if rem(x/k)= l, then the smallest integer c such that L(x +c)/k] Ix + 1 is
c k I. Hence at the end of (*), w (k 1) rem(x/k). It follows that the value of y at
the end of the program is rem(x/k).

LEMMA 11. Suppose x <-_k and y <-k2 for some nonnegative integer constants k
and k2. Then x + y and cx are V computable for any nonnegative integer constant c.
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Proof. The code for v - x + y is

wkl+k2
W’W "--X

ww--y

vk+ka
V(’-V--W

35

The code for v cx is

w Ckl

W’W--X

W’-W "--X

c times

v Ckl

V-"V--W ]

DEFINITION. A term is an expression of the form a0 + a 1X "-" "]" anxn, where each
ai is a nonnegative integer, n _->0, and x,..., xn are distinct nonnegative integer
variables.

LEMMA 12. The following function is V computable"

1 ifr<s,
r < s

0 otherwise,

where r and s are terms

Proof. The proof is an induction on n, where n is the number of variables in r and s.
Let r ao + a x +. + anxn and s bo + b x +" + bnxn. Without loss of generality,
we may assume that for each 0-< <- n, ai 0 or bi 0 since r < s if and only if r’ < s’
wherer’ ao+a’xxx+" "+anxn, s =bo+b’x+. .+b’nxn, a ai- hi, and b bi
ai. The reader can easily verify that if a a2 an 0 or bl b2 bn 0
then r < s is computable in V.

Assume that if r and s involve less than n variables then r < s is computable in V.
Now consider terms r and s involving n variables. Clearly, we need only take care of the
case when ai O, bi 0 for some 1 <_-- --< n and aj 0, bj 0 for some 1 <_-/" _-< n. Without
loss of generality, we may assume that a # 0, b 0, a2 0 and bE # 0. It is easy to verify
that r < s if and only if one of the following three conditions holds:

(1) u= +1 and

X1
^ ao-t- a3x3-t- + anXn bo

al

( )+ alb2 + b2 rem al rein + alb2u + b3x3 +" + bnxn
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(2)

(3)

w +1 and

([l] > [])^ (ao+ (alb2+al rem(-)- b2 rem())
+alb2w + a3x3+" "+anxn <bo+b3x3+" "+bnxn).

^ ao + al rem b2 rem + a3x3 + + anXn

< bo + b2 rem al rem + b3x3 +" + bnxn

Now each of these three cases can be split up, so at most n-1 variables will appear in the
right inequality. For example, consider case (1). Let

h a lb2 + b2 rem a rem

Clearly, 0 <-_ h <= a b2 + b:z(a 1).
Hence, ao+a3x3+" .+a,,x,, <(bo+h)+albzu +b3x3+’’ .+b,,x,, if and only if

[(h 0) ^ (ao + a3x3 -t-" -t- anxn < bo + alb2u + b3x3 -b" t- bnx)]

v [(h 1) ^ (ao+ a3x3 q-" -+" anXn < (bo+ 1)+ alb2U + b3x3 -b. q- bnxn)]

v. v [(h alb2 + b2(al- 1)) ^ (ao + a3x3 +" q- anXn < (bo + alb2 + b2(al- 1))

+ alb2U + b3x3 +" +- bnxn)].

Similar formulas can be found for cases (2) and (3). This finishes the proof since we have
reduced the inequalities involving n variables to inequalities involving at most n-1
variables. I-I

LZMMA 13. The function

ifr=s(r s)=
0 otherwise,

where r and s are terms, is V computable.
Pro@ This is V computable by Lemmas 9 and 12.
LEMMA 14. The function

1 ifr=--ks
r =- k s

0 otherwise,

where r and s are terms and k is a positive integer, is V computable.3

Proof. Let r ao + axl +" + a,x, and s bo + blXl +" + b,xn. For 1 <= <_- n, let
Yi rem(xi! k). By Lemma 10, Yi is V computable. Now yi <- k 1 so aiyg and biYi are V
computable by Lemma 11.

=t, s denotes s (modulo k).
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Let w a0 + alyl +" + anyn and u b0 + blyl +" + bny,. Again, by Lemma 11,
w and u are V computable. Clearly, r =-k s if and only if w --k u. Let w’= rem(w/k)
and u’=rem(u/k). Then w--u if and only if w’-u’ which is V computable by
Lemma 9. 13

The next lemma concerns Q programs whose output variables can only assume
values 0, 1.

LEMMA 15. Every Q program whose output variables can only assume values O, 1
can be converted into an equivalent V program.

Proof. Let P be a Q program satisfying the hypothesis of the lemma. Assume
without loss of generality that P has only one output variable. By Lemma 8 and
Theorem 7, there is a Presburger formula F whose characteristic function is exactly the
function computed by P. Now the formula F can be transformed into an equivalent
quantifier-free formula F’[3], and F’ has the form:

y V [i/ ri-bsi<ri-t-si-t-qA A ri-t-Ui-l-q<ti+SiA / riq-Wi-l-q=m’Vi-t-Si
q<rn i<k i<n

where l, q, m, k, n, mi are nonnegative integer constants, and ri, Si, ti, gli, Vi, Wi are terms.
By Lemmas 9-14, we can construct a V program P’ which computes the characteristic
function of F’. l"1

Generalizing Lemma 15, we have
THEOREM 10. Let m be a positive integer. Every Q program whose output variables

can only assume values O, 1,..., m can be converted into an equivalent V program.
Proof. Let P be a Q program. Again, we only consider the case when P has one

output variable z whose range is 0, 1,. ., m. Let the input variables of P be xl,. , x.
For each 1 <_-i <-_ m, construct the following program Pi (y and zi are new variables):

P

y-y "--i

Zi-(1 y)z

zizi-(i-1)

Clearly, at the end of Pi, zi 1 if z and zi 0 otherwise. Now Pi can be coded in Q.
Hence, by Lemma 15, Pi can be transformed into an equivalent V program P. Assume
that the variables in P, P,. , P’m are distinct. For 1 <= < m, let the input variables of
P be xi,’", xi, and its output variable be zi. Then the following program P’ is
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equivalent to P(zo and z are new variables)"

Xil <’- Xl

Xi2 <’" X2

Xin <-" Xn

P1

ZOO-- 1

repeat for 1, 2,. , m

Zo<-. Zo Zl

Z <’-Z.. --Zo

Z<’-Z--Zo

m + 1 times

Z <’-Z.. "--Zl

Z <-’Z "--Zl

m times

Z ’-’Z --Zj

Z --Z --Z

m ] + 1 times

Z <’-" Z Zm-1 / 2 times
z <--z ":-Zm-1 J

Z <-’Z "--Zm

P’ has input variables X1, Xn (which are also the input variables of P) and output
variable z. It is straightforward to transform P’ into an equivalent V program P". [:]

Theorem 11 below shows that V is minimal.
THEOREM 11. The instructions x - y + 1, x - x y, x - Ixk are independent.
Proof. One can easily verify the following statements using the ideas in the proofs of

Lemmas 6 and 7:
(1) Without x y + 1, the function f(x)- 1 for all x cannot be computed.
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(2) Without x x y, the function

ifx<y
otherwise

cannot be computed.

(3) Without x - [x/k], the function f(x)= rem(x/k) cannot be computed. I-!
Notation. Let c be a class of (possibly multiple-output) functions and m be a

positive integer. Then c,, will denote the set of functions in c whose outputs can only
assume the values 0, 1,. , m.

From Lemma 8 and Theorems 6, 10 and 11, we have the main result of this section:
THEOREM 12. For each positive integer m, m , Comp,, (/) and, ,=**

Comp*,,,(/), where J consists only of the functions U7 (Xl," ’’, xn)= xi, S(x)= x + 1,
D(x, y)= x y, and Tk(x)= [x/k]. Moreover, the functions in 1 are independent.
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Abstract. This paper studies an extension of the notion of a finite index ETOL system. It turns out that by
setting some quite natural restrictions on the set of bare derivation trees of an ETOL system (that is derivation
trees stripped of labels) one can characterize languages of finite rank. Several properties of the new class of
ETOL systems are investigated; in particular their relationship to ETOL systems of finite rank and ETOL
systems of finite index is investigated.
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Introduction. The notion of finite index is a classical one in formal language theory.
Imposing the finite index restriction is an established way to investigate the structural
properties of a rewriting system.

One of the essential differences between sequential and parallel rewriting systems,
i.e., between context-free grammars and ETOL systems, is that ETOL systems allow
for a meaningful and interesting extension of the finite index notion, namely the notion
of ETOL systems with rank. (Indeed, it was shown in [1 that the rank restriction, when
applied to context-free grammars, is equivalent to the finite index restriction.) In [1 ], [8]
and [9] it was demonstrated that the notion of rank in ETOL systems forms an
important extension of the finite index concept and allows us to learn quite a bit about
the structure of ETOL systems.

However, when looked upon carefully, the definition of (finite) rank seems to be
too detailed" it talks too much about the actual form of the words belonging to the set of
sentential forms.

Hence a very natural question is whether one can give an alternative definition
which would set the minimal restrictions on ETOL systems and hence would allow one
to see the essentials behind the property of rank.

The aim of this paper is to present such an alternative characterization. We feel that
the characterization we have provided is surprisingly simple. It relies on the structure of
the bare derivation trees (i.e., derivation trees with labels erased) only! The paper is
organized as follows.

In the first section we recall some basic terminology and notation concerning trees
and ETOL systems. In II we define the notion of the rank of a tree and we investigate
several of its properties. In III we investigate the effect of imposing the finite tree-rank
restriction on ETOL systems. In particular we show that the finite tree-rank property is
decidable, and establish an infinite hierarchy of classes of languages associated with
ETOL systems of finite tree-rank. The class of ETOL languages of finite tree-rank is
then characterized in several ways in IV" it is shown to be equal to the class of
languages generated by strongly nonexpansive ETOL systems and to the class of ETOL
languages with rank. In V we further investigate the relation between the notion of
rank and tree-rank of ETOL systems by comparing the respective hierarchies of
language families. Finally, in VI we mention some closure properties of the classes of
ETOL languages with finite tree-rank.

* Received by the editors August 9, 1978, and in revised form October 24, 1979.
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I. Preliminaries. The reader is assumed to be familiar with basic formal language
theory and in particular with the basic theory of L systems, e.g., in the scope of [3]. In
addition to the standard notation, we will also use the following.

First of all, we often do not distinguish between a singleton and its element, e.g., {A}
will often be denoted by A. Let V be an alphabet and let x be a word over V.

(1) For k > 0, we use V-<-k to denote the set of all nonempty words over V with
length not exceeding k; i.e., V<--k {x c V+ lx <- k}.

(2) For every alphabet A V, we define a homomorphism Presa V* A* by

a if a
PresA (a)

A otherwise.

(3) For a set A = V, we use # A (X) to denote the number IPresA x[ and alph x to
denote the set {a # X > 0}.

(4) For 1 <--i--<lxl, we use x(i) to denote the ith symbol in x.
To establish some terminology and notation we recall now several notions

concerning trees.
DEFINITION 1.
(1) A (finite) tree is a pair T (A, R) where A is a finite nonempty set of nodes

and R A A is a set of edges with the following properties:
(i) there exists a special node r c A, called the root of T, which is such that

(x, r)R for all x
(ii) for every a c A\{r}, there exists precisely one b in A such that (b, a) c R.
(iii) for every a c A\{r}, there exists a unique sequence a bo, b, , b, r,

n _-> 1, of nodes such that (hi+i, bi) c g for all 0 _-< < n.
T is said to be ordered if, for every a c A\{r}, the set {b :(a, b) c R} is linearly ordered.
Let T (A, R) be a tree.

(2) A path in T is a word bo’" b, cA+,O<-n, which is such that (bg, b+)cR
for all 0 <_- < n. We say that b0" b, is a path from b0 to b in T. The length of a path
b0"" b is n.

(3) qhe height of T, denoted as Hgt (T), is the length of a path p in T such that no
other path in T is longer than the path p.

(4) For c , let Pr(l) be the set of all paths of length starting at the root. The
width of T, denoted Wdh (T), is defined by Wdh (T)= max/__>o { PT(1)}.

(5) For a node a c A, the set of direct descendants of a, denoted as Descr a, is
defined by Descr a {b c A (a, b) c R }.

(6) A node a
(7) T is called full binary if # DescT a c {0, 2} for all a c A.
(8) T is called parallel full binary, abbreviated as p.f.b., if T is full binary and all

paths from the root to a leaf have the same length.
(9) For a node a c A, the subtree of a, denoted by Ta, is defined by Ta (Aa, Ra)

where Aa is the set of all nodes x such that there is a path from a to x and
Ua R f3 Aa x Aa.

(10) For a node a cA, the level of a in T, denoted levelT- (a ), is defined by
levelTa Hgt (Ta).

DEFINITION 2. Let T (A, R) be a tree and let f:A A be a partial function such
that the root of T is in the domain of f and f(a) a for all a c Dom f. Then f(T) is a tree
defined by f(T)=(f(A),R) where (a,b)cR if and only if there exists a path
acl "cnb, n O, in T such that cg g Dom f for 1 <- <_- n. We then say that T contains
f(T).



42 A. EHRENFEUCHT, G. ROZENBERG AND D. VERMEIR

DEFINITION 3. Let T (A, R) be a tree and let fi9 be a set of trees. The set of trees
Hang (T, @) is defined as follows. A tree T’= (A’, R’)e Hang (T, @) if and only if there
exist an integer n -> 0 and a subset {Ti (Ai, Ri)" 0 <-_ -< n} of such that the following
hold (we assume that A and Ai, 0 <- -< n, are mutually disjoint)"

(i) A’= U i=0 Ai U A, and
(ii) for every 0_-<i-<n there exists exactly one node aieA such that R’=

LI i=0 Ri U R Ll{(ai, ri)’r is the root of T}. Thus, intuitively, the set Hang (T, @)
contains all trees obtained by attaching some trees from @ to T.

DEFINITION 4. A labeled tree is a 4-tuple T (A, R, V, r) where (A, R) is a tree, V
is a finite alphabet, and/ is a total function from A into V. For each node a e A, f(a) is
called the label of a.

Next we recall some basic definitions and notation concerning ETOL systems.
(0) An ETOL system is a construct G (V, , $, ;) where V is a finite alphabet,

X; c_ V is the set of terminal symbols, $ V is the start symbol and is a finite set of
finite substitutions T" V 2 v. An element T of is usually called a table and denoted
as a set of productions

T {a - a "a V, a e T(a)}.

For words x V* we write x y (or x=), y if G is understood) if y T(x) for some
T

T e . We may also write x => y to stress the fact that we use T. As usual the "derives"
relation =>* (or =>*) is the reflexive and transitive closure of G. The language of G,

denoted L(G), is defined by L(G) {w * S * w}.
Let G (V, , $, ) be an ETOL system.
(1) G is a deterministic ETOL system, abbreviated EDTOL system, if every table

is a homomorphism.
(2) G is synchronized if for every terminal symbol a X, a =),* x implies x X*.
(3) We use maxr G to denote the length of the longest right hand side of any

production in G. r
(4) For A a subset of V, we say that G is deterministic in A if #{a’a =)> a} 1

for all a A and T .
(5) The deterministic version (G)o of G is the unique EDTOL system (G)o

(V, N, S, ) where P if P is a homomorphism and P __c T for some T e .
(6) A symbol a V is called nonactive if a =), a implies that a a. We say that

G is in Active Normal Form (abbreviated as ANF) if every terminal is nonactive. Let
D’xo =>xl ’" xn V* be a derivation in G with To being the corresponding

derivation tree.
(7) Let a be a subword of some x(0-< -< n). Then, for ] _>-0, we use contro(a, ])

to denote the subword of xj formed by the descendants of a (contro (a, ]) is undefined if
]<i.) We also use contro(a) to denote contro(a,n). If contro(A)A for some
occurrence A, thenA is said to be productive and we also say thatA produces contrt(A).

(8) D is said to be proper if x xj for all ].
(9) For a subword z of an intermediate word x (0 -< <- n) we use (z) to denote

the word obtained from z by erasing all nonproductive occurrences.
(10) D is said to be deterministic if x0=)> Xl =)>" =)> x is also a derivation in (G).
(11) Let y be a subword of xn. For every 0 -< -<_ n, anco(y, i) denotes the minimal

subword y of x which is such that contro(yi) contains y as a subword.
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(12) We use q/(G) to denote set {alphx:S=>*x=>* yE*} of useful alpha-

bets of G. We also use Succ G to denote the language {x V* :x :::),* y for some y *}.

In [6] it has been shown that both ?/(G) and Succ G can be effectively constructed.
(13) We say that G is nonexpansive if for every a V, a ::),* c implies that

#a__<l.
(14) We say that G is of index k for some k >= 1 if for every word w in L(G) there

exists a derivation D of it such that no word in D contains more than k occurrences of
active symbols. G is said to be of finite index if G is of index k for some k -> 1. We use
(ETOL)IN to denote the class of languages generated by ETOL systems of finite
index.

Finally we recall the definition of an ETOL system with rank (see [1]).
DEFINITION 5. Let G (V, , S, ) be an ETOL system.
(1) For a word a V* and a subset Z of V we define the sets SUCC,z(a) and

NSUCC,z (a), denoted as SUCCz (a) and NSUCCz (a) if G is understood, as follows.
(i) SUCC,z(a)={Presz(x):a :::>* x * y for some y *} where Presz isa

G G

homomorphism on V* defined by Presz a a if a Z and Presz a A if a V\Z.
(ii) NSUCCo,z(a)= (Ix I:x suff,z().

(2) The (in general partial) function ranko: VN, denoted as rank if G is
understood, is defined recursively as follows.

(i) Let Z0 V. Then ranko(a)= 0 if and only if SUCCo,zo (a) is a finite set.
(ii) For _-> 0, let Zi+l V\{a V: rank a -< i}. Then, for a . Zi+l,

ranka(a) + 1 if and only if SUCC,z,/I a is a finite set. For i>=O, Ri(G) denotes the
set rankbl(i).

(3) We say that G is an ETOL system with rank if and only if rank is a total
function on V. Moreover we say that G is of rank m, m _-> 0, denoted as rank G m, if
R,(G) and Ri(G) for all > m.

We will use (ETOL)RAN(i, =>0, and (ETOL)RAN to denote the set of ETOL
systems with rank not bigger than and the set of ETOL systems with rank respectively.
As usual, (ETOL)RAN(/ and (ETOL)RAN denote the corresponding classes of
languages.

II. Rank on trees. In this section the notion of tree-rank is introduced and its basic
properties are investigated. Informally speaking, the rank of a tree T is computed in a
bottom-up fashion as follows. Every leaf has rank 0. Let c be a node in T and let be the
maximal rank of the descendants of c. If c has at least two descendants with rank i, then
the rank of c is + 1, otherwise the rank of c is i. The rank of T is then set equal to the
rank of its root. Here is a formal definition.

DEFINITION 6. Let T (A, R) be a tree with root r.
(1) The tree-rank function of T, denoted rT, is a mapping from A into N which is

defined as follows.
(i) If a e A is a leaf, then rT(a)= O.

(ii) If aA is not a leaf then we consider the number MT(a)=
max {rT(b): b Desc a}. Then

MT(a) if # rr (MT(a)) Desc a 1, and
rr(a)

Mr(a)+ 1 otherwise.

(2) The rank of T, denoted rank T, is defined by rank T rr(r). We will often refer
to rr(a) as the tree-rank of a (in T).
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Obviously, the rank of a p.f.b, tree equals its height. This observation is generalized
in the following theorem which provides a characterization of trees of rank k.

THEOREM 1. A tree has rank k ifand only if it contains a p.f.b, tree o]height k and
it does not contain a p.f.b, tree o] height bigger than k.

Proof. The proof goes by induction on k.
(1) First we show that the theorem holds for k 0. To show the/f-part, let T be a

tree which contains a p.f.b, tree of height 0 but does not contain a p.f.b, tree of height
more than 0. This immediately implies that T has but one leaf, and from this and
Definition 6 it readily follows the rank T 0. To show the only-i] part, let T (A, R)
be a tree of rank 0. This implies that # Desc (a) -< 1 for every a in A and thus T does not
contain a p.f.b, tree of height larger than 0. Together with the fact that every tree
contains a p.f.b, tree of height 0 this completes the proof for the case k 0.

(2) Let us assume that the theorem holds for k I.
(3) We show that the theorem holds for k + 1.
To show the only-if part, let T be a tree of rank + 1. Let a0 be a fixed node with the

property that rr(ao) + 1 and Mr(ao) I. (Note that the hypothesis and the definition
of rank T guarantee the existence of such a node ao.) From the definition of rr it then
follows that there exist two nodes a, a in Desc (ao) such that rr(a) rr (a2) I. Hence
rank T rank Ta l. By the inductive assumption T and T both contain a p.f.b.
tree of height I. Let Jl and/2 be the associated mappings and define " 11 U 12 U (ao, ao).
It follows immediately that ]’(T) is a p.f.b, tree of height + 1. In order to show that T
does not contain a parallel full binary tree of height greater than + 1, we first prove the
following.

CLAIM. I] Tcontains a p.f.b, tree T’ and a is a node in T’ with levelr, (a)= l, then
rT(a)>=l.

Proo]’ o" the claim. The proof is by induction on I.
(i) The claim holds trivially if 0.
(ii) Let us assume that the claim holds for t.
(iii) Let a be a node in T’ with levelr, (a)= t+ 1 and let Descw,(a)={a, ae}.

Obviously, levelw, (a) levelw, (a2) and thus rw(a) >- and rr(a2) >= t. Let
abo" ba(nl ->0) and aCo" c,a2(n =>0) be the paths in T from a to a and to a2. It
is then clear that rT(Co)>--t and rr(bo) >- t. Since bo and Co are both in Descr (a), this
implies that rr(a) -> + 1, thus completing the proof of the claim.

From the above claim it immediately follows that if T contains a p.f.b, tree of
height greater than + 1 then rankr > + 1, a contradiction. This completes the proof of
the only-if part.

To show the if part, let T be a tree containing a p.f.b, tree B of height but not
containing a p.f.b, tree of height + 1. From the claim it then follows that rank T => + 1.
On the other hand the only-if part of the theorem implies that if rankr > + 1, then T
would contain a p.f.b, tree of height greater than + 1, a contradiction. Thus rank T
+ 1 and the theorem holds.

Next we note that the rank of a tree is always strictly bounded by its width.
THEOREM 2. Let T be a tree. Then rank (T)< Wdh (T).
The following lemma will be useful in the sequel; we omit the proof.
LEMMA 1. Let Tbe a tree of rank not greater than k 1, ]’or some k >= O, and let be a

]amily o] trees which is such that there exists an integer k2 such that rank T’) <= k2 ’or all
T’ in . Then rank (T) <- kl + k2 + 1 ]:or all T in Hang (T, ).

Up to now we have only considered the notion of rank on unlabeled trees.
However, one can make some interesting observations on the relationship between
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special kinds of labeled trees, namely nonexpansive trees, and their rank. Intuitively, a
labeled tree is expansive if there exists a node a and two paths from a to two (different)
nodes b and c such that a, b and c have the same label. Formally, we have the following
definition.

DEFINITION 7. A labeled tree T (A, R, V, ) is called expansive if there exists a
node a A and two paths ab b, and acx c,,(m, n >- 1) in T such that b,
and f(b,)= f(c,)= ]’(a). A labeled tree T is called nonexpansive if T is not expansive.

LEMMA 2. If T (A, R, V, f) is a nonexpansive labeled tree of rank k, then
#V>-k+l.

Proof. By Theorem 1 it suffices to show that if B (A, R, V, f) is a nonexpansive
labeled p.f.b, tree of height k then # V >_- k / 1. The proof of this goes by induction on k.

(1) Let k 1; thusB ({ao, a, a2}, {(ao, al), (ao, a2)}, V, f). Sincef(ao), f(ax) and
f(a2) cannot be equal, it follows that # V > 1.

(2) Let us assume that the lemma holds for all nonexpansive labeled p.f.b, trees of
height t.

(3) Let B (A, R, V, ) be a nonexpansive labeled p.f.b, tree of height + 1 with
root ao and let Desc (a0) {a 1, a2}. Hence Hgt (T) Hgt (T) t. Let A and A2 be
the set of nodes of T and T respectively. By the induction hypothesis we know that
#f(A x) >= and #f(A2) t. If f(A 1) f(A2) then, trivially, # V >- #f(A) -> + 1. If
f(Ax) =f(A) then f(ao) f(A 1) since otherwise B would be expansive. Hence # V _->

#f(A x)+ 1 + 1. This completes the induction and thus the lemma holds.
The next example shows that the bound from Lemma 2 is optimal.
Example. Let T=(A,R) be a tree of rank not greater than k. Take V-

{0, 1,..., k} and define f" A - V by f(a)= rr(a) for all a in A. It is then a straight-
forward matter to show that T (A, R, V, f) is nonexpansive.

Ill. ETOL systems and tree-rank. Now we turn to ETOL systems and their (sets
of) derivation trees. We start with the following definition.

DEFINITION 8. Let G (V, , S, ) be an ETOL system. By@ we denote the set
of (labeled, ordered) derivation trees of G. The set of bare derivation trees of G is
defined by d {(A, R)’ (A, R, V, f) @}.

Next we define the concept of tree-rank on ETOL systems. Intuitively, an ETOL
system is of tree-rank k for some k _>- 0 if every derivation tree T from@ has a rank not
greater than k, and at least one tree T’ @ has rank k.

DEFINITION 9. Let G (V, , S, ,V.,) be an ETOL system.
(1) We say that G is of tree-rank k for some k_->0, denoted as tr (G)= k, if

rank T <-k for every T in d and rank T’= k for at least one tree T’ from .
(2) We say that G is of finite tree-rank if tr (G)= k for some k _-> 0.

We will use (ETOL)wR(k and (ETOL)wR to denote the class of ETOL systems of
tree-rank not bigger than k and of finite tree-rank respectively.

As usual, we denote the class of languages generated by a class of rewriting systems
X by X, yielding expressions like (ETOL):R(k and (ETOL):R.

The following theorem shows that being of tree-rank k is a decidable property in
the class of ETOL systems.

THEOREM 3. There exists an algorithm which, given an arbitrary ETOL system G
and a nonnegative integer k, decides whether or not G is of tree-rank k.

Proof. It clearly suffices to show that for an arbitrary ETOL system G and a

nonnegative integer t, it is decidable whether or not tr (G) _-< t. So let G V, , S, ) be
an ETOL system and let >_-0 be a nonnegative integer. (Clearly we can assume that
L(G) .) We construct a "bracketed version" G’ of G as follows.
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Let and be new symbols. Define new alphabets V’= V {[, ]} and Y,,’ U {[, ]}.
For every table T from we construct a new table

T
T’=T{a-[a]:aa and [al>l}U{[-[,]]}.

Obviously, tr (G’) tr (G).
For every >= 0 we inductively define a word Wi in {[, ]}* as follows:
(1) w0 A, and
(2) Wi+l [WiWi] for every > 0.

It is then not difficult to show (by induction on t) that G’ is of tree-rank greater than if
and only if L(G’) contains a word u such that Presf,3 u Wt/a. One can easily construct
an a-transducer Mt/a which is such that Mt+a(L(G’)) # {A} if and only if L(G’) contains
a word u such that Prest.3 u wt/a. But ETOL is closed under a-transducer
mappings [3]. Together with the obvious fact that it is decidable whether or not an
ETOL system generates a nonempty word. This implies the theorem.

It is also decidable whether or not an arbitrary ETOL system is of finite tree-rank.
This is shown in Theorem 11 ( IV).

We will now prove a normal form theorem for ETOL systems of tree-rank k which
will be useful in the sequel. This result will also imply that every ETOL language of
finite tree-rank can be generated by a strongly nonexpansive ETOL system, i.e., an
ETOL system which has only nonexpansive derivation trees. First we need a definition.

DEFINITION 10. An ETOL system G is called strongly nonexpansive if every tree in
@a is nonexpansive.

We show that the property of an ETOL system being strongly nonexpansive is
decidable.

THEOREM 4. There exists an algorithm which given an arbitrary ETOL system,
decides whether or not it is strongly nonexpansive.

Proof. Let G (V, , S, ) be an ETOL system. We construct a "bracketed
version" G’ of G as follows. Define new alphabets,

V’= V U Z U {$}, where $ is a new symbol,

and

’ =UZ,
For every table T from we construct a new table

T’=TU a[a ]’a a U{XX’XZ}U S[S
S

Let ’= {T’: T }. Consider the ETOL system G’= (V’, ’, S, F,,’). Clearly, G’ is
strongly nonexpansive if and only if G is. On the other hand, it is not difficult to show
that G’ is strongly nonexpansive if and only if

(*) Pres, (u)= [[ [] for some u L(G’), a V.

One can then easily construct an a-transducer M which is such that M(L(G)) {A} if
and only if (*) holds. But ETOL is closed under a-transducer mappings, and it is
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decidable whether or not an arbitrary ETOL language contains a nonempty word;
hence the theorem holds.

Next we can prove the "tree-rank Normal Form" theorem. Roughly speaking, an
ETOL system is in tree-rank Normal Form if it is in ANF, strongly nonexpansive, every
derivation can be extended to a successful one and each symbol "a" (except for the
axiom) has a unique "tree-rank" ta associated with it; i.e., every node with label a in
every derivation tree has rank ta. Here is a formal definition.

DEFINITION 11. Let G (V, , S, ) be an ETOL system of tree-rank k, (k _-> 0).
We say that G is in tree-rank NormalForm, abbreviated as TRNF, if the following holds.

(i) G is propagating.
(ii) There exists a partition (V0,. , Vg) of V\S such that if a is a node, different

from the root, of a derivation tree T 6 @ then rT(a) t, 0 <--_ <-- k, if and only if the label
of a is in V. Moreover, G is deterministic in Vk and S does not appear at the right-hand
side of any production in G.

(iii) SUCC (G)- V*.
(iv) G is strongly nonexpansive.
(v) G is in ANF.

The following lemma will be useful in the sequel.
LEMMA 3. There exists an algorithm which, given an arbitrary ETOL system of

tree-rank k, will produce an equivalent ETOL system with tree-rank not larger than k
which is propagating and synchronized.

Proof.
(1) Let G (V, , S, E) be an ETOL system of tree-rank k. We show that the

standard algorithm (see, e.g., [3]) to produce an equivalent EPTOL system does not
increase the tree-rank. This can be seen as follows.

Let G’- (V’, ’, S’, Y.,) be the equivalent EPTOL system produced from G by the
standard algorithm. It is then easy to show that every tree T’ from Y3a, is contained in
some tree T from Na and thus, by Theorem 1,

rank (T’) _-< rank (T).
Consequently,

tr (G’) _-< tr (G).

(2) Let G (V, , S, E) be an EPTOL system of tree-rank k. Clearly we can
assume that S V\E. Define a new alphabet V’= V
and ’ are new symbols. Let : V* - V’* be the homomorphism defined by

[a if a V\5;, and
a

N if a e.
For every table P from we define a new table

P
P’= {O(a)- O(a), O(a)- a a - a}U{a- a eX U}.

Let ’ {P’ :P 5}. Consider the EPTOL system G’ (V’, ’, $, Z). Obviously,
L(G’) L(G) and G’ is synchronized. On the other hand, it is a straightforward matter
to show that 3,c_N and thus tr (G’) <_- tr (G). The lemma then follows from (1) and
(2). I1

THEOREM 5. There exists an algorithm which, given an arbitrary ETOL system of
tree-rank k, will produce an equivalent ETOL system with tree-rank not bigger than k
which is in tree-rank Normal Form.
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Proof. Let G V, , S, ) be an ETOL system of tree-rank k for some k -> 0. By
Lemma 3 we can assume that G is propagating and synchronized. For every 0 =< =< k,
let Vi {[A, i]:A V\,} be a set of new symbols.

Define a new alphabet

k

V’ tA V/t_J U {$, e’}, where $ and e’ are new symbols.
i=0

For every table P from we define a new table P’ as follows:
P p’

(1.1) If S -a for some a E+, then S -a.

P
(1.2) If SAI’"At for some t->l with A1,"’,AtV\E, then S-

[A1, il]" [At, it] for every t-tuple (il, ’, it) which is such that 1 -< ij <- k for all
1 -< j =< and, moreover, # {j" i. k} =< 1.

P p’ p,
(1.3) IfA -a forsomeaE+, A V\, then[A, 0]-a ifla[=l and[A, 1]-a

if [a]>X.
P p’

(1.4) If A-A1...At for some t=>I, A1,...,AtV\2, then [A,i]
lAx, il]" [At, it] for every 0_-<i <_-k and t-tuple (il," ’’, it) of nonnegative integers
which is such that one of the following holds"

(i) either # {/’" ii i} 1 and ii -<_ for all 1 <_- j -<_ t,
(ii) or # {j" i. 1} > 1 and i. <- 1 for all 1 <-/’ -< t.

p,

(1.5) X e’ for every X in V’.

Let ’ {P’ :P }. Consider the ETOL system G’ (V’, ’, S, ). It should then
be clear to the reader that L(G’) L(G), Y3 , and thus tr (G’) tr (G) k. Next
we claim the following.

CLAIM. Let T (A, R, V, f) be a tree in @, and let a A be such thatf(a) S. Then

rT(a
ill(a) ,, and
/ff(a) [A, i] for some A V\,.

Proof of the claim. Let T and a be as in the statement of the claim. The proof goes
by induction on the level of a in T.

(1) If levelr(a) 0 then, obviously, rr(a) 0 and f(a)Y,.
(2) If levelr(a)= 1 then f(a)., because G’ is synchronized. The claim then

follows from the construction of G’, in particular the productions of type (1.3).
(3) Let us assume that the claim holds if levelr(a) <-- t, --> 1.
(4) Let levelT(a) + 1 and let DeScT(a) {bl," , bn} where f(bj) [Bi, i] for

all 1-<-<n. From the induction hypothesis it then follows that MT(a)= maxl__<i__<, i..
The claim then follows from the definition of rr and the construction of G’, in particular
the productions of type (1.4). Hence the claim holds. [3

Next we show that G’ is strongly nonexpansive. Assume the contrary; i.e., there
exists a tree T (A, R, V’, f) in @, and two paths bo" b, and Co" c,, m, n _-> 1, in
T such that b0 Co a, b, c, and/(b,) =/(c,,) =/(a) [A, i],A V\,, 1 <-_ <- k. Let
r maxo__<i__<, {i :b cg}. From the claim it follows that rr(C,.,) rT(b,,) rr(a) i. But
rr(b,.) _--> + 1 because of the definition of rT. This contradicts the fact that rT(a) >-- rT(br)
and thus G’ is strongly nonexpansive.

Next we do the following construction. Define a new alphabet
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For every pair (A, A’) of useful alphabets and for every table T ’ which is such that
T(a) f3 A’+ # for every a cA, we define a new table Ta.a, as follows. (For A //(G)
and a A+ we use aa to denote the word obtained from a by adding subscript A to every
occurrence of every symbol.)

T TA,
(2.1) If a a for some a A, a A’+ then aa aa.

(2.2) aa,, aa,, for every a A" q/(G’) such that A" # A.

(2.3) a a for every a F.,.

Also for every A 0//(G’) which is sucla that A___E, we define a table

Ta={a,x-a "a A}tA{aa, oaa,’a A’ A} tA {a -a "a ;}.

Let " be the set of all new tables Ta.A, and Ta that can be defined in this manner.
Consider the EPTOL system G"= (V", ", $$, ,V_,). Clearly, L(G’) L(G) and tr (G")
tr (G). One observes that G" has the following properties.

(3.1) Succ G V"*.
(3.2) G" is strongly nonexpansive (because G’ is strongly nonexpansive).
(3.3) Consider the partition Iq=(V,..., V) of V"\$$ which is defined by

V={[A, O]a:[A, O] AII(G’)}t_J{aA:a Af’I,, Aql(G’)}t..J, and, for l <-i<-_k,
V’/= {[A, i]a :[A, i] A 0-//(O’)}.

It then follows from the claim and the construction of G" that if a is a node,
different from the root, of a tree T from @,,, then rT(a) t, 0 <= <= k, if and only if the
label of a is in V’.

(3.4) If $$ =:),* x then # v (x)<_- 1.

(3.5) G" is in ANF.
Because of (3.4) it is a straightforward matter to construct an equivalent EPTOL

system G"’ (V", ’", $$, ;) of tree-rank k which is deterministic in V. (It suffices to
"split up" every table in a suitable way.) Moreover, the properties (3.1), (3.2), (3.3) and
(3.5) still hold for G’". Hence G"’ is in TRNF and the theorem holds.

We conclude this section by showing that the notion of tree-rank on ETOL systems
gives rise to an infinite hierarchy of classes of languages, the union of which is strictly
included in ETOL. First we need the following lemma.

LEMMA 4. For every k >-O, ,,(ETOL)TR(k)___ (ETOL)RAN(k).
Proof. Let k _-> 0 and let K L(G) be in ’(ETOL)TR(k) where G V, , S, Y.,) is an

ETOL system of tree-rank t, 0 -<_ -<_ k. By Theorem 5 we can assume that G is in TRNF.
Let 12 (Vo,’", Vt) be the associated partition of V\S. From the definition of tree
rank and the fact that Succ G V* it follows that

(*) for every 0 -<_ -< t, if a Vi then a :if* y implies that # v, (y) --< 1.
G

We will show by induction on that, for 0 _-< _<- t, rank (a) _-< for every a in Vi.
(1) Let a be a symbol in Vo. Trivially, a :::),* y implies that lyl_-<l. Thus

SUCC.v(a) is a finite set and consequently, ranks(a)= 0.
(2) Let us assume that, for 0<-]-<l, rank(a)-<j for every a in V..
(3) Let a be a symbol in Vl/l.

Define the set Z



50 A. EHRENFEUCHT, G. ROZENBERG AND D. VERMEIR

From the induction hypothesis it follows that Z_ LI j=0 Rj(G). But (*) implies that
SUCCo.v\z, is a finite set and thus ranko(a) <- + 1, completing the induction.

Because G is of tree-rank and in TRNF, it must hold that S ::b*x implies
G

# v, (x)-< 1. It readily follows that ranks(S) <= and thus rank (G)-< t. Hence L
(ETOL)RANCk) and the lemma holds. [-1

THEOREM 6. (ETOL)TR(0) 5’(ETOL)TR(1)’’" 5’(ETOL)TR ETOL.
Proof. We show that for every ->_ 0

(*) ’(ETOL)rR(i) ’(ETOL)’I’R(i+a).

Clearly, =LP(ETOI_.)-rR(i)___ (ETOL)-rR(i+I) for every >= 0. To show that the inclusion is
proper, let be a nonnegative integer. Define an alphabet Vi {a,..., ai+2} and a
homomorphism i" V/* - V* by

J ajaj+ if 1 =< j -<- + 1,
ti(ai)

ai ifj=i+2.
and

Consider the DOL system Gi (V/, ti, al), It is then a straightforward matter to show
that Gi is of tree-rank + 1; thus L(Gi)?(ETOL)TRi+I). On the other hand it has
been shown in [1] that L(Gi)(ETOL)RANg), and thus, by Lemma 4,
L(Gi) &(ETOL):Ri) completing the proof of (*). From Lemma 4 it also follows that
P(ETOL)a-R_ ’(ETOL)RAN. Since ’(ETOL)RANg---- ETOL, (see [1]) this implies
that ’(ETOL)xR ot’ETOL, thus completing the proof of the theorem.

IV. Characterization results. In this section we will characterize the class of ETOL
systems of finite tree-rank in various ways. In particular, we will prove that
ETOL systems of finite tree-rank, ETOL systems with rank, strongly nonexpansive
ETOL systems and expansive ETOL systems are equivalent as far as their language
generating power is concerned. We start by showing that every strongly nonexpansive
ETOL system has a finite tree-rank.

THEOREM 7. If G (V, , S, ,) is a strongly nonexpansive ETOL system then
tr (G)-<_ # V- 1.

Proof. Let G =(V, , S, ) be a strongly nonexpansive ETOL system. From
Lemma 2 it immediately follows that # V-> rank T + 1 for every tree T in @.

Hence tr (G)<- # V- 1 and thus the theorem holds.
From the above theorem and the fact that every ETOL language of finite tree-rank

can be generated by an ETOL system of finite tree-rank which is in TRNF, and thus
strongly nonexpansive, one can conclude the following.

THEOREM 8. An ETOL language has a finite tree-rank if and only if it can be
generated by a strongly nonexpansive ETOL system.

Proof. The theorem follows immediately from Theorem 5 and Theorem 7. I1
It is interesting to note here that, as we made use of the TRNF theorem, the above

result states an equality of classes of languages, not of systems. Indeed, although every
nonexpansive ETOL system has a finite tree-rank, the converse does not hold. This is
further illustrated by the following example.

Example. Consider the ETOL system G ({a, b, }, {a aba, b e’, e’ e’},
a, {a, b}). Clearly, G is an ETOL system of finite tree-rank (as a matter of fact,
#@ 1); however the derivation tree in Fig. 1 is expansive,
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FIG.

and thus G is not strongly nonexpansive.
Next we will characterize ETOL systems of finite tree-rank by ETOL systems with

rank. We know already from Lemma 4 that (ETOL):R(k)_(ETOL)RAN(k) for
every k -> 1, and thus the class of ETOL languages of finite tree-rank is included in the
class (ETOL)RAN of ETOL systems with rank.

To show the other inclusion, we prove the following result.
THEOREM 9. Every ETOL system with rank has a tree-rank.
Proof. Let G (V, , S, ) be an ETOL system of rank m for some m =>0. It

suffices to show that for each 0 -< l-<m, there exists an integer NI such that if
T (A, R, V, f) is in @, then rT(a)<=NI for every node a cA which is such that
rankf a I.

The proof goes by induction on I.
() 0.
Let No maxxRo(O) {max NSUCC,vX}. It follows that Wdh (Ta) _-<No for every

T (A, R, V, f) @ and a A such that f(a) Ro(G). Together with Theorem 2, this
ends the proof for 0.

(2) Let us assume that the proposition holds for every -<_ k for some k -> 0.
(3) =k+.
Define

k

Nk/l= max {maxNSUCC,Rk/I)X}+ Ni+I.
xRk+(G) =0

Let T (A, R, V, f) @ and let a A be such that rank f(a) k + 1. Consider
Ta (A, R) and define a function g on A by

c if ranker(c) k+l, and
g(c)

undefined otherwise.

Obviously, rank g(T) < Wdh g(Ta) -< maxRk/( (max NSUCC,R/( a) and also
T Hang (g(T), e) where e is the set of trees corresponding to all successful deriva-

k ktions X :=>* x for some x E*, X (_J
i--o Ri(G). One observes that rank <- Y.i=o N

for all T in e and thus it follows from Lemma 1 that rT(a)=rank T <--Nk/l, thus
completing the proof of the proposition. Hence the theorem holds. [3

It is interesting to note here that the above theorem cannot be reversed. This.is
illustrated by the following example.

Example. Consider the ETOL system

O <{a, b, e}, {P,, P.}, b, {a, b}>
where

P {b ab, a a,
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and

P2 {b , a - aa, e’ }.

It is a straightforward matter to show that tr (G) 1. On the other hand SUCC,{a (a) is
infinite and thus G has no rank.

From Theorem 9 and Lemma 4 we can conclude that (ETOL)TR=
5(ETOL)RAN. Combining this result with Theorem 8 and the fact (see Theorem 7 in
[1]) that the class (ETOL)RAN equals the class of languages generated by nonexpan-
sive ETOL systems, we get the following result.

THEOREM 10. The following classes of languages coincide:
(1) 9(ETOL)RAN.
(2) The class of languages that can be generated by nonexpansive ETOL systems.
(3) (ETOL)TR.
(4) The class of languages that can be generated by strongly nonexpansive ETOL

systems.
We end this section by showing that being of finite tree-rank is a decidable property

in the class of ETOL systems. This can now be done easily.
THEOREM 11. There exists an algorithm which, given an arbitrary ETOL system,

decides whether or not it has a finite tree-rank.
Proof. Let G (V, , S, E) be an ETOL system. We will construct an equivalent

ETOL system G’= (V’, Y’, S’, Y) which is such that Succ (G’) V’*.
Define a new alphabet V’ {Aa:A A 0-//(G)} E. For every pair (A, A’) of useful

alphabets, and for every table T which is such that T(a) f3 A’/ ( for every a A,
we define a new table Ta.a, as follows. (For A (G) and a A*, we use ca to denote the
word obtained from a by adding subscript A to every occurrence of every symbol.)

T Ta,a,
(1) IfaaforsomeaA,aA’*thenaa aa,.

TA,A,
(2) aA. aA" for every a A" //(G) with A" # A.

TA,A,
(3) a ; a for every

Also for every A 07/(G) which is a subset of X we define a table

TA= {an--> a’a A} kJ {aA,--> aa,’ A’ A} LJ {a --> a’a

Let ’ be the set of all newly defined tables. Consider the ETOL system G’=
(V’, ’, Ss, X). Clearly, L(G’)= L(G), Succ (G’)= V’* and G’ is of finite tree-rank if
and only if G is an ETOL system with finite tree-rank. It follows that G’ is of finite
tree-rank if and only if G’ has a rank, a property which is known to be decidable (see
[1]). Hence the theorem holds. [-1

V. Tree-rank k versus rank k. In the preceding section we proved that the
tree-rank hierarchy and the rank-hierarchy (of ETOL languages) have the same
"limit"; i.e., L.J k_->l (ETOL)TR(k)= kJ __>1 (ETOL)RAN(). On the other hand we also
have proved (see Lemma 4) that each element of the tree-rank hierarchy is included in
the corresponding element of the rank hierarchy, i.e.,
(ETOL)RAN() for every k >_- 1. In this section we will further investigate the relation-
ship between the elements of the tWO hierarchies, i.e., we will prove that the above
inclusion is proper. As a matter of fact, we will show that for every k >_- 1, there exists a
language Mk in (ETOL)RAN(I which is not in
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To avoid cumbersome notation we will use from now on the same name for a
derivation tree and its corresponding bare version and for an occurrence of a word at a
level and the corresponding nodes in the tree. This should not lead to confusion. Next
we need some definitions.

DEFINITION 12. Let G (V, , S, ) be an ETOL system, D :S*XlXX2* W

* be a derivation in G and let k be a positive integer. We say that x is (D, k)-pure if one
of thefoll0wing holds.

(i) either (x)=/3B/3’ for some/3,/3’ V+, B V such that fro (B)>= k,
(ii) or (x)=BTB’ for some 3’ V*, B and B’ in V such that rro(B)>-_k and

rro (B’) >- k.
To prove that (ETOL)xRk) (ETOL)RANk), we will consider a special

subclass of the class of ETOL systems of tree-rank k, called (the class of) k-pure
ETOL systems. Intuitively, an ETOL system is k-pure if for every positive integer n
which is bigger than some constant C13, there exists a word wn such that every
derivation D of w, has the following property" every word of D, between the C13th
and the nth word, either contains a symbol of tree-rank (not smaller than) k that is
embedded in the word, i.e., it is not at one of the extremes, or the leftmost and the
rightmost occurrence of the word are both of tree-rank (not smaller than) k. Here is
a formal definition.

DEFINITION 13. An ETOL system G (V, Y, S, ) is called k-pure (for some
k > 0) if there exists a constant C13 such that the following holds. For every integer
n _-> C13, there exists a word w in L(G) such that, if D :S Xo =>x =), =), x, w,

m -_> 0, is a proper derivation of w,, then x is (D, k)-pure for each C13 -<_ -<_ n.
DEFINITION 14. An ETOL language L is called k-pure, for some k > 0, if every

ETOL system generating L is k-pure.
Note that the definition of a k-pure ETOL language is unusual in the sense that

instead of calling a language k-pure if it can be generated by a k-pure ETOL system, we
call an ETOL language k-pure if every ETOL system generating it is k-pure.

The following lemma will be useful in the sequel.
LEMMA 5. LetG be an ETOL system and let k be a positive integer. IfG is not k-pure

then there exists an equivalent propagating system G’ such that G’ is not k-pure.
Proof. Let G and k be as in the statement of the lemma. Let G’ be the propagating

ETOL system, equivalent to G, which is obtained from G using the standard con-
struction (see, e.g., [3]). It is then a straightforward matter to show that G’ is not k-pure
if G is not k-pure.

DEFINITION 15. For every positive integer we recursively define a language Me as
follows.

(i) M {a"b n >- 1}.
(ii) Let ], # and be new symbols.
Then Mi+l--{ala2’"" an [’]an’’’ CeEC’n---->l, Oli #Mi for every l <--i <--_n}.

The sequence M, ME, will be used as follows. We will show that every language Mk
is k-pure, thus implying that Mk q(ETOL)TR(k-a for every k _-> 1. We will also show
thatM e (ETOL)3:() for every k _-> 1. So we will span the tree-rank hierarchy on the
sequence M1, ME, But, obviously, Mk (ETOL)FIN ----(ETOL)RAy(1) for every
k _-> 1. From this it will then follow that t’(ETOL)F\=’(ETOL)a-R(k) for every
k >-0, implying that ’(ETOL)TR(k)(ETOL)RAN(k)for every k >_-0. First we prove
the following lemma.

LEMMA 6. For every >- 1, Mi is i-pure and Mi L(Gi) for some EDTOL system Gi
of tree-rank not greater than and is in ANF.
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where

and

Proof. The proof goes by induction on i.
(1) 1. Clearly, M1 (EDTOL)TR(1) as it is generated by the EDTOL system

G1 ({S, a, b}, {P1, P2}, S, {a, b}),

V {S .--> aSb, a --> a, b --> b}

P2 {S ab, a a, b --> b },

which is of tree-rank 1 and in ANF. It follows from the well-known fact that M1 is not
regular that M1 is 1-pure.

(2) Assume that the lemma holds for -< k.
(3) k + 1. First we show that Mk/l can be generated by an EDTOL system of

tree-rank not greater than k + 1. By the induction hypothesis, we know that there exists
an EDTOL system G (V, , $, E) in ANF of tree-rank not greater than k such that
L(G) Mk. Define new alphabets

v’= #,
and

#,

where $, , I-l, # and are new symbols. We define two special tables

P0={$o #S$#S}U{Xz’X-,’S}{aa’aE’}

and

P’o {$ --> [[]} U {X -->. Xg ,’ U $} U {a -> a a Y,’}.

For every table T from we define a new table

T’= TU{X->X’X V’\V}.

Let g’={Po, P’o}U{T’: T}. Consider the EDTOL system G’ =(V’, ’, S,E’). It
should then be clear to the reader that tr (G’) tr (G) + 1 <- k + 1 and L(G’) Mk+l.

Next we show that every ETOL system generating Mk+x is (k + 1)-pure. By Lemma
5, it suffices to show that every EPTOL system generating Mk+l is (k + 1)-pure. So let
G (V, , $, ) be an EPTOL system generating

CLAIM I. There exists a constant C1 > 0 such thatfor every integer n > C1, there exists

a wordxnMk which is such that ifD’A=uoul’"u,=al#Xna2 isa
G G G

derivation in G where A V, m >-0 and alaa,* then, for all
x, , i) is (D, k)-pure.

Proof. Define the set

AX ={A V A =),* a #[: X [i OI. 2 for some x Mk O102 V*},

and let V’= V LJ{Z} be a new alphabet where Z is a new symbol. Define a table
Po {Z X"X AX} LJ {X X"X V}, and, for every table P from , let P’=
P{ZZ}. Let ’={P0}U{P"P}. Consider the ETOL system H=
(V’, ’, Z, ). Given H one can easily construct an ETOL system H’ such that
L(H’) Mk, and, moreover, H is k-pure if H’ is. But from the induction hypothesis, it
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follows that H’, and thus also H, is k-pure. From this the claim immediately follows.
N

Define a constant C2 Y.g=l si where s # V and N (maxr G)2+. For every
integer p>-C2 we define a word w.Mg/l as follows. Let n=C+l, r-
2(maxrG)O+l and let x, be as in the statement of Claim I. Then wp=
(# x,)(x,). In the sequel, the ith copy of x in wp, 1 N N 2r, will be
denoted by ai. The following statement is easy to prove.

CLAIM II. IfE" S u0 u " Um= Wp, m O, is a derivation of wo, p C2,
G G G

andX is an occurrence in T such that rr(X) k, then contrz(X) contains at most one
copy of x

Next we will show that for every integer p N C2 if D" S y0 Y ’’" Yl

W, > 0, is a proper derivation of w, then y is (D, k + 1)-pure for every CN N p. So
letD’S=yoyx ... yl=Wo, l>O, beaproperderivationofwp. LetANCbethe

set of all lowest common ancestors Ai of ag, 1 N N2r. For 1 N N2r, let ti l-
levelo Ai + C1, i.e., ti is such that y ti-C1 contains Ai. From Claim I it follows that, for
1 N N 2r, either

(3 1) anco( ai ti) iBi’i,

or

(3 2) ancD(#a t) ’ii
for some B, B T V*, B, B and B7 in V such that rTo (Bi) k, rTD (Bi) k and

rTo (B’I) k. The following is an immediate consequence of (3.1) and (3.2).
CLAIM III. For no 1 i, / 2r, -f I> 1, there is a path in TDfrom B, orBS, orBT, to

B# or B, or B’1"
From Claim III it follows that TD contains nodes of rank not smaller than k + 1. For

1 2r, let N be defined as follows"
(i) If (3.1) holds for then is the lowest ancestor of Bi with rank not smaller

than k + 1.
(ii) If (3.2) holds for then is the lowest common ancestor of B and

Thus, rTo() k + 1 for all 1 2r. It also holds that, for 1 2r, # {/". N}
2 maxr G, and thus TD contains at least

2r
(3.3) 2 maxr G

> 2 > p

nodes of rank not smaller than k + 1.
Next we show that Yio is (O, k + 1)-pure for every C p. Assume the contrary,

i.e., Yo is not (D,k + 1)-pure for some Ciop. From (3.3) and Definition 12 it
follows that either

(3.4) y,o BB,

or

(3.5) y/o B,

for some B V, B V* with rTo (B)> k and rTo(X) k for every occurrence X in
Both cases being symmetric, let us assume that (3.4) holds.

Next we will transform D into a deterministic derivation

T T T
D:S=zo z ff ffz=wp

(O)O (O)o (G)D
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of wp in (G)o which is such that Zio =/3’B for some B V,/3’ V* such that rTo(B) > k
and rvo (X)--< k for every occurrence X in/3’.

In order to do this we need some more results. First of all we note that if
uvxyz Mk/ for some u, v, x, y, z E* such that v y then uyxyz Mk/ 1. From this we
get the following.

CLAIM IV. IfE" Uo u u,, ,*, m >-O, is a derivation in G and ifXG G G

and Y are two occurrences of the same symbol in the same word ui, 0 <= <-m, then
contr,(X) contr,(Y).

CLAIM V. For every O<=i <-io, if Xg is the name of anco(B, i) then #x,(yg) 1.
Proof. Assume the contrary, i.e., there exists an integer 0<= <-i0 such that yt

contains two occurrences Ya and Yz anc (B, t) of the same symbol Xg. From Claim IV
it follows that we can replace Tv by Tv and obtain a new derivation
E" VO G 1)1 G’’" G 1")1 Wp of Wp. It follows from (3.4) that rr(X)-< k for every

occurrence X in Vgo. But, obviously, IVo[ =< (maxr G). From Claim II and the definition
of r it follows that v cannot contain more than r copies of #xn#, a contradiction.
Hence the claim holds.

For any/-step derivation E" S u0 Ul : Ul Wp of W, and for any two
G G G

occurrences X and Y of the same symbol in the same intermediate word u of E, we
define a new/-step derivation E’= O(E, X, Y)" S u :ff u =),. =), u w, of wp as
follows.

(i) If -< Ca and [contr,(X, C2)I -< ]contr,(Y, Ca)[, then replace Tx by Tv;
(ii) otherwise replace Tv by Tx.

The following property of is a consequence of Claim II, Claim IV and Claim V.
CLAIM VI. If blio yCforsome C V, 3/ V*, such that rr (C) > k and rr (X) <- k

[or every occurrence X in y, then u o y’C [or some y’ V* such that rr,(C)> k and
rr,(X) <= k [or every occurrence X in y’.

Clearly by iterating O in a top-down fashion we can transform D into a deter-
T T T

ministic (not necessarily proper!) derivation D" S Zo =), z :ff z w, of
(G)D (G)D (G)D

w, in (G)D. Claim VI then implies that Zio =/3’B for some/3’ e V* such that rvo(B) > k
and rTo (X) <= k for every occurrence X in/3’. From the definition of r, Claim II and the
obvious fact that IZiol<=(maxrG), it immediately follows that contr/(B)=
x’[-1 # xn )r for some x’ +.

From the definition of C2, the construction ofD and the fact thatD is proper we get
that > (maxr G)2+1. Hence there exist constants 0 =< il < i2 -< Cz such that
alphzq=alphzia and Izi=l>lzil. Define x= T... T/, = T+.. "Ti and u=
Tia/l TI. The situation is best represented in Fig. 2.
It is then a straightforward matter to show that txpzu(S) is a word in L((G)o)_ L(G)
which is not in Mk/l. Thus the lemma holds. [q

From the previous lemma, the main results of this section now easily follow.
THZORZM 12. For every k >= 1, there are ETOL languages offinite index which are

not in (ETOL)TR(k).
Proof. It is a straightforward matter to show that, for => 1, M ’(ETOL)FN(2i+I).

But from Lemma 6 it follows that, for i=>1, Mi(ETOL)TR(i-a). Thus Mk+l
Sg(ETOL)Fr\(ETOL)-rR(k) for every k >_- 1. Hence the theorem holds. [3

THEOREM 13. For every k -> 1, ’(ETOL)TR(k)C(ETOL)RAN(k).
Proof. This follows immediately from Theorem 12, Lemma 4, and Theorem 5 in

[1], which says that (ETOL)RAN(1)= ’(ETOL)FxN.
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FIG. 2
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Thus, although the two hierarchies of classes of ETOL languages, associated with
ETOL systems of finite tree-rank and ETOL systems with rank respectively, have the
same limit, the corresponding elements are different in the sense that one is strictly
included in the other, i.e., (ETOL)TR(k) (ETOL)RAN(k) for every k -> 0. Moreover
they are "very different" because there does not exist an integer function such that
,,’(ETOL)RAN(k) ,,’(ETOL)TR(f(k)) for any k _-> 1.

VI. Closure properties. We end this paper by listing some results concerning
closure properties of the classes (ETOL)TR<k), k -> 1, and (ETOL):R. The somewhat
tedious proofs of these results are omitted; however the interested reader can find them
in [10].

THEOREM 14
(1) For every k _-> 1, (ETOL):Rk is a full-principal full semi-AFL.
(2) (ETOL)a:R is a nonfull-principal full-substitution closed AFL.
The previous theorem and the results on the relation between (ETOL)rRk and

(ETOL)RANk allow us now to prove that (ETOL)RAN(k) is nonfull-principal for
every k -> 1.

THEOREM 15. For every k _-> 1, (ETOL)RA(g is a nonfull-principal full AFL.
Proof. By Theorem 8 in [1] we know that (ETOL)RANg is a full AFL for each

k >- 1. Assume the contrary, i.e., (ETOL)RA is a full principal full AFL for some
k => 1. From Corollary 5.4.1 in [2] it then follows that (ETOL)RAk is a full-principal
full semi AFL. LetL be a generator of it. By Theorem 9, L (ETOL)TRk,) for some
k’_-> 1. By Theorem 14, (ETOL)a:R(k, is a full principal semi-AFL. Let Lk, be its
generator. Hence L can be obtained from Lk, using only semi-AFL operations.

But this implies that every ETOL language of finite index can be obtained from Lk,
using semi-AFL operations. Hence (ETOL)FIr___(ETOL)R(k,,-contradicting
Theorem 13. Thus the theorem holds.
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ON THE SELECTION OF TEST DATA FOR
RECURSIVE MATHEMATICAL SUBROUTINES*

JOHN H. ROWLAND" AND PHILIP J. DAVIS

Abstract. Let Y be a family of sequences defined by linear difference equations of the form y(n + 1)=
P(n)y(n)+O(n), where P and O are restricted to be polynomials of limited degree, constant matrices,
multinomials, and so forth. The central problem is to find a finite sample which uniquely identifies members of
Y. It is shown that such a sample exists when P and (2 are polynomials of limited degree. The sample size
depends linearly on the degree limits. A similar result holds for systems of difference equations with P a
constant matrix and (2 a column vector with polynomial components. Testing procedures are also derived for
the case where the coefficients of P and (2 are multinomials in a vector parameter x, and y is considered to be a
function of its initial value.

Key words. Testing, sampling, verification, difference equations

1. Introduction. A number of authors have recently noted the need for more
research on the theory of program testing [11], [10], [3]. It is well known that no
reasonable amount of testing can conclusively establish the correctness of a program.
However, test data can often be selected which will guarantee that certain types of
errors will be detected. A classical illustration of this situation is given by the fact that an
error in the coefficients of a polynomial of degree =<n can be detected by sampling the
polynomial at n + 1 distinct points. In general, we will assume that the program with
bugs and the desired function both belong to an appropriate class of functions. We then
seek test data which will uniquely identify members of that class. This paper will be
concerned with the selection of test data for functions which can be computed
recursively by means of linear difference equations. The linearity restriction is a
technical one which makes the mathematics more tractable. This restriction essentially
limits the results to sequences y in which y(n + 1) depends only on the first power of
y (n), y (n 1), , y (n k) for some fixed integer k. Some examples of such sequences
will be given in 6.

The goal of this research is to provide a theoretical basis for testing certain
programs involving loop constructs. However, the theory does not directly involve the
actual program constructs. The important feature is that both the program to be tested
and the desired function must satisfy difference equations of a given type. Subject to this
restriction, the actual program might involve iteration, recursive subroutine calls, or
neither of these. For example, the sequence y(n) 2 + 5 could be computed itera-
tively from the difference equation

y(1) 7,

y(n + 2)= 7y(n + 1)- 10y(n), n=0,1,2,...,

or it could be computed directly from the formula

y(n)=a et" +a2 et,
with a O2 1 and/31 In (2), 2 In (5). Even though a program based on the latter
formula would not involve iteration, the theory would still be applicable because for any
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t Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912.
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choice of a l, a2, [1, and [2 the sequence would satisfy a second order difference
equation with constant coefficients.

Howden [11] has described a very general method for testing recursive programs
which is based directly on program constructs. His result does not have the linearity
assumption of the present paper but does require the a posteriori demonstration that a
certain matrix is nonsingular. Howden’s paper does not discuss systems or higher-order
equations.

Consider a family Y of sequences defined by difference equations of the form

(1.1) y(n + 1)=P(n)y(n)+O(n), y(0)= t,

n 0, 1, 2, , where P and (2 will be restricted to certain classes such as polynomials
of limited degree, constant matrices, multinomials, and so forth. We will be concerned
with three general questions"

(i) Does there exist a finite sample S such that if y andz Yandy(n)=z(n),for
all n S, then y(n)= z(n) for all n?

(ii) Let y (., t) and z (., t) be two sequences in Y considered as a function of the
initial value t. Do there exist finite samples $ of integers and T of complex
numbers such that y(n, t)= z(n, t), for all n S and T, implies that
y(n, t)- z(n, t), for all n and all t?

(iii) Suppose

y(n + 1) Pl(n)y(n)+ (l(n),

z(n + 1)=Pz(n)z(n)+Oz(n).

Does the fact that y(n) z(n) for all n imply that P1 P2 and Q1 Q2? If
not, can the equation y(n) z(n) hold for only special types of sequences, or
does this imply that certain relationships must hold between PI, P2, QI, and
Q27

Questions (ii) and (iii) are similar to the systems identification problem which arises, for
example, in the theory of linear electrical and mechanical systems.

The mathematical background required for this paper is outlined in 2. Section 3
will be concerned with scalar equations of the form (1.1) with P and Q polynomials of
restricted degree, while 4 is concerned with systems of equations with P a constant
matrix and (2 a polynomial vector of limited degree. This latter case includes higher-
order difference equations with constant coefficients and polynomial forcing function.
Systems of equations with P a polynomial matrix are still under investigation. In 5 it is
shown that one can prove certain identities involving sequences by using sampling in
place of mathematical induction. The final section contains several examples which
illustrate the theory.

2. Mathematical background. This section contains some notation, terminology,
and facts which will be used later. The symbol N will denote the nonnegative integers,
the complex numbers, and complex u-dimensional space. By an initial segment of N
we will mean a finite set of consecutive integers starting with zero.

The forward difference operator A and forward shift operator E are defined by

Ay(n)=y(n+l)-y(n),

Ey(n)=y(n+l).

The set of polynomials of degree _-<m will be denoted by ,,. It can be shown that a
sequence y ,,, if and only if A"/ly(n) O, for all n.
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The theory of linear difference equations is similar to that for differential equations
and is described in greater detail by Brand 1 ], Milne-Thomson 13], and Fort [7]. Let us
consider a linear difference equation of the form

k

(2.1) Y pi(n)y(n +])=q(n),
/=0

where pl, , Pk, q, and y are complex-valued sequences. A sequence y is a solution to
(2.1) if (2.1) holds for all n N. The equation is said to be autonomous if pl, , Pk and
q are independent of n. The sequence q is called the forcing function, and if q 0 the
equation is said to be homogeneous. An initial-value problem consists of (2.1) together
with values for y(0), y(1), , y(k- 1). If pk never vanishes, then one can solve (2.1)
recursively to show that the initial-value problem has a unique solution.

The sequences Ul, , uk are said to be linearly independent iff cl ul(n) +. +
CkUk(n) =0, for all n e N, implies c ck 0. The Casorati determinant K(n)
associated with ul,.. ", uk is defined by

K(n)=det(ui(n+])), i=l,...,k, ]=O,...,k-1.

The Casorati determinant has properties which are similar to the Wronskian in the
theory of differential equations. In particular, if u1,’", uk are solutions to the
homogeneous equation associated with (2.1) and PoPk never vanishes, then a necessary
and sufficient condition for the linear independence of u 1," , uk is that K(0) 0.

The general solution to (2.1) can be expressed in the form

y c bl -+-" -+" Ckblk -- Yp,

where u1,’", Uk are linearly independent solutions to the homogeneous equation,
cl,"’, ck are constants, and y, is a particular solution to (2.1). Solutions to
autonomous homogeneous equations have explicit representations as sums of
exponentials. Consider an equation of the form

k

(2.2) Y’, aiy(n +]) O,
i=0

where aoak O. Let p(t) ao+ alt +" + akt
k be the corresponding characteristic

polynomial with zeros A 1, , Ak. If these zeros are all distinct, then linearly indepen-
dent solutions to (2.2) are given by

(2.3) bj(n)=Aj, j 1, 2,..., k.

Repeated zeros are handled by multiplying A ’ by powers of n; for example, if Ai has
multiplicity m, we take

(2.4) c+i(n niA i, i=0,1,..,m-1

to be the linearly independent solutions corresponding to
Finally, we will need the notion of component matrices. Let A be a , by u matrix

having eigenvalues 1, , &k with multiplicities 01, , Ok in the minimal polynomial
of A. Then [12, p. 173] there exist u by u matrices Yi. with the property that for any
polynomial f,

k

(2.5) f(a) 2 o,1 f(i)(A) Yi.
i=1 /=0

The Yi"s are called the component matrices of A. If is a , by 1 column vector, we will
call the vectors Yit the spectral components of with respect to A.
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3. Scalar equations. Let Y(k, m) be the set of sequences satisfying an equation of
the form (1.1) with P k and O ,. This includes, for example, n !, for any
complex number t, and any sequence of the form

y(n) q(0)+ q(1) +... + q(n),

where q ,. The example

y(n + 1)= y(n)+ 1, y(0) 0,

z(n+l)=n+l, z(0) 0,

shows that the same sequence can have two different representations of the form (1.1).
Let us show that this can happen if and only if y is essentially a polynomial in n of degree
<-m.

THEOREM 3.1. If y ,, then there exist polynomials P1, Pe and Q1,
with PI # Pe and 01 Oe such that

(3.1) y(n+l)=Pj(n)y(n)+Oj(n), j=l,2,

for all n N. Conversely, if y satisfies both equations (3.1) for all n, then eitherP Pe and
01 Oe or there exists a polynomial qb , and an integer no <- k such that y(n) b(n)
for all n >-_ no.

Proof. If y ,, then y satisfies the equations

y(n +1)= 1 y(n)+Ay(n),

y(n + 1)=0. y(n)+Ey(n),

where A is the forward difference operator and E is the forward shift operator. Both
equations are of the proper form since 1 and 0 , Ay ,-1 ,, and Ey ,. The
converse will follow from the proof of Theorem 3.2.

The next theorem shows that two sequences from Y(k, m) are identical if they
agree on a sufficiently large initial segment.

THEOREM 3.2. Lety and z Y(k, m). If y(n)= z(n) forn =0, 1,..., 2k + m +2,
then y(n)= z(n), for all n N.

Proof. Suppose y and z are defined by the equations

(3.2) y(n + 1)=Pa(n)y(n)+Ol(n),

(3.3) z(n + 1)=Pe(n)z(n)+O2(n).

If P =P2, then Q(n)=O2(n), n =0, 1,..., m. Thus O1 "-02 and the result follows
easily. Henceforth we will assume thatPI P2. Let Po P2 P1 and 00 02 O’1. Now
subtract (3.2) from (3.3) and shift the index to obtain

(3.4) Po(n + 1)y(n + 1) + Oo(n + 1) 0, n -1, 0,. , 2k + m.

Next, multiply (3.2) by P2(n), (3.3) by Pl(n), and subtract. This gives

(3.5) Po(n)y(n + 1)+Vl(n)Oe(n)-V2(n)Ox(n)=O,

n 0, 1,. ., 2k + m + 1. Now eliminate y(n + 1) from (3.4) and (3.5), and replace Pe
by Po + PI, Oe by Oo + Q1 to obtain

(3.6) Po(n)Qo(n + 1) +Po(n + 1)Po(n)Ox(n)-Vo(n + 1)V(n)Oo(n)=O,

n 0, 1, , 2k + m. Note that the left side of (3.6), which is a polynomial of degree at
most 2k + m, vanishes at 2k + m + 1 distinct points. It follows that (3.6) holds over the
entire complex plane.
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Let Q*/P* represent the rational function Qo/Po after common factors, if any,
have been removed. Also remove these common factors from (3.6) and replace n by to
obtain

(3.7) P*(t)Q*(t+ 1) +P*(t + 1)P*(t)Ql(t)-P*(t+ 1)Pl(t)Q*(t)-O,

for all complex numbers t. Now (3.7) implies that P* is constant. To see this, suppose the
contrary and let tl be a zero of P* having the smallest real part. Then Q*(tl) 0 because
P* and Q* have no common factors, and P*(tl- 1) 0 because P* has no zeros with
real part less than Re (q). The substitution of tl- 1 for in (3.7) leads to a contradiction
because the first term on the left does not vanish whereas the other two terms do vanish.
Thus P* is constant, say P*(t)= c O, for all complex t.

Next, let b =-Q*/P*=-Q*/c, and note that b m. We wish to show that 4
satisfies both of the difference equations (3.2) and (3.3). The fact that 4 satisfies (3.2)

2can be seen by dividing both sides of (3.7) by -c and rearranging terms. Now (3.4)
implies that y (n) 4 (n), n 0, 1, , 2k + rn + 1, except perhaps at zeros of P0. But
P04 k+,, and P0 has at most k zeros; so Po(n)c(n)+Qo(n)=O, for all n. Then we
have

c (n + 1) Pl (n )c (n + Ql (n Pz(n )c (n + Qz(n Po(n )c (n Qo(n

Pz(n )c (n) + Oz(n ),

and & satisfies (3.3) for all n. Finally, let no be the first index for which y(no) b(no).
Clearly no <- k. Then an inductive argument shows that y(n) b (n) z (n), for all
n >_-no, which completes the proof of Theorem 3.2.

The converse of Theorem 3.1 can now be proved by noting that its hypotheses are
stronger than those for Theorem 3.2; hence, the polynomial & produced above satisfies
the given requirements.

It is tempting to conjecture that k + m + 2 samples (in addition to the initial value)
should be sufficient in Theorem 3.2 since that would provide one equation for each
coefficient of P and Q. The following example shows that this is not always sufficient.

Example 3.1. Let y and z Y(1, 1) be defined by

y(n + 1) -2y(n) + 3 + n, y(0) 1,

z(n + 1)=-nz(n)+ 1 + 2n, z(O) 1.

Then a direct calculation shows that y(n) z(n), for n 0, 1, 2, 3, 4, but y(5) z(5).
Here k + rn + 2 4.

Theorem 3.2 shows that 2k + m + 2 samples are sufficient to identify sequences in
Y(k, m), while Example 3.1 shows that k + m + 2 samples need not be sufficient. We
have not resolved the question as to whether some number between k + rn + 2 and
2k + m + 2 would in general provide a large enough sample. Let us prove, however, that
an equation requiring more than k + m + 2 samples to identify cannot have a poly-
nomial from , as a solution.

THEOREM 3.3. Suppose y and z6 Y(k,m). If Ym and y(n)=z(n), n=
O, 1,. ., k + m + 1, then y(n)= z(n) for all n.

Proof. Suppose y and z are given by (3.2) and (3.3), respectively. Then y(n)=
z (n), n 0, 1, , k + rn + 1 implies that

y(n + 1) Pz(n)y(n) + Qz(n),

for n 0, 1, , k + m. This equation involves polynomials of degree at most k + rn
and it holds for at least k + rn + 1 distinct values of n. Thus it holds for all n. One can then
show by induction that y(n)= z (n), for all n.
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Any sequence y defined by (3.2) has a companion sequence z defined by (3.3) such
that Pz#P1 and y(n) =z(n), for n =0, 1, , k+m +1. To see this consider the
system of equations

(3.8) Po(n)y(n)+Oo(n)=O, n=0,1,...,k+m,

where Poe k and (2o e ,,. This linear system has more unknowns (the coefficients of
Po and (20) than equations; hence, there is a nontrivial solution [14]. Now let
Pz Po + P1, O (20 + O1, z(0) y(0), and apply (3.2), (3.3), and (3.8) to obtain

(3.9)
y(n + 1)=Pl(n)y(n)+Ql(n)+Po(n)y(n)+Qo(n)

P2(n)y(n)+ O2(n)= z(n + 1),

for n 0, 1,. , k +m.
If deg (Po)= k- v, deg (Qo)= m-, with/x and v > 0, we say that the rational

interpolation problem (3.8) is degenerate with deficiency r/= min (, v). A deficient
solution to (3.8) for a nonpolynomial y and r/->2 would provide an example of a
sequence requiring more than k + rn + 3 samples to identify; in fact, such a sequence
would require at least k + rn + 2 + r/samples.

Let us now turn our attention to question (ii) which was posed in the introduction.
Agreement on an appropriate initial segment of the sequences y (n, t) and z (n, t) for two
distinct initial values implies agreement for all n and t.

THEOREM 3.4. Let y(n, t) and z(n, t) be the sequences defined by (3.2) and (3.3),
respectively, with y (0) z (0) t. If tl t2 and

y(n, tj)=z(n, ti), n=0,1,...,2k+m+2, j=l, 2,

then y (n, t) z (n, t), for all n N and
Proof. Let no be the first member of N which is a zero of P1 (with no if there are

none). For n 0, 1,. ., 2k + m + 1 and/" 1, 2 we have

(3.10) y(n + 1, ti)=Pl(n)y(n, ti)+Ol(n)=P2(n)y(n, ti)+O2(n).

Let n 0 and note that y(0, tj)= tj. Then one can infer from (3.10) and the fact that
tl t that PI(0) P2(0) and QI(0) Q:(0). Furthermore, if PI(0) 0, then y(1, tl)
y(1, t2). An inductive argument then shows that

(3.11) Pl(n) Pz(n), Ol(n) Qz(n),

and y(n, tl) y(n, t2), for n=0, 1,... min (no, 2k + m + l). If no >=max (k, m), then
(3.11) implies P1 =P and O1 O2, from which the result follows. Otherwise no<
max (k, m) and Pl(n0)= Pz(no)= 0. Then for any t,

y(no + 1, t)= z(no + 1, t)= Ol(no),

so the sequences y(n, t) and z(n, t) are independent of for n > no. Furthermore,
Theorem 3.2 implies that y(n, tl) z(n, tl), for all n. Thus for any we have from (3.11)

y(n, t)=z(n, t), n =0, 1,..., no+l.

For n > no + 1,

y(n, t)= y(n, tx)= z(n, tx)= z(n, t),

and the proof is complete.
It is not always possible to identify P1 and 1)1 by sampling with different initial
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values. For example, let
2y(n + 1, t)= ny(n, t)+ 1 + n -n y (o, t)= t,

z(n + 1, t) O z(n, t)+ 1 + n, z(O, t)= t.

Note that y(n, t)= z(n, t)= n, for all n >0 and all . Thus the two sequences are
identical, but P1 P2 and QI Qz. From the proof of Theorem 3.4 one can see that this
situation can arise only when Pl(n)= 0 for some n < max (k, m). This possibility can be
ruled out by requiring that distinct initial values produce distinct sequence values on the
appropriate initial segment.

COROLLARY 3.5. Let y and z be defined as in Theorem 3.4. If tx t2 and

y(n, ti)=z(n, ti), n=0,1,...,max(k,m)+l, j=1,2;

y (n, tx) y (n, t2), n=0, 1,..., max (k, m),

then P1--P2 and I --i2.

Proof. This follows from the argument used to establish (3.11).
To complete this section let us consider the case where the coefficients P and O in

(1.1) depend on a vector parameter x . We will assume that these coefficients are
multinomials in n and x; that is,

k

(3.12) P(n, x)= Y ai(x)n, O(n, x)= bi(x)n,
/=o /=o

where the a.’s and bi’s are multinomials in the components of x. Let //be a class of
multinomials and let Y(k, m, tt) be the set of all sequences satisfying (1.1) with P and Q
defined by (3.12) and ai, bi, for each . We wish to consider question (ii) for this
situation.

Our basic technique will be to apply Corollary 3.5 for a fixed x to identify the
coefficients ai(x) and bi(x). Then we will let x vary over a set which uniquely identifies
the multinomials ai and bi. Details concerning tests for multinomials can be found in
[11], [4], and [15]. In the following theorem y(n,x, t) will denote a sequence from
Y(k, m, lt) with parameter x and initial value t.

THEOREM 3.6. LetXbe a subset ofc which uniquely identifies members ofJ/l, and
suppose tx t2. If y and z Y(k, m, yPl) and

(3.13) y(n,x, ti)=z(n,x, ti), n=O, 1,...,max(k,m)+l, j= 1,2,

(3.14) y(n, x, tl) y(n, x, t2), n=0, 1,..., max (k, m),

whenever x X, then y(n, x, t) z(n x, t) for all n N, x c, and c.
Proof. Suppose y and z are given by (3.2) and (3.3), where P, Q, P2, and 02 have

coefficients ai, bi, ci, and di, respectively. For any x e X, we infer from (3.13), (3.14), and
Corollary 3.5 that ai(x) ci(x) and bi(x) di(x), for all ]. But this holds for all x X, and
X uniquely identifies members of ; so ai ci, bi di, and the proof is complete.

This theorem should be contrasted with Theorem 8 of Howden 11]. The theorems
are not strictly comparable, but Howden’s result is essentially more general because the
starting value can be a function of x, and y need not occur linearly in the difference
equation. However, Theorem 3.6 is considerably simpler to state and prove, and does
not require the a posteriori demonstration of the nonsingularity of a matrix as required
by Howden’s theorem.

We do not as yet have any answers to questions (i), (ii) and (iii) for Y(k, m, /l)
without the restriction (3.14). It would be interesting to know whether the analogues of
Theorems 3.1, 3.2, and 3.4 hold for this class without this restriction.
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4. Higher-order equations and systems. Higher-order equations and systems
have many applications in the physical, social, and biological sciences. For example,
systems of difference equations are used in economic models, control and stability
theory, physics, neural network models, anthropology, probability theory, and in the
numerical solution of partial differential equations. Higher-order equations have
applications in psychology, inventory models, communication theory, and in the
numerical solution of ordinary differential equations. Many of these applications are
described by Goldberg [9]. For other applications see Feller [6], Spitzer 17], Bridge [2],
Dhrymes [5], and Smithies [16].

A linear difference equation of order greater than one can be converted to a system
of first-order equations. In fact, if the leading coefficient Pk does not vanish on the
nonnegative integers, then (2.1) can be converted to the system:

yi(n+l)=yi+l(n),

(4.1) 1 k-1 q(n)
yk(n + 1)=-- o p1(n)y1+l(n)+.

pk(n) i= pt,(n)

It is easy to show that y 1," , y satisfy (4.1) if and only if y satisfies (2.1). For this
reason we will restrict our attention to systems of first-order equations.

Let us first consider two homogeneous systems of linear difference equations with
constant coefficients"

(4.2) y(n + 1)= Ay(n), y(0) t,

(4.3) z(n + 1) Bz(n), z(O) t,

where A and B are u by u constant matrices, and y and z are u by 1 column vectors. The
choice

A=
0 3

B=
0 5

t=
0

in (4.2) and (4.3) gives the solution y(n) z(n) 2nt. Thus it is possible for a sequence
to have two distinct representations of the type (4.2). The following theorem shows that
this can happen only when the initial vector has the same spectral decomposition with
respect to A and B.

THEOREM 4.1. Suppose y and z satisfy (,4.2) and (4.3) respectively. Then y(n)=
z (n) for all n N if and only if the initial vector has the same spectral components with
respect to A and B.

Proof. Note that y(n)=Ant and z(n)=B"t. Let ,1,""" ,,;/xl,’’’ ,/x,, be the
distinct eigenvalues of A and B, respectively, with multiplicities Pl,’’’,Pk and
o"1, ’, or,, in the corresponding minimal polynomials. Let us further assume that any
common eigenvalues are indexed first; so that &i tzi, 1,..., kl and &i #/xi, for
> kl. Let fn (x) x n. Then according to (2.5) we have

Pi_1
y(n) f,(A)t jn#i) (Ai) Yiit,

i=1 j=0

(4.4)
r-i f(i)z(n)= f,(B)t= , 2 .. (P.i)Ziit,

i=1 j=o

where the Yj’s and Zj’s are the component matrices of A and B, respectively. For
convenience, let Yi 0 if j => p and Zi 0 if j => cri. Define 7" max (p, ri). With this
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notation we obtain from (4.4) the identity
k ’i-1

y(n)-z(n)= E Y fi)(Ai)(Yiit-Zijt)
i=1 /=0

(4.5)
i=k+l ]=0

E E f(ni) (li)Ziit.
i=kl+l ]=o

Note that

f2) (A,)
n(n 1)AT

It then follows from (2.3) and (2.4) that the sequences

fi)(Ai), i= 1,..., ka, ]=0, 1,..., T 1;

fi)(Ai), i=k+l,...,k, ]=0,1,’’’,pi--1;

f(i), i=k+l,. .,m, ]=0,1,. ,/-1;

form a linearly independent set. (In fact, they are independent solutions to the
difference equation of the form (2.2) whose characteristic polynomial is the least
common multiple of the minimal polynomials of A and B.) If y (n) z (n), for all n e N,
then the linear independence implies that the coefficients of the f) (A/)’s andf (/)’s
on the right side of (4.5) must vanish. Thus

Yit Zit, 1, 2, k, ] O, 1, T 1,

Yit Zit O, > k,

and the spectral components of are the same for A and B. Conversely, if the spectral
components agree, then the right side of (4.5) vanishes identically and y(n) z(n), for
all n N.

A necessary condition for the agreement of y and z can be given in terms of the
principal vector decomposition of t.

COROLLARY 4.2. Lety and z satisfy (4.2) and (4.3), respectively. Ify(n) z(n), for
all n, then the initial vector has the same principal vector decomposition with respect to A
and B.

Proof. Using the notation from Theorem 4.1, let Ui and be the null spaces of
(A AiI) and (B AiI), respectively. The principal vector decompositions [8] of are
given (uniquely) by

t=l+’ "+k,

I=Vl+" "+Vm,

where ui Ui and vi . It is shown in [12, pp. 177-178] that Yot Ui, Ziot Vi, and
k

(4.6) t= Yiot= Ziot.
i=l i=l

Thus ui ot, v Ziot and the result now follows from Theorem 4.1.
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We will call (A, x) a common eigenvalue-vector pair of A and B if x # 0 and
Ax Bx Ax. The next result relates the existence of a common eigenvalue-vector pair
to the identity of y and z.

COROLLARY 4.3. Lety and z satisfy (4.2) and (4.3), respectively. IrA andB have a
common eigenvalue-vectorpair, then there is an initial vector such that y (n z (n for all
n. Conversely, if y(n)=z(n) for all n and t#0, then A and B have a common
eigenvalue-vector pair.

Proof. Let (A, x) be a common eigenvalue-vector pair. Using x as the initial vector
we get

y n Anx A nx Bnx
for all n. For the converse, note that the existence of a common eigenvalue follows from
the equality of the spectral components of with respect to A and B. From (4.6) and the
fact that t0, we conclude that there is an index i-<kl such that A1-/i and
Yiot Ziot O. Now Y/ot belongs to the nullspaces of (A -AJ)"i’i and (B- hiI) ’’. Let jo,
0 j0 < 7"i be the largest index for which (A hal)j Yiot O, and let x (A hJ) Yot.
Then x is an eigenvector of A corresponding to hi, since

(A hJ)x (A hiI)i* Yiot O.

Now it is shown in [12, p. 177] that
1

Yi (a AiI)iYio,

1
Zii (B AiI)iZio.

Then from the equality of the spectral components of we see that x o! Y,io =/’otZiot;
hence

(4.7) (B AI)x (B AiI)J+lZiot.
Now if j0 + 1 -, then the right side of (4.7) is zero because Zgot is in the nullspace of
(B Ad)’. Otherwise

(B -Ad)x (jo+ 1)!li,io+lt (jo+ 1)! Yi,io+lt

(A AiI)j+l Yiot O.

In either case x is an eigenvector of B and the proof is complete.
Next, we will give several sampling theorems for homogeneous systems. LetM be

the smallest degree of the minimal polynomials for A and B.
THEOREM 4.4. Let y and z satisfy (4.2) and (4.3), respectively. If y(n) z(n), for

n O, 1, ..., M, then y (n)= z (n), ]:or all n N.
Proof. Let b be the minimal polynomial for A. We may suppose without loss of

generality that M =deg (b). Now the coefficient of AM in b(A) cannot be zero; so we
can solve the equation b (A)= 0 to obtain the expression of the form

M-1

At= E ajAi.
=0

Multiply both sides of this equation by Ant (using multiplication on the right), and note
that y (n) Ant to obtain

M-1

y(n+M)= E aiy(n+j).
/=0
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Proceeding by induction, let us suppose that y(i) z(i), for 0, 1, , n, with n =>M.
Then

M-1

z(n +1)=Bz(n)=By(n)= E aiBy(n +j-M)
/’=0

M-1

Y aiy(n +I+]-M)= y(n +1).
1=0

Thus y(n)= z(n) for all n and the proof is complete.
In general one would not necessarily know the value of M. In this case it would

suffice to use 0, 1, , u for the sample because M =< u.
Let us now turn our attention to nonhomogeneous systems of the form

(4.8) y(n + 1)=Ay(n)+O(n), y(0)= t,

(4.9) z(n + 1)=Bz(n)+R(n), z(0)= t,

where A, B are u by u constant matrices, and Q, R are u by 1 column vectors with
polynomial components of degree at most m. The next theorem shows that y and z are
identical if they agree on a sufficiently large initial segment. As before, let M be the
smallest degree of the minimal polynomials for A and B.

THEOREM 4.5. Let y and z satisfy (4.8) and (4.9), respectively. If y (n) z (n), for
n=0, 1,... ,M+m +1, then y(n)=z(n),forallnN.

Proof. Note that the forward difference operator A commutes with a constant
matrix A because

AAy(n) A(y(n + 1)-y(n))= Ay(n + 1)-Ay(n)= AAy(n).

Also note that Am+lO(n)=h’+lR(n)=O because Oi and Rie,, for each i. Let
u(n) h"+ly(n) and v(n)= A"+az(n). The application of A"+a to both sides of (4.8)
and (4.9) yields the systems

u(n + 1) Au(n), u(0) A’+ay(0),
(4.10)

v(n + 1) By(n), v(0) A+lz (0).

Now y(n)=z(n), for n=0,1,...,M+rn+l, implies that u(n)=v(n), for n=
0, 1,...,M. According to Theorem 4.4, u(n)=v(n) for all n; thus Am+l[y(n)-
z(n)] 0 for all n. This can happen only if each component y- z . But y(n)-
z(n)=0 for n =0, 1,. ., m; hence y(n)-z(n)=O for all n and the proof is complete.

Note that if M is not known, it suffices to sample y and z, for n
0, 1,. , v+m +1, since M<=v.

As in the homogeneous case, we can show that A and B must share certain spectral
properties if y(n)= z(n) for all n.

COROLLARY 4.6. Lety and z satisfy (4.8) and (4.9), respectively. Ify(n) z(n), for
all n, then

(i) A’+y(0) has the same spectral components with respect to A and B;
(ii) A"+ly(0) has the same principal vector representation with respect to A and B;
(iii) if A"+y(0) 0, then A and B have a common eigenvalue-vector pair.
Proof. These results follow directly from (4.10) and Theorems 4.1-4.3.
In view of (4.10), one can see that if A’+ay (0) 0, then A+ly(n) 0, for all n, and

y ,, for each i. Conversely, if y for each i, then A"+y(0)=0. Thus the
condition A+ay (0) # 0 in (iii) is equivalent to requiring that at least one component of y
not be a polynomial of degree -<_m.
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Let us now consider the analogues of Theorems 3.4 and 3.6 for systems of
difference equations.

THEOREM 4.7. Let y(n, t) and z(n, t) be the sequences defined by (4.8) and (4.9),
respectively, with y (0)= z(O)= t. Let T be a basis ]:or the Euclidean space . If

(i) y(n, 0)= z(n, 0), n 1, 2,..., m +1, and
(ii) y(1, t)= z(1, t), for all T,

then y(n, t) z(n, t), for all n N and
(ii) y(1, t) z(1, t), for all T, then y(n, t) z(n, t), for all n N and
Proof. Condition (i) implies that

y(1, 0)-z(1, 0) O(0)-R(0) 0.

This combined with (ii) implies

y(1, t)-z(1, t) (A -B)t 0

for all 6 T. Thus A B. The fact that Q(n) R (n) 0, n 0, 1, , m now follows
from (i). But Qi Ri irn SO Q R and the proof is complete.

To complete this section let us consider the case where the coefficients of Q, R, A,
and B are multinomials in a vector parameter x. That is,

Qj(n, x)= , qj(x)n , Ri(n, x)= , ri(x)n ,
j=o /=o

A =(aii(x)), B =(bii(x)),
where the qi’s, r.’s, aii’s and bii’s are multinomials from a class J//. Let X be a test set
which uniquely identifies members of .

THEOREM 4.8. If
(i) y (n, x, 0) z (n, x, 0), for all x X and n 1, 2, m + 1, and

(ii) y(1, x, t) z(1, x, t), for all x c: X and c T,
then y(n, x, t)- z(n, x, t), for all n, x and t.

Proof. For a fixed x X, Theorem 4.7 implies that q(x) r(x), ai(x) bij(x). But
X uniquely identifies members of rid; so q(x)= r(x) and a0.(x)= bi(x) for all x. It
follows that y(n, x, t) z(n, x, t), for all n, x, and t.

5. Implications concerning mathematical induction. It is interesting to observe
that the theory presented here can be used to prove the validity of certain formulas by
sampling rather than mathematical induction. For example, consider the formula

(5.1) 1.2+2.3+...+n(n+l)=n(n+l)(n+2).
Note that this formula is valid for n 0, 1, 2, 3, 4, 5. This is sufficient to conclude that the
formula is valid for all natural numbers n. To see this, let y (n) represent the left side of
(5.1), z(n) the right side, and note that

y (n + 1) y (n) + (n + 1)(n + 2), y (0) 0,

z(n + 1)=0. z(n)+1/2(n + 1)(n +2)(n +3), z(O) o.
Thus y and z Y(0, 3), and Theorem 3.2 implies that y(n)= z(n), for all n.

This example appears to contradict the popular notion that a finite sample is never
sufficient to establish the identity of two sequences defined on the natural numbers. This
generalization is valid when there is no restriction on the sequences; however, finite
sampling is sufficient for certain classes of sequences. Of course, we are not really
avoiding mathematical induction in a fundamental sense since it was used in the proof of
Theorem 3.2.
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6. Examples. We will present several examples to illustrate our theory. No paper
on testing or correctness would be complete without an application of the results to the
factorial function!

Example 6.1. Let y (n) n! and note that y satisfies the difference equation

y(n + 1)= (n + 1)y(n), y(0) 1.

Thus y Y(1, 1). If we assume that the function subroutine to be tested also produces a
sequence z Y(1, 1), then according to Theorem 3.2 it suffices to test the program for
n 0, 1, 2, 3, 4, 5. This agrees with the test set obtained by Howden in [11].

Example 6.2. Consider the function y defined by

y(n,x)=l+x+x2+ .+x".
For testing purposes it is convenient to consider y as a function of the initial value as
well as of n and x. Then the choice 1 in the following difference equation yields the
desired function"

y(n + 1, x, t) xy(n, x, t)+ 1, y(0) t.

Thus y 6 Y(0, 0, 1) and Theorem 3.6 suggests sampling y(n, x, t) for the eight triples

(n,x,t), n-0,1; x=0,1; t=0,1.

(Two values of x uniquely identify members of x.)
Note that this function could also be generated by the system of equations

y(n + 1, x, t)= y(n, x, t)+ w(n), y(0) tl,

w(n + 1, x, t)- xw(n, x, t), w(O) t2.

The choice tl 0, t2 I yields the desired function with the index shifted by 1. Theorem
4.8 yields the test set formed of two parts:

(i) n 1; x =0, 1; tl--t2----0;
(ii) n 1; x =0, 1; tl 1, t2-- 0, 1.
Example 6.3. A model for price competition [16] among 20 companies uses the

model

y(n+l)=By(n)+Q,

where y (n) is a vector whose coordinates represent the price for each competitor at time
n, B is a 20 by 20 matrix, and Q is a vector. The components of B and Q are constants
with respect to n which are related to the demands and costs associated with each
competitor’s product. For a fixed choice of B and Q Theorem 4.5 would suggest that a
program for this model be tested on the values n 0, 1, 2,. , 21.

Example 6.4. The second-order scalar equation

y(n +2)-/3(1 + 7)y(n + 1) + //3y(n) v0

has been used for an inventory control model, where y is the income function,/3 is the
marginal propensity to consume, and /is a coefficient of expectation [9]. This equation
can be converted to the system of two first-order equations:

(6.1)
Yl(n + 1) y2(n)’

y2(n + 1)=/3(1 +q)y2(n)-lyl(n)+vo.

For fixed starting values and parameters/3, /, and v0, Theorem 4.5 would suggest that a
program for this model be tested for n -0, 1, 2, 3. On the other hand, if the starting
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value and parameters fl, 7, and Vo are input variables, we could apply Theorem 4.8.
This theorem would imply that it would be sufficient to test on the 16 points obtained
from the combinations of

n=l; /3=0,1; ,/=0,1; Vo=0,1; t=(10),().
Here we have taken m 0 and assumed that the coefficients on the right side of (6.1) are
multinomials of degree <_-1 in/3, 7, and yD.

Finally, we will give an example for which our theory does not apply.
Example 6.5. The Taylor polynomial about zero for the exponential function

satisfies the system"

y(n + 1, x) y(n, x)+ w(n, x), y(o)= ,
w(n,x)x

w(n +1)=, w(0) x.
n+2

This fails to fit our theory because the coefficient of w(n, x) in the second equation is not
a constant. This points out the desirability of extending the results of 4 to allow the
elements of the matrices A and B in (4.8) and (4.9) to be rational functions of n.
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GENERALIZATION OF VORONOI DIAGRAMS IN THE PLANE*

D. T. LEE AND R. L. DRYSDALE, III*

Abstract. In this paper we study the Voronoi diagram for a set of N line segments and circles in the
Euclidean plane. The diagram is a generalization of the Voronoi diagram for a set of points in the plane and
has applications in wire layout, facility location, clustering and contouring problems. We present an
O(N(log N)a) algorithm for constructing the diagram. It is an improvement of a previous known result
which takes O(Nc"/l) time. The algorithm described in this paper is also shown to be applicable under a

more general metric if certain conditions are satisfied.

Key words. Voronoi diagram, computational geometry, point location, computational complexity,
divide-and-conquer, analysis of algorithms

1. Introduction. The Voronoi diagram [18] for a set of N points in the Euclidean
plane has been studied by a number of people [8], [11 ], 12], 17], [20], [22]. Essentially,
a Voronoi diagram is a partition of the plane into N polygonal regions, each of which is
associated with a given point. The region associated with a point is the locus of points
closer to that point than to any other given point. Shamos and Hoey [21] present a
divide-and-conquer algorithm which computes the diagram in O(N log N) time and
show that the all nearest-neighbor problem [10], the largest empty circle problem and
other seemingly unrelated problems can all be solved very efficiently once the diagram
is available. They point out that such problems arise in wire layout 1 ], facility location
[5], cutting-stock problems and geometric optimization problems [19], clustering
problems 17] and contouring problems [2].

A natural question to ask is whether the algorithm for computing the Voronoi
diagram can be generalized to other figures and metrics. These generalized Voronoi
diagrams would have many applications. Lee and Wong [13] study the Voronoi diagram
for a set of points under the L1- and L-metrics and point out that these diagrams
speed up retrieval algorithms for two-dimensional storage systems. Shamos [20] poses
the problem of finding minimum weight spanning trees for circles and line segments.

These spanning trees can be computed very quickly if the Voronoi diagram for the
circles and line segments is known. A country’s territorial waters consist of its Voronoi
region intersected with the locus of all points within 200 miles of a point in the country,
so Voronoi diagrams are important when computing territorial waters. Many of the
applications mentioned above have analogues where the objects considered are better
represented by polygons, circles, or other geometric figures than by points.

In a previous paper [4] we presented an O(Nc algorithm for constructing the
Voronoi diagram for circles and line segments in the Euclidean plane. We showed that
the algorithm could also be used for more general figures and metrics if certain
conditions were satisfied. We now present an O(N(log N)2) algorithm for computing
the Voronoi diagram for circles or line segments in the Euclidean plane. This algorithm
can be applied under a more general metric if certain conditions are met.
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:L Preliminaries. We begin by introducing some definitions and notations.
DEFINITION 1. A closed line segment a, b consists of two endpoints a and b, and a

straight-line portion which is denoted by (a, b) and referred to as an open segment, or
briefly a segment. Points or segments are called elements. The straight line containing
a, b is denoted by a,. The same line directed from a to b is denoted by a,--.

DEFINITION 2. The projection p(q, a, b) of a point q onto a closed segment a, b is
the intersection of the line and the line perpendicular to a, b and passing through q.

DEFINITION 3. The distance d(q, a, b) between a point q and a closed segment a, b
in the Euclidean metric is defined as the distance d(q, p(q, a, b)) between the point q and
its projection onto a, b if p(q, a, b) belongs to a, b and is MIN (d(q, a), d(q, b)) other-
wise. In other words, d (q, a, b) MIN,a d (q, u). The point of a, b which is closest to q
is called the image I(q, a, b) of q on a, b.

DEFINITION 4. The bisectorB (ei, e.) of two elements ei and e. is the locus of points
equidistant from ei and ej. The bisector B(X, Y) of two sets of elements X and Y is
defined to be the locus of points equidistant from X and Y, where the distance d (q, X)
between a point q and a set of elements X is defined to be MINexd(q, e). The bisector
B (ei, ej) is said to be oriented if a direction is imposed upon it so that elements ei and e.
lie to the left and to the right of it respectively. An oriented bisector B (X, Y) is defined
similarly.

For example, in Fig. 1 the bisector B (q, a, b) of a point q and a closed segment a, b
has three components, i.e., B (q, a), B (q, b),and a portion of the parabola2 whose focus
and directrix are the point q and the line a, b respectively. Fig. 2 shows the bisector
B(a, b, c, d) of two closed segments a, b and c, d, where one of the components is a
portion of the angular bisector of the angle formed by the lines a, b and c, d. In what
follows we shall also consider the bisector B (q, (a, b)) of a point q and a segment (a, b)
to be the same as B(q, a, b). Similarly, the bisector B((a, b), (c, d)) of two segments
(a, b) and (c, d) is the same as B (a, b, c, d). We define the bisector B (a, a, b) to be a line
perpendicular to a, b and passing through a.

b(a,b)

’tparabla

B(q,b)

FIG. 1. Bisector of a point and a closed segment.

With these definitions we can define the half-plane h(ei, e) as the locus of points
closer to element ei than to element ei. The Voronoi region V(ei) is the intersection of all
the half-planes containing e; i.e., V(ei)= f3 ii h(ei, ei), which is the locus of points

We shall use the term parabola to mean the portion of the parabola whose projection belongs to the
segment.
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parabola

B(a c)
angular bisector

(c,d)

FIG. 2. Bisector of two closed segments.

closer to ei than to any other element. The boundary edges of a Voronoi region are
called Voronoi edges, and vertices of the region are called Voronoi points. Finally, we can
define the Voronoi diagram V(S) for a set S of disjoint closed segments {sl, s2, , sn}
as the union of Voronoi regions V(si); each V(si) in turn is the union of three Voronoi
regions, each associated with an element of the closed segment si (two endpoints and an
open segment). Fig. 3 shows the Voronoi diagram for two closed segments. Since

v(a)

v(c)

V(d)

FIG. 3. Voronoi diagram [or two closed segments.

associated with each segment there are two regions (one lying on each side of the
segment), for ease of reference we shall denote the region that lies to the left of the
segment (a, b) directed from a to b by V((a, b)) and the other by V((b, a)). From now
on we shall consider the closed segment a, b to be composed of ]our elements, (instead
of three), i.e., two endpoints of a and b and two directed segments (a, b) and (b, a). As a
consequence, the Voronoi region V(a, b) associated with the closed segment a, b is then
the union of V(a), V(b), V((a, b)) and V((b, a)). Unless otherwise stated, in what
follows we shall consider the set S to be composed of elements; i.e., the Voronoi
diagram V(S) is a collection of Voronoi regions V(e) which is the locus of points closer
to element e than to any other element.
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DEFINITION 5. A polygonal region R in the plane is generalized-star-shaped with
nucleus C, C

_
R, if for any point r R there exists a point c C such that the line

segment r, c lies completely within R.
DEFINITION 6. The dual D(S) of the Voronoi diagram V(S) for a set of N closed

segments is a graph with 4N nodes each of which corresponds to an element of S; two
nodes are connected by an edge if their associated Voronoi regions share a Voronoi
edge. The segment (a, b) is considered a Voronoi edge bordering the regions V((a, b))
and V((b, a)). (Fig. 4 shows the dual graph of the diagram in Fig. 3.)

Now let us state the properties of the Voronoi diagram for closed segments.
Assume that the given set S of elements is {el, e2," en}.

(d ,c)

FIG. 4. Dual graph of the diagram of Fig. 3.

LEMMA 1. Given a point q, if q V(ei), then q, qi lies completely in V(ei), where qi

is the image I(q, eg) of q on ei. This shows that V(ei) is generalized-star-shaped with
nucleus e.

Proof. It suffices to show that any point z on q, q must belong to V(e). Suppose
z V(ej), i.e., d(z, ej)< d(z, e). Let z be the image I(z, ei) of z on ei. By the triangle
inequality, d(q, zi)<=d(q,z)+d(z, zj). Since d(z,z)=d(z, ei)<d(z, ei), we have
d(q, zi) < d(q, z) + d(z, ei). Now d(z, e) d(z, q) and d(q, z) + d(z, qg) d(q, qi) imply
that d(q, zi)<d(q, qg)=d(q, ei). Since d(q, ej)<=d(q, zi) by Definition 3, we have
d(q, e) < d(q, ei) which contradicts the assumption that q V(e). C1

LEMMA 2. The Voronoi regions V(eg) and V(ei) share an edge if and only if there
exists a point q such that the circle centered at q with radius d(q, ei) d(q, ei) does not
contain any point of other elements in its interior or on its boundary.

Proof. If V(ei) and V(ej) share an edge, then obviously the circle centered at any
point q on the edge with radius d(q, ei)= d(q, ei) will not contain any point of other
elements. If the circle centered at q passes through the images I(q, ei) and I(q, ei) and
does not include any point of other elements in its interior or on its boundary, then the
nearest neighbor of q is either e or ei; i.e., q, I(q, e) and q, I(q, ei) lie entirely in V(ei)
and V(ej) respectively. Therefore, V(ei) and V(e) must share an edge. l

THEOREM 1. Let z and z2 be two points on the boundary of V(e) and z li and z2 the
images of z and z2 on e, respectively. Either one of the two closed segments z 1, z and
z2, z2 properly contains the other or they do not intersect except possibly at endpoints. (zi
and z2i may coincide.)

Proof. Suppose that neither of z l, zig and z2, z2i properly contains the other.
Assume that they intersect at a point z. Without loss of generality we may assume
that d(Z, Zlg)<=d(z, z2i) (Fig. 5a). We have d(z2, z2g)=d(z2, z)+d(z, z2)>=
d(z2, z)+ d(z, Zli)> d(z2, Zli). Since z2g is the image of z2 on ei, we have a contradic-
tion. [3
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(a)

(b)

FIG. 5. Illustration of the proof of Theorem 1.

What this theorem implies is that if we move a point z along the boundary of V(ei)
in a counterclockwise or a clockwise direction, then the image I(z, ei) also moves in the
same direction along ei. If the element ei is a point, ei itself is the image I(z, eg) for all
z E V(ei). Fig. 5b illustrates this phenomenon.

THEOREM 2. The element ei is on the convex hull CH (S) of S if and only if its
associated Voronoi region is unbounded.

Proof. We first prove that if an element eg is on the convex hull, its associated
Voronoi region is unbounded. Take a point z of e which is on the convex hull CH ($). z
being on CH ($), there exists a supporting line l(z) of CH ($) which passes through z
with the property that all the elements including eg lie on one side of the line. Consider
the closed segment z, perpendicular to l(z) and lying outside of CH (S). We have
d(t, z)= MINae,d(t, a). Since the circle centered at with radius d(z, t) does not
contain any other point of S in its interior, we have d(t, z) MINa,s d(t, a), i.e., must
belong to the Voronoi region V(e). Moreover, the endpoint of the closed segment z,
can be extended arbitrarily, so the Voronoi region V(eg) is unbounded.

To prove the converse we shall show that for any element that is not on CH ($), its
associated Voronoi region must be bounded. Suppose ei is not on CH ($). Any line
intersecting e will divide the set of elements into two nonempty subsets. Let be a line
intersecting e at a point z of ei. Consider the line zi, z perpendicular to the line l.
The circle centered at z with radius d(z, z) becomes the line if we let d(z, zi)
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approach infinity. Therefore, when d(z, zi) is sufficiently large the circle will contain
a point of some element e. in its interior. That is, the nearest neighbor of z is not ei.
This shows that there are no half-lines contained in V(ei). But it is easy to show from
Lemma 1 that an unbounded Voronoi region must contain a half-line. Therefore,
V(ei) is bounded, lq

THEOREM 3. The dual graph D(S) of the Voronoi diagram V(S) for a set ofN >- 3
elements is planar and has at most 3N- 5 edges and 2N- 3 faces.

Proof. We first show that D(S) is planar by exhibiting a planar embedding for it,
and then obtain the bounds on the number of edges and faces by using Euler’s
Polyhedra Formula [6]. Let Di(S) be the set3 of elements {eil, e/2,’’’, eim} whose
associated regions and V(ei) share an edge. For any edge of W(ei) we can find a path
connecting the two elements whose regions share the edge as follows. Let zj be a point
on the edge B(ei, eii), f 1, 2,. m. By Lemma 1, the closed segments zi, l(zi, ei) and
zi, I(zi, eij) lie entirely in V(ei) and V(eii), respectively. The path connecting ei and eii
consists of I(zi, ei), z. and zj, I(zi, egi). Note that if eii is an endpoint of the closed segment
for ei, the two closed segments zi, I(zj, ei) and zi, I(zi, eii) coincide. By Theorem 1, all the
closed segment zi, I(zj, ei), for j--1, 2,..., m, do not intersect except possibly at
endpoints (on ei). We conclude that the dual graph is planar.

Now, for the bounds on the number of edges and faces observe that in the dual
graph each interior face is bounded by at least three edges and the exterior face is
bounded by at least two edges when N => 2. This is because two nodes ni and nj of D(S)
which correspond to elements ei and e., respectively, have multiple edges only if the
bisector B(ei, ei) is broken into two or more pieces. The node nk whose associated
element ek caused B(ei, ei) to break into two pieces will appear on any interior face
containing both ng and ni. Therefore our interior face must have more than two edges
bounding it. If we sum over the number of edges bounding each face we will get at least
3*(/"- 1)+ 2 edges, where f is the number of faces of D(S). Since each edge appears on
exactly two faces, we have 2e -> 3f- 1. Solving for e and plugging into Euler’s Polyhedra
Formula, N-e+f=2, we have N-f Therefore, f=<2N-3 and e<=
3N-5.

COROLLARY 1. Given a set S ofN elements, the number of Voronoi edges and the
number of Voronoi points are both O(N).

LEMMA 3. Given a set S {Sl, s2, , s} of closed segments, let Di(S) denote the
subset of closed segments of S whose Voronoi regions are adjacent to V(si). Then there
exists a closed segment siDi(S such that d(si, sj)-" MINs_, d(si, a), i.e., De(S)
contains a nearest neighbor of si.

Proof. Immediate from Lemma 2. Iq

3. Construction of the Voronoi diagram for a set of line segments.
3.1. Introduction. Now let us turn to the problem of computing the Voronoi

diagram for a set of line segments. Our algorithm is a generalization of the divide-and-
conquer scheme first presented by Shamos and Hoey [21] for a set S {Pl, pz, , PN}
of N points. We therefore start by describing a version of this algorithm which includes
a modification made by Lee [12]. Sort the N points lexicographically on their (x, y)
coordinates. Let L {pl, p2," , Ptu/2} and let R {P tv/2j +l, , Pu}, where Ix] is
the greatest integer in x. Then compute the Voronoi diagrams V(L) and V(R)
recursively. If we can merge V(L) and V(R) in O(N) time, we can compute V(S) in
O(N log N) time.

The set in general is a multiset" i.e., the elements are not necessarily distinct.
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The key to the merge step is the merge curve B(L, R), which is the oriented
bisector of the two sets L and R of points. (Fig. 6.) Every point to the left of B (L, R) is
closer to some point in L than to any point in R. Similarly, every point to the right of
B (L, R) is closer to some point in R than to any point in L. Therefore if we chop off the
part of any region in V(L) extending to the right of B (L, R) and the part of any region in
V(R) extending to the left of B(L, R), we end up with the diagram V(S). We shall
construct B (L, R) in linear time as follows. Theorem 2 in the previous section suggests
that we compute the convex hull CH (S). The convex hulls CH (L) and CH (R) are
disjoint and can be constructed recursively when constructing V(L) and V(R). CH (S)
can be computed by merging CH (L) and CH (R) in linear time using an algorithm
invented by Preparata and Hong [15]. In merging CH (L) and CH (R) we create two
new hull edges, each joining a point in L and a point r in R. By Lemma 2 we know that
B(l, r) is a component bisector, called a starting bisector. We can imagine forming
B (L, R) by moving a point from infinity inward along the bisector B (l, r). For example,
in Fig. 6 we will move the imaginary point along B (P4, Pl0). The imaginary point follows
B(p4, Pl0) until it meets an edge at V(p4). At this point it is closer to p8 than to p4, so it
leaves V(p4) and enters the region V(ps) by following B(ps, po) until it leaves V(po).
In this way it traces out B (L, R), always following the bisector B (p,, p) of a point p, in
L and a pointp in R. When the imaginary point leaves V(p,), pu is changed to the point
associated with the new region entered, p is updated similarly.

FIG. 6. V(L), V(R) and B(L, R).

Because each V(pi) can have O(N) edges on its boundary and we might examine
the edges of a single region O(N) times to see where a bisector first intersects the
boundary of that region, the naive approach of checking each edge of V(p,) and V(p)
to find the first intersection with B(p,, p) could result in O(N2) work. We can avoid this
by the following scanning scheme for edges: beginning with the point where B(p,, p)
enters a region, scan the edges of a region in V(L) in a counterclockwise (CCW)
direction and the edges of a region in V(R) in a clockwise (CW) direction. If an edge
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does not intersect B(pu, Pv), then discard it. The following theorem shows that no
backtracking is needed when using this scanning scheme.

THEOREM 4. Let Pu be in L and pv in R and let B(pu, p) be constructed during the
merge process. No point of V(p,) in V(L) which lies to the right of the oriented bisector
B(p, po) will be included in the region V(P) in the final diagram. Similarly, no point of
V(P) in V(R) which lies to the leftofthe oriented bisectorB(p, p) will be included in the
region V(po). Furthermore, scanning V(pu) in a CCW direction and V(po) in a CW
direction will find the first intersection between B(p,, pv) and either V(p) or V(po).

Proof. The fact that no point of V(pu) in V(L) lying to the right of B(pu, po) can be
included in the region V(pu) in the final diagram follows from the definition. To show
that the CW-CCW scan indeed finds the first intersection point consider Fig. 7. Suppose
is the intersection point where B(p,, p) meets some edge of V(p) before it meets any

edge of V(p,). If were not the first intersection, then moving a point z along the
boundary of V(p) in a CW direction we will find at least two intersection points with
B(pu, p). Since V(p) is generalized-star-shaped with nucleus p, by Theorem 1, this is
impossible. Similar arguments hold if B(pu, pv) meets an edge of V(pu) before any edge
of V(p). 3

FIG. 7. Illustration of the prool of Theorem

We now analyze the time taken for the merge process. After each test either an
edge of V(L) or an edge of V(R) is discarded or a new Voronoi point is created in V(S).
Therefore, the time needed is proportional to the number of edges in V(L) and V(R)
plus the number of Voronoi points on B(L, R). By Corollary 1 this is O(N). Therefore,
the overall time needed to compute V(S) is O(N log N).

What happens when we apply this algorithm to a set of closed segments? The first
difficulty arises when ordering the closed segments. Lexicographica! order is not defined
for segments. Therefore, we arbitrarily choose the ordering of closed segments accord-
ing to their left endpoints. Once we have chosen the ordering we can divide the given set
$ into two subsets L and R such that L and R contain the leftmost [N/2J and rightmost
IN/2] closed segments respectively. Now we want to construct V(L) and V(R)
recursively and merge them to form V(S) as we did before. The first step in the merge
process is to find the union of the convex hulls CH (L) and CH (R). But, because of the
ordering that we have chosen, these two convex hulls are not necessarily disjoint
(CH (L) may contain CH (R) in its interior). Therefore, using the idea of convex hull to



GENERALIZATION OF VORONOI DIAGRAMS IN THE PLANE 81

find the starting bisector may not help. Besides, the merge curve is not necessarily
composed of a single piece. It may be broken into several pieces as shown in Fig. 8. That
is, we have to determine the starting bisectors for all the pieces and then use the
scanning scheme to construct all pieces of merge curves. The starting bisectors for the
two unbounded pieces in Fig. 8 can be found by forming the union of CH (L) and

FIG. 8. Merge curve is broken into four pieces.

CH (R) just as we did before. However, the convex hull gives no information about the
starting bisectors for the other two pieces of B(L, R) that are closed curves, called
islands. Islands result from the closed segments in R getting "trapped" in CH (L) and
are a consequence of the initial ordering. The authors tried to find an ordering for the
closed segments which would prevent these islands from forming. But finding this
ordering seems to be as difficult as finding the Voronoi diagram itself. They also tried a
number of approaches, but found no method for finding all islands in O(N) time.
However, the following method has been devised to determine a set of starting bisectors
in O(N log N) time.

3.2. Determination of a set of starting bisectors. Suppose that we have obtained
two Voronoi diagrams V(L) and V(R). To merge them we shall find a set, called starter
set of L and R (denoted by ST (L, R)), of points (along with the information from which
the corresponding starting bisectors can be derived) such that it is guaranteed that every
piece of the merge curve passes through at least one of the points in ST (L, R). In other
words, the intersection of the set of points on the merge curve and ST (L, R) is
nonempty. The idea is based on the following observations. First each merge curve
piece Mi encloses some subset Ri of closed segments of R. Either the subset Ri will be
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completely surrounded by Mi (an island), or Mi and an edge "at infinity" will enclose Ri.
A line from some segment in Ri to a segment not in Ri will cross Mi before it crosses any
other piece of the merge curve. Second, Mi is the bisector B(Li, Ri) of Ri and some
subset L of closed segments of L. It contains a bisector B(ej, ek) for some elements
ej ti and ek Ri such that ek is an endpoint of some closed segment of Ri. The first
observation is due to the initial ordering of the set of closed segments. The second
observation can be established as follows. Consider the convex hull CH (Ri) of the set Ri
of closed segments enclosed by Mi. One of the hull vertices, say qg, must be an endpoint
of some closed segment lk. The half-line emanating from the endpoint qk and perpen-
dicular to lk must intersect Mg at some point which is equidistant from q and some
element ei of Li. Therefore, the intersection of B(ei, qk) and M/is nonempty and the
observation follows. Based on these two observations we can determine the starter set
ST (L, R) as follows.

We construct the Voronoi diagram V(Q) for the set Q of endpoints of R and then
merge V(Q) and V(L) to form V(L I..J Q). To merge V(Q) and V(L) we are confronted
with the same problems as we were in merging V(R) and V(L). That is, the merge curve
M’= B (L, Q) is not necessarily composed of a single piece. We shall locate the set Q of
points in the Voronoi regions of V(L) to find for each point q Q its nearest neighbor in
L. If q is located in the region V(el) then the nearest neighbor of q is el. Suppose
qk V(e). Let q be the image I(qk, ei) of qk Q on some element e. L. By Lemma 1
qk, q lies entirely in V(ei). We next find the midpoint m of qk, q. It is obvious that the
circle K centered at mk with radius d(mg, q’g) will not contain any other point of L in its
interior. If mk is found to be in the Voronoi region V(qk) of V(Q), then the circle K will
not contain any other point of Q in its interior either. Thus, mk will be in the starter set
ST (L, Q) for the merge curve M’ and B(ei, qk) is a starting bisector for a piece of M’. If
mk does not lie in V(qk), we discard it. Now we have to show that indeed each piece of
M’ passes through at least one point of ST (L, Q). To see this consider a piece of merge
curve MI B (Li, Qi), where Lg

_
L and Qi - Q. There exists a point q Q and a point

of some element ei Li such that d(t, qi) d(Li, Qg). As a result, the point qi Qi must

FIG. 9. Merge of two Voronoi diagrams V(L) and V(Q).
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lie in V(ei) of V(L) such that is the image I(qj, ei). Furthermore, must lie in V(qj) of
V(Q). Consequently, the midpoint m of t, qj must belong to both V(ei) and V(qj).
Therefore, m is in ST (L, Q). This proves that every piece of M’ indeed passes through
at least a point of ST (L, Q). In other words, we shall locate the set Q of points in V(L)
and, after obtaining the set C of midpoints of qk, q’, where qk e Q and q , is the image
I(qk, ei) of qk on ei e L, we locate the set C of midpoints in V(Q). If the midpoint mk of
qk, q’k is found in V(qk), then we store it in ST (L, Q). Otherwise, we ignore it. Fig. 9
shows the merge curve for the two Voronoi diagrams V(L) and V(Q), and "o" denotes
the point in ST (L, Q). The time needed for the determination of ST (L, Q), is
O(N log N). This result is due to Preparata [16]. In [16] Preparata has shown that a set
of N points can be located in O(N log N) .time in a planar subdivision with N vertices.
After we have obtained ST (L, Q), we can use the procedure to be described in the next
section to construct M’ in O(N log N) time.

Suppose we have constructed the Voronoi diagram V(L Q). The Voronoi region
V’(qk) associated with qk Q is the intersection of the half-planes h(qk, el), for all
el L tO Q --{qk}. Since the Voronoi region V(qk) associated with qk Q in the Voronoi
diagram V(R) is the intersection of the half-planes h(qk, er), for all er R--{qk}, the
intersection of V’(qk) and V(qk) gives rise to the Voronoi region V"(qk) in the final
diagram V(S). Fig. 10 shows the Voronoi regions V"(q), the intersection of V(q) and

FIG. 10. Intersection of V(q) and V’(q).

V’(q). Any point on the Voronoi edge B(qk, el) of V"(qk), where el L, can be a point in
the starter set ST (L, R) and B(qk, el) is a possible starting bisector for a piece of the
merge curve M =B(L,R). The intersection of V(qk) and V’(qk), both of which are
generalized-star-shaped with nucleus being a point can be found in time O(s + t), where
s and are the numbers of edges of V(qk) and V’(qk), respectively, by a technique
similar to one given in [20] in finding the intersection of two convex polygons.
Therefore, the starter set ST (L, R) can be obtained in O(N log N) time and will
include at most one point for each qk. Now we shall show that the merge curve
M -B(L, R) can be constructed in O(N log N) time.
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3.3. Merging two Voronoi diagrams. After we have determined the starter set, we
shall construct the merge curveM piece by piece. We shall take a point in ST (L, R) and
use the corresponding bisector as our starting bisector to construct a piece of merge
curve in two passes4 [13]. If the piece of merge curve passes through a point of
ST (L, R), that point will not be used again. Because each point is associated with a
particular q, it is easy to check in constant time if the current bisector piece is passing
through a starter point. The merge process works in a way very similar to that given
before except that we make the following modifications.

In order to start with a bisector B (u, v), where u L and v R, we need to scan the
edges of V(u) and V(v) respectively to find the first intersection points of B(u, v) and
an edge of V(u) and of B(u, v) and an edge of V(v); a simple-minded approach would
result in O(N2) time to construct M B(L, R) since (i) the number of edges of V(u)
may be O(N), (ii) there would be O(N) pieces of M starting with bisectors of the form
B(u, v), v R, and (iii) for each piece it takes O(N) time to find the first intersection
point. However, since the points of ST (L, R), whose corresponding bisectors involve
an element u L, are on the boundary of V(u) in the final Voronoi diagram, they can be
"ordered" in the sense of Theorem 1. That is, if u is an endpoint, they can be ordered by
polar angle with point u as the origin. If u is a segment, they can be ordered by their
images on the segment. To avoid repeated examinations of the edges of V(u) we shall
keep track of the ordering of the points in ST (L, R). For example, suppose u is a
segment (a, b) and V((a, b)) is considered. Let mi and mj be two midpoints in ST (L, R)
such that the corresponding bisectors are B((a, b), ei) and B((a, b), ej), respectively,
and m appears "after" mi in the CCW direction along the boundary of V((a, b)). Let Mi
and M. denote the two pieces of the merge curve M using mi and m as starting points,
respectively. Assume that M/has been constructed. When constructing M. starting with
B((a, b), e) we shall scan the edges of V((a, b)) in the CCW direction (stipulated by the
scanning scheme) starting with the edge where the piece of merge curve Mi exits from
V((a, b)). In this manner we can eliminate backtracking. A similar situation holds if u is
an endpoint.

After we have determined the starting edge to be scanned in constructing each
piece of merge curve M/, the CW-CCW scan procedure can be applied. However,
instead of discarding edges when no intersection is found we replace them with a single
"dummy" edge. The merge process is more complex, but not conceptually difficult. For
details see [3], which includes a full description and an implementation of this merge
procedure. The following theorem ensures that the modified CW-CCW scan works
correctly and that no backtracking is necessary.

THEOREM 4’. Let ei and ei be elements in L and R, respectively, and let B (ei, ei) be
constructed during the merge process. No point of V(ei) in V(L) which lies to the right of
the oriented bisector B(ei, ei) will be included in the region V(ei) in the final diagram.
Similarly, no point of V(ei) in V(R which lies to the left of the oriented bisector B (ei, e
will be included in the region V(ei). Furthermore, the scanning of V(ei) in a CCW
direction and V(ej) in a CW direction will find the first intersection between B(ei, ei) and
either V(ei) or V(ei).

Proof. Similar to the proof of Theorem 4.
The time for constructing all pieces of merge curves is O(N log N) which is due to

the ordering on the points in ST (L, R) to determine the starting edge for the initial scan
for each piece of merge curve. Fig. 11 shows the merge curve M of the two Voronoi

4 If the piece of merge curve is an island, the procedure provided in 13] will bring us back to the starting
point. One pass is thus sufficient.
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FIG. 11. Merge of two Voronoi diagrams.

diagrams V(L) and V(R) shown in short- and long-dashed lines respectively, starting
with the points p and q; ,,o,, denotes the points in the starter set ST (L, R).

Let us summarize the entire procedure for constructing the Voronoi diagram for a
set S of N closed segments as follows.

Step 1. Order the set of N closed segments according to their left endpoints.
Step 2. Recursively construct the Voronoi diagrams V(L) and V(R), where L and

R are the sets containing the left [N/2J and right IN/2] closed segments respectively.
Step 3. Construct the Voronoi diagram V(Q) for the set Q of endpoints of R.
Step 4. Merge V(Q) and V(L) to form V(L U Q).
Step 5. For each point q Q, find the intersection of V(q) in the diagram V(L U Q)

and V’(q) in the diagram V(R). Let V"(q) be the intersection of the two Voronoi
polygons V(q) and V’(q).

Step 6. If the boundary of V"(q) has an edge B(q, e), where e is an element of L,
then take any point on B (q, e) and enter it into ST (L, R) along with the information
that B (q, e) is the corresponding bisector.

Step 7. Order these points in ST (L, R) in the sense of Theorem 1.
Step 8. Merge V(L) and V(R) by taking points of ST (L, R) in a specific order and

applying the CW-CCW scanning scheme. Mark those points in the starter set which are
passed through by the current piece of merge curve. Repeat this step until all the points
in ST (L, R) are marked.

The time required for the initial sorting (Step 1) of endpoints is O(N log N).
Constructing V(O) (Step 3) and V(L U O) (Step 4) takes O(N log N) time. Steps 6 and
8 take O(N) time. Step 7 takes O(N log N) time. Since Steps 3 through 8 are executed
O(log N) times due to recursion, the entire procedure takes O(N(log N)2) time. Thus,
we have the following results.

THEOREM 5. Given a set S ofNdisjoint closed segments in the Euclidean plane, the
Voronoi diagram V(S) can be computed in O(N(log N)2) time.

COROLLARY 2. Given a set ofNdisjoint closed segments in the Euclidean plane, the
minimum weight spanning tree can be found in O(N(log N)2) time.
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COROLLARY 3. Given a set of N closed segments in the Euclidean plane, the
all-nearest-neighbor problem can be solved in O(N(log N)z) time.

3.4. Extension to other figures and metrics. The technique used in constructing
the Voronoi diagrams for a set of line segments in the Euclidean plane can be easily
extended to the case when the given set of "objects" is a set of disjoint polygons or
disjoint circles.

The procedure for constructing the Voronoi diagram for a set of line segments
applies for the case of polygons, since the set of polygons can be treated as a set of
nondisjoint line segments. However, for circles, the situation is different, since there is
no "endpoint" that we can locate. But the following scheme works just as well. The idea
is based on the fact that each piece of merge curve contains a point which is of the
shortest distance from the corresponding sets of objects. The distance between two
circles in the Euclidean metric is equal to the difference of the distance between the
centers and the sum of their radii. Therefore as usual, we divide the set of circles into
two subsets L and R of circles according to their leftmost points and recursively
construct the Voronoi diagrams V(L) and V(R), respectively, for the two subsets L and
R of circles. To merge them we need to determine the starting bisectors first. We shall
locate the centers of the circles of the set R in the Voronoi diagram V(L), and
consequently find a set of images on the boundaries of the circles of L which are the
nearest neighbors of the centers of the circles of R. Then we do another pass of
point-location to locate the set of images in the Voronoi diagram V(R). If the nearest
neighbor of the image of c on some circle o. in L, where c is a center of some circle o in
R, is o, then B(o, o) is a starting bisector. Let the image I(c, o) of c on circle oi in L be
denoted by u, and the intersection of the straight line determined by u and c and the
circle o in R be v. The midpoint of the line segment u, v is a point to be included in the
starter set. The fact that the bisector B (oi, o) is a Voronoi edge can be shown in exactly
the manner described earlier. Therefore, the Voronoi diagram for a set of N disjoint
circles in the Euclidean plane can be found in O(N(logN)) time. We have the
following results.

THEOREM 6. Given a set ofNdisfoint objects (circles or polygons) in the Euclidean
plane, the Voronoi diagram for the set of objects can be found in O(N(log N)2) time.

COROLLARY 4. The minimum spanning tree for a set ofNdisjoint polygons or a set

of disjoint circles can be constructed in O(N(log N)2) time.
The above results were stated in terms of the Euclidean metric. However, they can

be proved using only the following assumptions about the metric in the plane.
(1) (Strict triangle inequality.) For all points x, y, and z, d (x, y) + d y, z) d (x, z)

if and only if x, y, and z are collinear in the standard Euclidean geometry in the plane.
(2) (Sides of triangles opposite nonacute angles are longest.) For any three points

x, y, and z, if angle (x, y, z) has measure at least r/2 in the standard Euclidean geometry,
then d(x, z) > d(x, y) and d(x, z) > d(y, z).

The L-metric, 1 < p <, satisfies these properties. But La- and L-metrics do
not. Finding Voronoi diagrams for line segments or other objects in these metrics is still
an open problem.

4. Conclusion. We presented an O(N(logN)2) algorithm for computing the
Voronoi diagram for a set of N circles or line segments in the plane under a general
metric which satisfies (i) strict triangle inequality and (ii) the property that sides of
triangles opposite nonacute angles are longest. The best lower bound for this problem
is f(N log N), so there is still room for improvement in either the algorithm or the
bound.
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FAST SORTING OF WEYL SEQUENCES USING COMPARISONS*
MARTIN H. ELLIS ND J. MICHAEL STEELE

Abstract. An algorithm is given which makes only O(log n) comparisons, and which will determine the
ordering of the uniformly distributed (pseudo random) Weyl sequences given by {(kc)rood 1:1 _-< k =< n},
where a is an unspecified irrational number. This result is shown to be best possible in the sense that no
algorithm can perform the same task with fewer than (log n) comparisons.

Key words, sorting, Weyl sequences, information theory lower bound, alpha-sort

1. Introduction1. Any algorithm which sorts sets of n real numbers only on the
basis of comparisons will always require, in the worst case, at least log2 (n!)=
O(n log2 n) comparisons. Similarly, if n reals are chosen at random from any continuous
distribution, the expected number of comparisons required for sorting them is also
O(n log2 n). These familiar facts may make it surprising that there are sequences which
share many properties with random sequences, but whose order can always be
determined with fewer than 4 log2 n comparisons.

The sequences considered here are the so called Weyl sequences given by
Xk ka mod 1, where a is an irrational number. These sequences share with the
independent uniformly distributed random variables the basic property that the number
of elements from X1, X2, Xn in (a, b) is asymptotic to n (b a), for 0 _-< a < b _-< 1.
(For a purely probabilistic proof of this property, see Feller [2, p. 268].) Since the Weyl
sequences are "uniformly distributed" in the sense described, Franklin [3] has further
examined the pseudo-random virtues of {Xk} by a variety of statistical tests. This
inherent randomness, together with their rich and well studied mathematical structure,
makes it intriguing to see just how efficiently the Weyl sequences can be ordered.

The principal objective of this paper is to provide an algorithm which determines
the order of XI, X2,’’ ", Xn on the basis of fewer than 4 log2 n comparisons. We
further show that any algorithm for sorting {(ka)mod 1:1-<_k <_-n} by comparisons
must make at least lq(log2 n) comparisons, so the algorithm given here is the best
possible.

One key motivation for studying the sorting of Weyl sequences is the general
question: "How does one use the fact that a sequence is of a certain structure to provide
a sorting algorithm which is information theoretically optimal?" This problem was
explicitly posed in M. L. Friedman [4] and is implicit in Berlecamp’s problem on sum set
sorting (see, e.g., Harper, et al. [51]).

A second motivation for studying the sorting of Weyl sequences by comparisons is
provided by recent work of Papadimitriou on efficient search for rationals. Papadimi-
triou [6] gives an elegant algorithm which establishes that O(log M) queries of the form
"is x<-p/q ’’, where p, q<-_M, are sufficient to determine any rational x-a/b with
a, b <_-M. The present algorithm is quite distinct from Papadimitriou’s in method
(relative comparisons vs. absolute comparisons) and in purpose (sort vs. search). Still,
there is a close connection since (as the following sections implicitly show) the ordering

* Received by the editors December 18, 1978 and in final revised form May 16, 1980. This research was
supported in part by the National Science Foundation under grants MCS 77-03659 and MCS 77-16974.

t Professor Martin H. Ellis of the Department of Mathematics, Northeastern University, Boston,
Massachusetts, died on February 15, 1980, after a brief illness.

Department of Statistics, Stanford University, Stanford, California 94305.
0, fl, O, o denote "order of exactly", "order of at least", "order of at most", and "order of less than",

respectively.
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of {(ka) 1 -< k <= n} is closely connected to the location of the irrational a in the Farey
dissection of the unit interval.

In the next section, we give an algorithm called Alpha-Sort, which is a very simple
procedure which sorts any collection of the form {(ka)mod 1:1 <=k-<_n} with fewer
than o(n) comparisons. The third section then uses the structures uncovered by
Alpha-Sort to provide the required information theoretic lower bound fl(log2 n). The
fourth section applies a binary search speedup of Alpha-Sort which gives an explicit
algorithm which performs as well as the theoretical lower bound can permit. The final
section makes a brief speculation about the use of sorting as an appropriate measure of
complexity of a pseudo random sequence.

2. Alpha-Sort: An o(n) algorithm for sorting (ka) mod 1, l<=k<=n. For brevity,
we will subsequently write (kc) for the representative of (ka) mod 1 in [0, 1). The key
idea for efficient sorting of {(ka) 1 <- k <-_ n} is that the order structure can be completely
determined from the largest and smallest elements of the set. We define L* and R* to be
the integers in {1,2,...,n} satisfying (L*a)=minl<=k<__n(ka) and (R*c)=
maxl__<k__<n (ka). The Alpha-Sort algorithm shows how one can compute L* and R*, and
how these integers can be used to determine the ordering of (ka), 1 <= k <-n.

Alpha-Sort algorithm. Given Xk (ka)mod 1, 1-<_ k-<_ n, this algorithm returns
i1, i2, in such that Xil < Xg2 <" "<

A1. [Initialize] Set L 1, R - 1, M- 1.
A2. [Compute L* and R*] While L +R -<_ n, set R L +R if XL+R-1 < XL+R

otherwise, set L L + R.
A3. Print ML mod (L + R) if ML mod (L + R) <_- n.
A4. Set M-M/ 1. If M <L +R go to A3; otherwise end program.
The fact that Alpha-Sort correctly performs the task of sorting {(ka) 1 -< k _-< n}

with O(n) comparisons, will follow from the next two lemmas. These elementary results
will form the theoretical core for the rest of the analysis.

LEMMA 1. Suppose min {(a), (2a),. ., (ja)} (La) and max {(a), (2a),. .,
(ja)} (R.a), L, R {1, 2, ,/’}. Then

(i) min {(a), (2a), , ((L + R 1)a (La),
(ii) max {(a ), (2a), , ((L + R 1)a)} (Ra),

(iii) either ((R +L)a)<(La) or ((R +L)a)>(Ra).
Proof. (i). If I<-H<R and ((L+H)a)<(La), then ((L+H)a)(La)+(Ha);

hence,

(1) (Lc + (Ha > 1.

The definitions of L and R and (1) imply

(2) (Ra (Ra (Ha) + (Ha)

((R H)a) + (Ha)
>-_ (La + (Ha)

>1.
This contradiction establishes (i).

(ii). If 1 _-< H <R and ((L / H)a > (Ra), then the definitions of L and R imply

((L +H R)a ((L + H)o) (Ra)

(La) + (Ha) (Ra)
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This is a contradiction to the fact that ((L +H R)a) > (La).
(iii). Either

((R + L)a) (Ra) + (La)

> (Ra),

or

((R + L)a) (Ra) + (La) 1

<

so (iii) is also established. 71
LEMMA 2. For (La)=min((ka): 1 <=k <-n} and (Ra)=max{(ka): 1 <=k <=n} we

have (La)= (rnla) < (rn2a) <. < (rosa) (Ra) where mk kL mod (L + R) and S
L +R 1. Furthermore, L andR are relatively prime, and {mi: 1 <= <= S} is a permutation
of the numbers 1, 2,. , S.

Proof. First we will show by induction on n that L and R are relatively prime. If
n 1 then L R 1, so L and R are relatively prime. Suppose the assertion is true for
n I. If the maximum and minimum remain unchanged when n is raised to + 1, they
remain relatively prime. If not, then Lemma 1 implies that + 1 L +R and either L or
R (but not both) must be replaced with L + R. Since

gcd {L, L +R} gcd {L + R, R} gcd {L, R} 1,

the assertion is established.
Since L and R +L are relatively prime,

{(mia ): 1 < <= S} {(ia): 1 <= <= S}.

Suppose for some 1 -< -< S

(1)

If

(2)

then (1) implies

(mia)>(mi+la).

(mi+la) ((mi + L)a),

(mi+la) (mia)+(La)- 1

this is impossible since by Lemma l(i), (La) must be minimal. Since (2) fails to hold,

(3) (mi+la)=((mi-R)a).

Since R ms and < S, Lemma 1 (ii) implies (mia)< (Ra). But then,

(mi+la)=(mia)-(Ra)+ 1

> (m/a),

contradicting (1). Thus, (mia)< (mi+la) for 1 -<_ < S, and the lemma is proved. 71
The first lemma proves that step (A2) of Alpha-Sort correctly determines L* and

R*. The second lemma shows how these two quantities completely determine the
ordering of {(ka):l<=k<-_n}. We actually showed that L* and R* determine the
ordering of the larger set {(ka) 1 _-< k _-<L* + R*- 1}; step (A3) of Alpha-Sort deletes
the irrelevant members from the ordering of the larger set.
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Since each comparison performed by Alpha-Sort increases either L or R, and since
these quantities never exceed n, the total number of comparisons performed is at most
O(n). One can actually show that for any fixed a, as n increases only o(n) comparisons
are required. In fact, one can show that for almost every a (in the sense of Lebesque
measure), for every e>0 Alpha-Sort will find L* and R* with o((logn)+)
comparisons. Still, by taking Liouville irrationals like= 10- where a < a2 <"
is a rapidly increasing sequence, one can also show that o(n) is the most precise
statement which one can make about the number of comparisons required by Alpha-
Sort. We do not need to elaborate on these points since the next section will show that
o(n) is far from theoretically optimal, and the final section will sharpen Alpha-Sort to
attain that optimal rate.

3. InIormation theoretic bounds. In the second lemma of the preceding section,
we saw that the two quantities L* and R* completely determine the ordering of
{(kc 1 <- k -< n }. We will now show that this suggests that it may be possible to sort
{(ka 1 =< k <_- n } with only O(log2 n) comparisons, but no fewer.

Classically, the fact that a binary tree with m leaves must have height at least
log2 (m), and the fact that there are n! orderings of n real numbers, collectively imply
that at least O(n log2 n) comparisons are required to determine their order. This
information theoretic perspective makes it interesting to determine E,, the total
number of orderings of {(ka) 1 <- k -< n} as a varies through all real values.

Explicitly, we let IAI denote the cardinality of a finite set A and let r denote any
permutation of {1, 2,. , n}. For

E, [{cr for some

we have the following fact.
PROPOSITION. n <= En <- n 2.
Proof. For any a, we have (by Lemma 2 above) that there are integers 1 <-L* <= n,

1 =<R* <-n which completely determine the ordering of {(ka): 1 <-k <-n}. Since there
are only n 2 such pairs L* and R*, the upper bound is established.

To see that E,->n, we consider the n irrationals defined by ak 1/k-e for
k 1, 2,..., n and some very small positive irrational e. For ak one can see that
(ak)<(2ak)<"’ "<(kotk) but ((k+l)a)<(ak). The (ak) thus each yield a different
ordering, so E, => n as claimed.

Since the conclusions to be drawn from this proposition depend only on O(log2 E),
we have obtained only the simplest bounds. One can actually show that if is the Euler
phi-function, we have E, =k_-<, &(k)= 3/rr2n2+O(n log n) (for facts on &(k) see
[1]). The proposition immediately establishes the following result.

COROLLARY. At least f(log2 n) comparisons are required in order to sort {(ka) 1 <=
k<-n}.

The upper bound in the preceding proposition also suggests that it might be
possible to sort {(ka)" 1 -<_ k -< n} with only O(log n) comparisons. The main objective
of the next section will be to show that this is in fact the case.

4. Fast Alpha-Sort: An O(log n) algorithm. In Lemma 2, we proved that the
ordering of S ={(a), (2a),..., (ha)} is completely determined by L* and R* where
(L*a)=min__<_,(ka) and (R*a)=max_<__<_,(ka). Now we will show how Alpha-
Sort can be improved to compute these values with only O(log2 n) comparisons.

The improvement over Alpha-Sort is made by replacing the linear process for
computing L and R by a geometric process. The details are somewhat complicated due
to the presence of several cases, but the conceptual essence of the matter is brought out
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in the following Lemma 3, which shows essentially that if certain conditions are valid at
times k and 2k they are valid at all intermediate times.

DEFINITION. A value (]a
is the minimum (respectively maximum) of {(ia)" 1 <- <-}.

LEMMA 3. Let k be a positive integer, and suppose (Ra) is a right extreme and each
((L + iR )a ), 0 <-_ <- k, is a left extreme. If ((L + 2kR )a < ((L + kR )a ), then each ((L +
iR )a), k + 1 <-i <-2k, is a left extreme.

Proof. Let k be a positive integer for which each ((L +]R)a), 0_-<i-<_ k, is a left
extreme. Let /" be the smallest positive integer for which ((L+jR)a) is not a left
extreme, and suppose /’<_-2k. Lemma 1 implies that max{(a), (2a),..., ((L+
(/" 1)R )a )} (Ra), and since ((L + (/" 1)R )a is a left extreme, Lemma 1 (iii) implies
((L +jR)a) is an extreme; by choice of ] it is not a left extreme, so it is a right extreme,
hence,

(1)

Since each ((L + iR)a), 0 <= <= k, is a left extreme,

(2) ((L+iR)a)-((L+(i+l)R)a)=l-(Ra),forallO<=i<k.

Since ((L +jR)a > (La), (2) implies

(3) ((L+(i+i)R)a)-((L+(i+i+l)R)a)=l-(Ra),forallO<-_i<k.

Expressing ((L + 2kR)a) and ((L + kR)a) as telescoping sums and applying (1),
(2), (3) and the fact that j _>-k + 1, we have

(4) ((L + 2kR)a
2k-j-1

+ , (((L + (j + + 1)R)a ((L + (j + i)R)a ))
i=0

>

1-(2k + 1-/’)(1 (Ra))

>=l-k(1-(Ra))

>(La)-k(1-(Ra))
k-1

=(La)+ E (((L+(i+l)R)a)-((L+iR)a))
i=0

((L + kR)a).

Inequality (4) shows that if there is a f{i’k +1_-<i_-<2k} for which ((L+jR)a) is
not a left extreme, then ((L + 2kR)a)> ((L + kR)a). The lemma follows by contra-
position.

A similar argument establishes the following result.
LEMMA 4. Let be a positive integer, and suppose that each ((R + iL)a ), 0 <-_ <- l, is

a right extreme. If ((R + 21L)a) > ((R + IL)a), then each ((L + iR)a), + 1 <-_ <- 2l, is a
right extreme.

Besides serving to prove the validity of the following Fast Alpha-Sort algorithms,
the preceding lemmas should also serve to motivate the algorithm. As a tool for use
within Fast Alpha-Sort, we will require a binary search procedure which we call
SEARCH(L, R, v, z). The parameters L, R, v are integers provided in the course of the
Fast Alpha-Sort Algorithm, and z is either 0 or 1, depending on whether the algorithm
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is looking for a new candidate for a left extreme or a right extreme. (The duality
between the left and right procedures can be immediately seen, but for clarity we will
not strain to unify the two.)

SEARCH(L, R, v, z).
S1. If v 1 set SEARCH(L, R, v, z) 1 and stop.
$2. If v=2 set SEARCH(L,R,v,z)3 and stop if z=0 and L+3R<=n and

((L+2R)s)>((L+3R)a), or if z=l and 3L+R<-n and ((2L+R)s)<
((3L +R)s); otherwise if v 2 set SEARCH(L, R, v, z) 2 and stop.

$3. If v >_- 3 set S - 3 2-2 and set T - 2-3.
$4. If z=0 and L+SR<=n and ((L+1/2SR)s)>((L+SR)s), or if z=l and

SL+R<=n and ((1/2SL+R)s)<((SL+R)s), set SS+T; otherwise set
S-S-T.

$5. Set T 1/2T. If T _-> 1 go back to $4.

$6. If z 0 and L + SR <= n and ((L + (S 1)R)s > ((L + SR)s ), or if z 1 and
SL+R <=n and (((S-1)L+R)s)<((SL+R)s), set SEARCH(L,R, v,z)- S and stop; otherwise set SEARCH(L, R, v, z)- S- 1 and stop.

The SEARCH subroutine is used in the Fast Alpha-Sort algorithm, and the role it
plays there is described in the proof of Lemmas 6 and 7.

Fast Alpha-Sort. Given Xk (ks), 1 _-<k <-n, this algorithm returns L* and R*
such that (sL*) minl_<k<= (ks), (sR*) maxl_<_k=< (ks).

FA1. Set L -0, R 1.
FA2. Starting with k= 1, increment k until either L+2kR>n or ((L+

2k-lR)s) < ((L + 2kR)s).
FA3. Set L - L +R. SEARCH(L, R, k, 0). If L +R > n go to FA6.
FA4. Starting with 1, increment until either R + 21L > n or ((R + 21-XL)s) >

((R + 2IL)s ).
FAS. Set R - R +L SEARCH(L, R, l, 1). If L +R =< n, go to FA2.
FA6. Let L* -L and R* --R, then stop.

The main result of this section is the following"
THEOREM. The Fast Alpha-Sort Algorithm returns L* and R* after at most

O(log n) comparisons between pairs in {(is); 1-<i-< n}.
Before proving the theorem we will establish three lemmas.
LEMMA 5. Computing SEARCH(L, R, p, z) requires at most p- 1 comparisons

between pairs in {(is): 1 _-< -<_ n }.
Proof. We simply dissect the possibilities. If p 1, no comparisons are made. If

p 2, the only comparison that may be required is between ((L + 2R)s) and ((L +
3R)s) if z 0, between ((2L + R)s) and ((3L + R)s) if z 1. If p >- 3, then T is set to
2p-3 and single comparisons or no comparisons alternate with dividing T by 2, until
T < 1. Thus, at most p 2 comparisons are made before T becomes less than one. A
single additional comparison may be made in ($6), for a total of at most p-1
comparisons. 71

LEMMA 6. Suppose Fast Alpha-Sort has ]ust entered step (FA2), L p, R q and
(qs) is a rightextreme. Ifeach ((p+ iq)s), 1 <-i <-f, is a leftextreme but ((p + ( + 1)q)s)
is not a left extreme, Fast Alpha-Sort will set L equal to p + q min (j, ,(n -p)/q,) after
making at most 1 + 2 min log2/,.,log2 ((n -p)/q)), additional comparisons between pairs
in {(is):l<-i<-n}.

Proof. Let b =,log2 11 and let c =L!0g2 ((n -p)/q!),.
If p+2b+lq<=n, Fast Alpha-Sort will sequentially compare ((p+2i-lq)s) with
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((p + 2iq)ce), 1 --<_ <= b + 1. It will then compute SEARCH(p, q, b + 1, 0), which by
Lemma 5 requires at most b additional comparisons, after which it will set L ,- p + q/’.
The total number of comparisons made is thus at most 1 + 2b.

If p +/" 1 _-< n < p + 2b/ lq, Fast Alpha-Sort will follow the same procedure as above,
except the comparison of ((p +2bq)a) with ((p +2b/lq)c) will be omitted; hence at
most 2b comparisons will be made.

If n <p +]q, Fast Alpha Sort will sequentially compare ((p+ 2i-lq)a) with ((p+
2iq)), 1-<i-<c. Upon learning that p+2C+lq>n, it will then compute
SEARCH(p, q, c + 1, 0), which by Lemma 5 requires at most c additional comparisons,
after which it will set L -p +,[(n-p)/q],q. The total number of comparisons made is
thus at most 2c.

In any case, the total number of comparisons is at most 1 + 2 min (b, c). El
The following lemmas can be proved analogously to Lemma 6.
LEMMA 7. Suppose Fast Alpha-Sort has lust entered step (FA4), L p, R q, and

(pa) is a leftextreme. Ifeach ((ip + q)a), 1 <- <-] is a rightexteme but (((] + 1)p + q)cr) is
not a right extreme, Fast Alpha-Sort will set L equal to q + p min (/’,(n- q)/p), after
making at most 1 + 2 min,(log2/’,, ,log2 ((n 1)/p)) additional comparisons between pairs
in {(ia) l -< -< n}.

Proofof Theorem. Lemmas 6 and 7 imply that Fast Alpha-Sort correctly computes
L* and R*. It remains to show that the number of comparisons between pairs in
{(ia) 1 _-<i _-<n} made by Fast Alpha-Sort in computing L* and R* is O(log n).

Assume Fast Alpha-Sort has just computed L* and R*. Let

1 q0<q2 <’ "<q2v =R*

denote the values taken by R during the course of Fast Alpha-Sort, let

0 p_ < Pl < P3" PEW-I L*

denote the values taken by L during the course of Fast Alpha-Sort, and let m
max (2 V, 2W- 1). (Note that m 2 V 2W if step (FA6) was entered from (FA5) and
m 2W- 1 2 V + 1 if step (FA6) was entered from (FA3).) For 1 _-< _<- m, let ]i

if is odd and let f =,qi/Pi-1, if is even. Note

(1) I-I/’i -<max (L*, R*) <= n.
i=1

Lemmas 6 and 7 imply that the number of comparisons between pairs in {(ic) 1 <=
-< n} made by Fast Alpha-Sort in computing L* and R* is bounded above by

E (1 +,2 log2 ji,),
i=1

which by (1) is bounded by

(2) m+2 log2( ji)<-_m+21og2n.
i=1

The largest value m can have would occur if the p and q grew as slowly as possible (i.e.,
j 1 for 1 -<_ -<_ m), in which case each p or q would be the (i + 1)st number in the
Fibonacci sequence. In this case,

1og2 n
(3) m<-l+

log2 b’
where & (x/+ 1)/2. Inequalities (2) and (3) show that the number of comparisons
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between pairs in {(ia)" 1 <_- <_- n } made by Fast Alpha-Sort in computing L* and R* is
bounded above by

1 + (2 + (log2 b)-l) logz n,

which establishes the theorem. [3

$. A br|e| sleeulation. The introduction isolated two motivations for studying the
sorting of Weyl sequences, and a third motivation was deferred until now. This comes
from the problem of measuring the complexity of a class of sequences and using this
measurement to aid one’s choice of pseudo-random number generators. The Weyl
sequences are not genuine candidates for pseudo-random numbers, and this is rein-
forced by the speed with which they are sorted. One would especially like to determine
the number of comparisons needed to sort sequences generated by the widely used
classes of PRN generators. This analysis has many practical and conceptual compli-
cations, but the Weyl sequences can be considered a preliminary case in this wider
program.
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RELATIVE TO A RANDOM ORACLE A,
pA NpA co.NpA WITH PROBABILITY 1"

CHARLES H. BENNETTS- AND JOHN GILL:I:

Abstract. Let A be a language chosen randomly by tossing a fair coin for each string x to determine
whether x belongs to A. With probability 1, each of the relativized classes LOGSPACEA, pA, NpA, ppA, and
PSPACEA is properly contained in the nexi. Also, NPA co-NPa with probability 1. By contrast, with

probability 1 the class pA coincides with the class BPPA of languages recognized by probabilistic oracle
machines with error probability uniformly bounded below 1/2. NPA is shown, with probability 1, to contain a
pA-immune set, i.e., a set having no infinite subset in pA. The relationship of pA-immunity to p-sparseness
and NpA-completeness is briefly discussed: pA-immune sets in NPA can be sparse or moderately dense, but
not co-sparse. Relativization with respect to a random length-preserving permutation 7r, instead of a random
oracle A, yields analogous results and in addition the proper containment, with probability 1, of P in
NP f3 co-NP, which we have been unable to decide for a simple random oracle. Most of these results are
shown by straightforward counting arguments, applied to oracle-dependent languages designed not to be
recognizable without a large number of oracle calls. It is conjectured that all pA-invariant statements that are
true with probability of subrecursive language classes uniformly relativized to a random oracle are also true
in the unrelativized case.

Key words, random oracle, relativized computation, probabilistic computation, computational
complexity, nondeterministic computation, polynomial immunity, polynomial isomorphism, polynomial
reducibility

1. Introduction. A paper by Baker, Gill and Solovay [BGS], whose notation and
definitions we adopt, has indicated the subtlety of the P ?NP question by exhibiting
computable sets A and B such that pA NpA but pB : NpB. Here, pX denotes the class
of languages accepted by polynomial time bounded Turing machines able to query the
set X, and NPx denotes the corresponding class for nondeterministic machines.

This paper deals not with particular oracle sets but rather with statements that.
hold with probability 1 when the oracle is chosen randomly. The probability measure/z
on the class of oracles is defined by putting each string into a random oracle with
probability 1/2, independent of all other strings. (Of course, such an oracle is noncom-
putable with probability 1). Random oracles provide easy examples of sets such as B of
[BGS], and also indicate a new sense in which pX Npx for "most" oracles X. This is a
counterpart for the nondenumerable class of all oracles of Mehlhorn’s result [Me] that
the subset of computable oracles X that satisfy pX Npx is effectively meager.

Any property of oracles that is insensitive to finite changes in the oracle has
probability 0 or 1, by the zero-one law for tail events [Fe2]. We determine relationships
that hold with probability 1 for language classes relativized to a random oracle A.
Section 2 establishes the basic results pA NpA # co_NpA with probability 1, and the
related results LOGSPACEA # pA and PSPACEA # EXPTIMEA with probability 1.
Section 3 relativizes the probabilistic language classes PP (languages recognizable in
polynomial time by weak Monte Carlo tests, whose error probability may approach that
of random guessing), and BPP (languages recognizable in polynomial time by strong
Monte Carlo tests, whose error probability can be made as small as desired by iterating
the test a fixed number of times). It is shown that with probability 1, the relativized class
ppA is properly contained in PSPACEA and properly contains NPA I,.Jco-NPA. By

* Received by the editors November 6, 1979, and in final form May 20, 1980. This research was
supported in part by the National Science Foundation, under grant MCS77-07555.

t IBM Watson Research Center, Yorktown Heights NY 10598.
Electrical Engineering Department, Stanford University, Stanford CA 94305.
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contrast, pA and IIPPA are shown to be equal with probability 1. Section 4 shows that
with probability 1, NPA contains a pA-immune set, that is, a set having no infinite subset
in pA. Section 5 discusses the open question of whether, relative to a random oracle, pA
equals IPA co-NPA, arguing that it will be hard to decide one way or the other. On
the other hand, by relativizing with respect to a random permutation r instead of a
random oracle, P can be shown to be properly within NP fqco-NP. Indeed,
NP f3 co-NP contains a P-immune set with probability 1.

Most oracles used in recursive function theory and complexity theory contain
built-in structure intended to help or frustrate a specific class of computations. A
random oracle, on the other hand, is intuitively unbiased and unstructured; thus, it is.
plausible that theorems (for example, PNP) that hold with probability one for
computations relativized to a random oracle should also be true in the absence of an
oracle. Section 6 formalizes this conjecture.

As a preview of the results to be demonstrated later, we now give heuristic
arguments showing why, relative to a typical random oracle, deterministic and
nondeterministic polynomial time are different (PAT NPA, Theorem 1), but deter-
ministic and probabilistic time are the same (pA BppA, Theorem 5). Given a fixed but
typical random oracle, consider the following question" do the first 2 bits of the oracle’s
characteristic sequence include any run of n consecutive zeros? Such a run will be
present for about half of all values of n, and if present, it could easily be detected
nondeterministically by guessing the address of its beginning. On the other hand, it is
fairly obvious, if not entirely straightforward to prove, that no deterministic algorithm
could expect to find out whether a run exists in less than exponential time. Thus, for
typical random oracles A, the language {0n" the first 2 bits of A contain a run of n
consecutive zeros} is in NpA-pA. Similarly, the language {0n: the first 2 bits of A
contain an even number of zeros} is in PSPA.CA-NpA with probability 1.

Next consider a language, such as the set of composite numbers, that is prob-
abilistically recognizable in the sense of BPP. Such a language could be recognized
deterministically in the presence of a random oracle by: 1) iterating the original Monte
Carlo test a linearly increasing number of times as a function of input size, so that the
expected cumulative number of errors, summing over all inputs, remains finite; 2)
simulating this more accurate Monte Carlo algorithm deterministically by using bits
from the random oracle instead of coin tosses; 3) patching the errors by a finite table. A
slight refinement of this argument shows that even relativized languages of the class
BPPA can be recognized in deterministic polynomial time with the help of a random
oracle.

Throughout this paper, the natural number x will be identified with the xth binary
string in lexicographic order (0, 1, 2, 3,. - A, 0, 1, 00. .). The binary length of x,
equal to the integral part of log2 (x + 1), will be denoted Ix l. Similarly, a set or language
A will be identified with its characteristic sequence, the infinite binary sequence whose
xth bit, A (x), is 1 iff x A. Sets of sets (e.g., language classes or events in oracle space)
will be denoted by upper case Greek letters, with lq denoting the (nondenumerable)
set, of all languages. The probability measure on l is equivalent, via the identifica-
tion of languages with infinite binary sequences, to Lebesgue measure on the unit
interval.

Most of the separation results in this paper are proved by exhibiting an oracle-
dependent test language LA which belongs to the one of two relativized language classes
(e.g.,/pA) for all oracles A but belongs to another narrower class (e.g., pA) only for a
set of oracles of measure zero. Results of this sort can be proven more easily by
appealing to the following lemma, which depends on certain easily satisfied conditions
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on the test language LA and the (denumerable) relativized class lIA

{M,MA2, M3A, .} to which it is desired to prove that LA does not be|ong for most A.
For concreteness,M may be thought of as the language accepted by the/’th machine of
a given type (e.g., polynomial time bounded) when it is connected to oracle A. First the
conditions will be described; then the lemma will be stated and proved.

Condition 1. The test language LA, and each of the machine languages M, must
depend on A via a total recursive operator from I to f. Each of these languages, in
other words, must be recognizable by a Turing machine that halts for all oracles and
inputs.

Condition 2. The family of machine languages should be finitely patchable with
respect to the oracle’ for each machine M. and each finite bit string s there should exist
another machine Mk such that M MTM for all oracles A. Here s*A denotes the
characteristic sequence obtained by substituting the finite string s for the first Isl bits of
A. Machine Mk may be thought of as incorporating the bit string s in its finite control,
where it intercepts and answers all sufficiently small queries.

Condition 3. The family of machine languages should be finitely patchable with
respect to initial portions of any uniformly A-recursive language" For any number m,
any machine M., and any A-recursive function qA that is total and 0-1 valued for all A,
there should exist another machine Mk such that for all oracles A and inputs x,

A(x) ifx<m,M (x) M# (x) otherwise.

In particular, when qA defines a test language LA, machine Mk gives the "correct"
answer LA(x) for inputs less than m and gives the same answer as machineM would for
all other inputs.

Condition 4. The test language LA (but not necessarily the machine languagesM
must depend on the oracle in such a way that each bit of the oracle affects only finitely
many bits of the language. (Condition 1, by K6nig’s lemma, implies that both LA and
M already satisfy the converse of condition 4, namely, that each bit of the language
depends on only finitely many bits of the oracle.) Together, conditions I and 4 require
that, the membership of x in LA depend only on those addresses in A lying in a finite
window bounded by two monotone functions of x that tend to in the limit of large x.
Oracle-dependent languages of this sort have been termed "oracle properties" by
Angluin [An] and Kozen and Machtey [KM].

Conditions 1 and 4 hold by definition for all the test languages used in this paper,
and conditions 1-3 can readily be seen to hold for the relevant families of oracle
machines, viz. logspace bounded deterministic [LL,Si], polynomial time bounded
nondeterministic [BGS], and polynomial time bounded probabilistic threshold
machines ([Gi], see also 3).

LEMMA 1 LetLA be a test language and MA {M’, MA
2 "} a family ofmachine

languages satisfying conditions 1-4 above. If there exists a positive constant e such that
each machine language differsfrom the test languagefor a class oforacles ofmeasure >e,
then the class of oracles for which LA MA has measure zero.

Proof. The idea of the proof is to show that as a machine is fed larger and larger
inputs, it keeps making fresh errors, due to bad luck at oracle addresses too large to have
caused any errors earlier.

It suffices to show, for each machine M., that the class C,,=
{A" /x < m LA(x)=M (x)}, of oracles for which it makes no error on the first m
inputs, approaches measure zero in the limit m o. To prove this it suffices to show
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that for each rn there exists a larger n such that/x(Cn)_-<(1-e)/x(C,). Because of
condition 1, membership of an oracle in the class C, depends on only a finite portion of
the oracle characteristic sequence; hence C, may be expressed as a finite disjoint union
of elementary cylinders Zs, where Zs is the class of oracles whose characteristic
sequences begin with the finite sequence s.

In view of this, the lemma would follow if one could show that e is a lower bound
not only for the overall error probability, limn-. 1 -/x (Cn), but also for the conditional
error probability within any cylinder, lim_, 1-(Zs f3 C)/(Zs), even though the
cylinder Zs might consist entirely of oracles that cause no errors on small inputs.

To prove that this is indeed the case, note that the operation of M. in any cylinder
Zs may be simulated by another, finitely patched, machine Mk, which accepts the

s*A A s*A s*Afollowing oracle-dependent language: it [L (x) L (x)] then L (x) else Mi (x).
Here condition 4 guarantees that LA(x) and LS*A(x) differ for only finitely many x, and
conditions 2 and 3 guarantee the existence of the patched machine. It is evident from
the definition that the original machine’s conditional error probability on cylinder Z is
at least as great as the patched machine’s unconditional error probability which in turn
is at least e, by the premise of the lemma. [1

Remark. Kozen and Machtey [KM] derive a result analogous to Lemma 1 but for
meagerness rather than measure. Under conditions 1-4, they show that set {A:LA

MA} is either equal to all of oracle space or else is a meager subset of oracle space.
Therefore, whenever Lemma I is used to prove a separation with probability I between
two relativized complexity classes, the same separation holds for all but a meager subset
of oracles. On the other hand, the possibility remains that two complexity classes may
be equal with probability I even though they differ for all but a meager subset of oracles.
This possibility is discussed further in connection with Theorem 5.

2. p,t, NpA, and LOGSPACEt for random oracles A. The following definition
provides a function A(X) that uses the oracle A to map binary strings randomly into
strings of the same length.

DEFINITION. A(X) A(x 1)A(x 10)A(x 100)" A(x 10’x’-), where juxtaposition
indicates concatenation. In other words, A(X) is a Ix I-bit string whose kth bit is 1 or 0
according to whether x 10k-1 belongs to A.

Although it is easily computed by a machine with oracle A, the function :A is
ideally pseudorandom in that knowing its value for one argument tells nothing about its
value for other arguments. (The same is true of the characteristic function A (x), but in
several of the proofs below it is convenient to have a function whose values are about
the same size as its arguments.) The pseudorandomness of :A is used to define languages
depending on A that cannot be accepted without exponentially many queries of the
oracle. The number of inverse images under :A approaches a Poisson distribution for
large n for typical A the fraction of n-bit strings with exactly k inverse images under :a
approaches e-k/k! In particular, about 1/e of n-bit strings have no inverse image and

1/e have exactly one inverse image.
THEOREM 1. IfA is a random oracle, the pA NpA co_Npa with probability 1.

Proof. Since pA is closed under complementation, Theorem 1 would follow if, for
all but a class of oracles A of measure zero, one could exhibit a language in NPA whose
complement is not in NPA. Let the test language RANGEA be defined as {x" :ly :A(Y)
X}, i.e., the range of SeA, and let CORANGEA be the complement of RANGEA. Clearly,
RANGEA belongs to NPA. However, CORANGEA is not in NPA because, intuitively,
no nondeterministic oracle machine can verify for typical x and A that x is not in
RANGEA without evaluating A(Y) for every y of length [x[.
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In order to show that with probability 1, no polynomial time bounded nondeter-
ministic oracle machine NPj with random oracle A accepts exactly CORANGEA, it
suffices by Lemma 1 to show/hat every such machine has an input on which it errs with
probability at least 1/2 when A is chosen randomly.

Let an arbitrary machine NPj be chosen and consider an input of the form x 0n,
where n is sufficiently large that none of the machine’s nondeterministic computation
paths has time to examine more than one per cent of the 2 n-bit strings that are
potential inverse images of 0 under the : function. Recalling the definition of the :
function, an n-bit string y will be said to be examined when the oracle is queried about
any string of the form y l0k, for some k < n.

Let C0={A: ::ly :A(y) 0n} be the class of oracles for which the input 0 is in
CORANGEA and therefore should be accepted. This class has measure between 0.36
and 0.37 for all n=>5, approaching 1/e=0.3678... for large n. Let ao be the
conditional acceptance probability on Co, i.e., the fraction of oracles in Co for which
input 0 actually is accepted.

Consider now another class of oracles, disjoint from Co and consisting of oracles A
for which 0 has exactly one inverse image but is not its own inverse image. This class,
Ca ={A: A(On) O and (uniq y)a(y)=On}, has measure exactly equal to that of Co
and consists entirely of oracles for which the input O does not belong to CORANGEA

and therefore should be rejected. Let a be the conditional acceptance probability on
C1.

The overall error probability,

e {A" NP(On) CORANGEA(On)},
is at least

(1 ao)/Z (Co) + a 1/z (C1) (1 + al- ao)/e,

since every rejection’in Co, and every acceptance in C 1, is an error. In order to show that.
e > 1/2, we exhibit a probabilistic transformation of oracles, A --> A’, that maps Co onto C1
in a measure-preserving manner but changes each oracle so little that most accepting
computation paths under A continue to accept under A’. Therefore, a l>a0 and
e 1/e.

The transformation A --, A’ is best described in words. To obtain A’ from A, choose
randomly (by coin tossing) an n-bit string z not equal to On; then delete from A all
strings of the form z x 10 for < n. Recalling the definition of the : function, this has the
effect of making :A’(Z)= O while preserving the equality :A(Y)= :A’(Y) for all other
arguments y. The transformation is therefore measure preserving between C0 and C1, in
the sense that the expectation of any event in C is equal to the expectation that a
randomly chosen point in C0 will map into it under the transformation. (The prob-
abilistic transformation may be thought of more formally as a deterministic measure-
preserving mapping (A, z)--,(A’, A(Z)) from C0xY onto C x Y, where Y is the
probability space of n-bit strings not equal to On. Hence, for any event E

___
C, t (E)

/x{(A, z)e CoX Y: A’ e E}.)
To show that al a0, choose a random oracle in Co and a random n-bit string

z 0 and generate the transformed oracle A’, a member of class C1. With probability
ao, there is at least one accepting path of NPi(On) under oracle A. Select the first
accepting path. With conditional probability at least 0.99, the set of strings examined on
this path does not include z, the one string with respect to which oracles A and A’ differ,
and so the path continues to accept under A’. Therefore the acceptance probability in
C is at least 0.99 times that in Co and s _-> 0.36(1-ao+0.99ao) >1/2.
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Lemma 1 then allows us to conclude that, with probability 1, CORANGEA is
not in NPA. Since RANGEA is in NPA, we have, with probability 1, pA # NpA # co-
NPA.

LOGSPACEA can be defined in various ways, depending on how the query tape is
handled. We follow the conventions of Ladner and Lynch [LL]" The query tape is not
charged against the space bound, but to keep it from being used as a work tape, the
query tape is one-way and write-only and is erased automatically following each query.
(Simon [Si] treats the query tape as one of the work tapes, a two-way read/write tape
that is charged against the space bound. The Ladner-Lynch definition is less restrictive
and perhaps more natural, since for a random oracle A LOGSPACEA holds with
probability 1 for ILL] but not for [Si]. Theorem 2 holds for both definitions of
LOGSPACEA.)

THEOREM’2. IfA is a random oracle, then LOGSPACEA # pA with probability 1.
Proof. The language used to prove Theorem 2 is BIGQUERYA= {x" A(X) A},

which is obviously in pA for every oracle A. Every oracle machine that recognizes this
language must compute and store some representation of SeA (X) on its work tape, which
costs at least [x[ bits. Queries of the form "x x 10 A?" can be asked within the log
space bound by simply transferring x from the input tape to the query tape, followed by
the appropriate number of zeros. Such queries suffice to determine individual bits of the
string A(X). However, these bits cannot be accumulated on the query tape, since it is
meanwhile being used for other queries, nor can they be stored on the work tape
without violating the space bound. Not knowing A(x), a logspace bounded machine
must therefore, for every sufficiently large x, err with probability nearly 1/2 in deciding
whether A(X) belongs to A.

More formally, let M be a logspace bounded deterministic oracle machine. A
string y of length n is queriable byM if there is an oracle X for which y is queried byMx

on input 0n. Initially, and just after each oracle query, the query tape is blank. SinceM is
logspace bounded, the total number of distinct machine states (instantaneous descrip-
tions) with a blank query tape is at most cn k for constants c and k depending on M but
independent of n. When M is started in any one of these states, the computation
proceeds deterministically, and independently of the oracle, until the next query (or
until halting if no further queries were made). Therefore at most Crl

k n-bit strings are
queriable.

On the other hand, as the oracle A is varied, CA(0") takes on any of 2" distinct
values, all equally likely. Let C {A" MA(on) queries CA(0")} be the class of oracles for
which SEA(0") is actually queried. C is a subclass of {A" CA(0n) is queriable}, and so C has
measure at most cnk/2, which approaches 0 for large n. Therefore 2, the class of
oracles for which MA(on) does not query CA(0"), has measure 1 in the limit.

If MA does not query SCA(0), then it is obviously in a poor position to decide
whether 0 is in BIGQUERYA, that is, whether A(0n) is in A. Consider the measure-
preserving transformation of oracles that removes from A if it is present., or adds to A if
it is absent, the string A(0"). This transformation maps C onto itself, and for every
oracle in changes the truth of 0 BIGQUERYA without changing the machine’s
answer MA(on). Therefore, for each machine M, the class of oracles on which MA(on)
errs in determining whether 0" belongs to BIGQUERY

g
has measure nearly 1/2 for large

n. By Lemma 1, with probability 1 BIGQUERY
g

is not in LOGSPACEA. [3

COROLLARY. If A is a random oracle, then PSPACEA# EXPTIMEA with
probability 1.

Proof. As above, using VERYBIGQUERyA-{x’A(OX)A} as the test
language. With probability 1, this test language is in EXPTIMEA but not in PSPACEA.
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3. Probabilistic polynomial time languages. This section investigates the rela-
tivized classes of languages computable in polynomial time by probabilistic oracle
machines [Gi]. Probabilistic machines are equipped with a coin toss mechanism that
enables them to make fresh random choices during a computation. This randomness
should be distinguished from the randomness of the oracle A, which is fixed before the
computations begin. (However, some of the theorems below are proved by using the
random oracle to simulate coin tosses, or vice versa.)

The language accepted by a probabilistic machineM with oracle A is defined as the
set of inputs for which the machine halts in an accepting state with probability greater
than 1/2, and the characteristic functionMA(x) takes on the value 1 or 0 according to this
majority result (if the acceptance probability is exactly 1/2, MA(x)=O). The error
probability of M on input x is defined as the fraction of coin toss sequences leading to
nonacceptance if M(x)= 1, or to acceptance if M(x)= 0. A probabilistic oracle
machine M is polynomial time bounded if there exists a polynomial p such that, for all
oracles A and inputs x, all computation paths halt within p(Ix I) steps.

Several classes of probabilistic polynomial time languages can be defined, depend-
ing on the allowed error probability.

DEFINITION. Let A be any oracle set.
1) ppA is the class of languages accepted by polynomial time bounded prob-

abilistic oracle machines with oracle A. Simon [Si] has shown that the same class results
if the definition, is strengthened to include only languages recognizable by machines
with error probability less than 1/2 on all inputs nonmembers as well as members.

2) BPPA is the class of languages accepted by polynomial time bounded prob-
abilistic oracle machines with error probability uniformly bounded below 1/2. A language
L is in BPPA iff there is a polynomial time bounded probabilistic oracle machineM and
a constant e < 1/2 such that L MA and the error probability of MA is less than e for all
inputs, members as well as nonmembers.

The difference between BPP and PP is that for languages in BPP the error
probability can be made uniformly as small as desired by repeating the probabilistic
computation a uniform number of times, whereas this is not generally possible for a
language in PP. In particular, if a language L is recognizable with error probability
uniformly below e <1/2, then performing the computation m times and taking the
majority decision (m odd) suffices to reduce the error probability uniformly below

(m-1)/2

() m-k kE e (l-e)
k=0

which approaches zero exponentially with increasing m (this follows from the fact that
for large m, the binomial distribution approximates a normal distribution of standard
deviation /me(1- e) and mean (1-e)m; and the fact that the area under the tail of
the normal curve, from- to a point x standard deviations below the mean, is bounded
above by constxexp (-x/2)[Fe]). Thus, BPP may be defined without loss of
generality as the set of languages accepted by polynomial time bounded probabilistic
oracle machines MA with error probability uniformly below, say, .

A well-known subclass of BPP is the class called R [AM], IRa] or VPP [Gi],
consisting of languages, such as the composite numbers, that are probabilistically
recognizable in polynomial time by one-sided Monte Carlo tests that never accept a
nonmember of the language. BPP includes such languages and their complements, as
well as languages (no natural examples are known) for which only two-sided Monte
Carlo tests exist.
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Another subclass of BPP, known as ZPP[Gi], may be defined as R f3 co-R, or
equivalently as the class of languages recognizable by probabilistic machines with zero
error probability and polynomial bounded average run time.

It is easily shown [Gi] that P
___
ZPP g BPP

___
PP

_
PSPACE and, perhaps more

surprisingly, that NP
___
PP. From the definitions, it is obvious that PP, BPP, and ZPP

are closed under complementation. All these relations continue to hold when the
classes are relativized to an arbitrary oracle. In this section, we show that, relative to a
random oracle A, the classes (NpA co-NPA) ppA pSPACEA are distinct with
probability 1, whereas }IPPA= pA with probability 1.

THEOREM 3. IfA is a random oracle, then ppA PSPACEA with probability 1.
Proof. Let ODDA {x: an odd number of strings of length Ixl are in A}. ODDA is

computable in linear space with oracle A, and so ODDA is in PSPACEA. On the other
hand, it is intuitively clear that a probabilistic algorithm to decide whether x is in ODDA

without querying all strings of length Ix must, for typical x and A, have an error
probability of exactly 1/2.

For any polynomial time bounded probabilistic oracle machine M, let e (x, A) be
the error probability of M with oracle A and input x. The computation path of MA on
input x is determined by the random Bernoulli sequence B of coin tosses. Therefore,
the error probability can be written as e(x, A)= tx{B:MAn(x) ODDA(x)}, where
MAn (x) is the output of MA(x) with coin toss sequence B and/x is Lebesgue measure
on the set of infinite coin toss sequences.

Choose an input x so large that no computation path ofMA(x) has time to query all
strings of length Ix I. Let C/ {A" e (x, A) < 1/2} and C- {A" e (x, A) > 1/2}. We shall show
that/x (C+) =/x (C-).

We define a measure-preserving transformation (A, B)-> (A’, B), in the product
space fl x fin of oracles A with Bernoulli sequences B, which maps C+ fin onto
C- fin and vice-versa. The transformation consists of adding to A if it is absent, or
removing from A if it is present, the first string of length Ix not queried in the
computation path Mn(x). The transformation thus always changes the value of
ODDA(x) while never changing the machine’s answerM (x). Hence, it maps C- fin
onto C+ x ll and vice versa. Therefore,/z (C+) =/x (C-).

Since C-_ C we conclude that/x(C+) =< 1/2. For all oracles not in C+, the machine
MA does not correctly decide whether x is in ODDA. Therefore, by Lemma 1, wih
probability 1, ODDA is not in ppA. 71

THEOREM 4. IfA is a random oracle, then NPA LI co-NPa ppa with probability
1.

Proof. By Theorem 1, RANGEA is in NpA-co-NPA and CORANGEA is in
co-NpA-NpA with probability 1. Therefore, with probability 1, the combined language
RANGEA join CORANGEA {0x: x RANGEA} U {lx: x CORANGEA} is in
neither NPA nor co-NPa but is in ppA because both NPA and co-NPA are subclasses
of ppA.

Remark. This same example establishes that with probability 1 NPA [_J co-NPA is
properly contained in the class A’’A of languages recognizable in polynomial time
relative to an oracle in NPA. A"’A is a member of the relativized Meyer-Stockmeyer
P-hierarchy [MS], [BGS] and [BS], a polynomially time bounded analogue of the
Kleene arithmetical hierarchy [Ro]. Like ppA, it includes NPA and is closed under
complementation. Whether relativization by a random oracle separates classes higher
than A2P’’ in the hierarchy is currently unknown, as is the relationship between A’’A and
pp’.
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THEOREM 5. If A is a random oracle, then pA= zppA= RA= Beea with prob-
ability 1.

Proof. It is sufficient to show that for every 8 > 0, the class of oracles A for which
pa # Bppa has measure less than 8. As noted earlier, BPPa may be defined without
loss of generality as the class of languages recognizable by probabilistic polynomial time
bounded oracle machines M/A with error probability uniformly bounded below 1/4 for all
inputs.

For any polynomial time bounded probabilistic oracle machine M/ we can
effectively construct another, Mr(i), that recognizes the same language as does Mi but
with smaller error probability; in fact, there is a recursive function f such that if the error
probability ei(x, A) ofM on input x is less than , then er(i)(x, A) decreases exponen-
tially with and Ix[, being bounded above by 8 2-(i+21x1+2). The machine Mr(i takes the
majority vote of c(i + 2Ix[+ 2) independent computations of M/a (x); the constant
depends on 8, but not on i, x or A.

Next, we construct a deterministic polynomial time bounded oracle machine
that operates as follows. With input x, it first computes pr(i)([xl), a polynomial upper
bound oh the length of queries that can be made by Mr(i). Such a bound always exists
because of the polynomial time bound on Mr(i). Then,

Amg(i) simulates the probabilistic
oracle machine computation A A

Mri (x). Each time the simulated computation Mri (x)
Arequires a coin toss, Mg(i)(x) obtains a bit by querying the oracle A about the least

string of length greater than Pri(Ixl) that has not yet been queried.
Let Eix be the class of oracles A for which M/A (x) has error probability less than
Abut Mg(i)(x) does not agree with the majority answer of M/A (x). Since the queries

Amade by Mg(i) (x) in simulating coin tosses are larger than any queries actually made by
Aany simulated probabilistic computation Mr(i (x), the measure of Eix does not exceed

Athe error probability of Mri (x). That is,

/z (E/x) <max {ef(i)(x, A)" ei(x, A) <1/4}< 8 2 -(i+21xl+2).

Taking the union over and x, we obtain

ix ix

(The convergence of this sum does not require that the events Eix be independent,
merely that they individually be of small measure; in general the Eix will be strongly
correlated, because the construction allows the same oracle bit to simulate a coin toss
for many different machines and inputs.) To conclude the proof, we observe that
pa BppA for every oracle A not in LI ix Eix, since for every such oracle, if language L is
accepted by M/a with error probability uniformly less than 1/4, then L is recognized by the
deterministic oracle machine Mg<i).

Remark. For each 8 in the above proof, the set of oracles N (]ix Eix is a
nowhere-dense set in the sense of Mehlhorn [Me], and the union over 8 of these sets is a
meager set of measure 1 on which PaBPPa. This raises the interesting possibility that
the set of all oracles for which pa Bppa may be sparse in one sense (Baire category
theory), but co-sparse in another, more intuitive sense (measure).

COROLLARY. If L is a non-oracle-dependent language which belongs to pa with
probability I for random A, then L belongs to the unrelativized class BPP. Conversely,
every language in BPP is in ea with probability 1.

Proof. The first part follows from the ability of a probabilistic algorithm without
oracle to simulate, by coin tossing, the answers a random oracle would give to a
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deterministic algorithm. The converse is a special case of the theorem just proved" BPP
is always a subclass of BPPA, which in turn is equal to 1A, with probability one.

Remark. The second part of this corollary, that any language in BPP is in 1A with
probability 1, generalizes to BPP Adleman’s result [Ad] that any language in R has
polynomial size circuits. A language L is in R iff every member of L is "witnessed" by at
least half the strings of appropriate (polynomial p(n)) size and no nonmember is
witnessed by any. Adleman showed that under these conditions, there exists for each n
a specific set of _-<n witnesses sufficient to witness all members of L smaller than n bits.
A fixed table of np(n) bits is thus enough to simulate the approximately 2nnp(n) bits
of witnesses that would be consulted if witnesses were generated probabilistically on
each input.

In the proof of Theorem 5, if the language L accepted by probabilistic machine Mi
is oracle-independent, belonging to BPP rather than merely to BPPA, then the bound
Pri(Ixl) on the size of queries by Mri can be taken to be zero. This means that the
deterministic machine Mgi uses the same initial bits of the random oracle, A (1), A (2),
A (3),. over and over again, to simulate the (in general different) coin toss sequences
that the machines M/and Mr(i) would generate on different inputs. If the number of coin
tosses made by the original probabilistic machine M/is bounded by a polynomial q(n) in
the input length, then the number made by the more accurate machine Mri is bounded
by a larger polynomial cnq(n), and the number of random oracle bits needed by the
deterministic machine to evaluate L(x) accurately for all inputs of length -<n is also
bounded by cnq(n). Thus, a fixed table of cnq(n) random bits suffices to compute,
without error, a finite set whose probabilistic computation, with errors, would use
approximately 2nq(n) coin toss bits.

4. P’t-immunity. Classes such as P and NP refer to worst case performance.
However, for RANGEA and the other oracle-dependent languages discussed here,
most members are as difficult to recognize as the worst case. A particularly strong form
of this property is called P-immunity: a set is P-immune if it has no infinite subset that is
in P. For typical oracles A, RANGEA is not itself pA_immune, because, for example, it
contains the pA-recognizable infinite subset {x: jA(X)= X}. However, Theorem 6,
proved later in this section, gives a set in NPA that is pA-immune and pA-co-
immune (i.e., its complement pA-immune) with probability 1. It is of course not known
whether NP contains a P-immune set in the absence of an oracle, for that would imply
P NP, nor is it known whether all oracles X that make pX Npx also imply that NPx

contains a pX-immune set.
Another interesting question is whether there is an oracle X for which a set can be

at once pX-immune and NpX-complete. (In order to define NpX-completeness, one
must of course specify a reducibility relation. In 6 it will be argued that, in order to be a
fully relativized concept, NpX-completeness ought to be defined in terms of a rela-
tivized reducibility such as P, X-Turing reducibility, in which U is reducible to V iff
U pX joln v, rather than the more customary P-Turing reducibility.) When X is the
empty set, or a random oracle, immunity and completeness appear to be incompatible.
Standard NP-complete sets such as SAT {f: the propositional formula f is satisfiable}
contain infinite easy subsets, and so are not P-immune. Moreover, Berman and
Hartmanis [BH] have shown that all known NP-complete sets are p-isomorphic, and
conjecture that all NP-complete sets are.

This conjecture would imply that no NP-complete set is P-immune, since p-
isomorphism preserves P-immunity. [Proof. Let sets U and V be p-isomorphic. Then,
by definition of p-isomorphism there is a 1:1 onto function f with both f and f-1
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computable in polynomial time such that x U iff f(x) V. Let U be not P-immune,
and let E P be an infinite easy subset of U. Then, f(E) is an infinite easy subset of V,
making V not P-immune. f(E) is infinite because f is 1" 1, and f(E) P because E P
and f-x is computable in polynomial time. This argument also applies in a relativized
form" for any A, if U and V are p-isomorphic, or even if they are only pA_ isomorphic,
i.e., interconvertible by a permutation A-computable in polynomial time, then U is
pA-immune iff V is pA-immune.]

The Berman-Hartmanis conjecture implies that complete sets cannot be p-sparse
(a p-sparse set being one whose number of members of length -<_n is bounded by a
polynomial in n). Immune sets, on the other hand, may be p-sparse or not; for typical
random oracles A the pA-immune set of Theorem 6 below is moderately dense, but its
intersection with a p-sparse set such as 0* is p-sparse, still pA-immune, and still in
NPA. (Recently Mahaney [Ma] has shown that, unless P NP, no NP-complete set can
be p-sparse).

Although pA-immune sets can be moderately dense, with probability 1 no
pA-immune set in NPA can be so dense that its complement is p-sparse. [Proof. LetA be
a typical random oracle, and let S be a co-p-sparse set accepted by the nondeterministic
machine NP. Since $ is co-p-sparse, there exist probabilistic polynomial time
algorithms (e.g., on input x, accept with probability 2-Ixl) that, with probability arbi-
trarily close to unity, when applied to the inputs 0, 1, 2,... in sequence, accept
infinitely many members of S but no nonmembers. Each such probabilistic algorithm
can be simulated by a deterministic polynomial time algorithm that queries A about
strings too long to have been queried by NPp on the same input. Thus, there is, for
typical A, a deterministic algorithm to accept an infinite subset of S, rendering $ not
pA-immune.]

Although pA_immune sets in NPA cannot be co-p-sparse, those not in NPa can be.
For example, the set {x" / <_- ]x lq (0) x} is co-p-sparse yet has no infinite A-r.e.
subset. Hence, it is certainly pA-immune.

We now show that with probability 1, NPA contains a pA-immune set.
THEOREM 6. IrA is a random oracle, the set RANGE3A {x" :ly A(Y) XXX} and

its complement are pA-immune with probability 1. Here, xxx denotes x thrice conca-
tenated.

Proof. RANGE3A is infinite and co-infinite, and indeed about as dense as
RANGEA, having on the average 2 (1 e -x) members each of length n. It is obviously
in NPA. However, it is P-A-immune because, intuitively, the expected cumulative
number of successful guesses, on input x, of a string y that would map into xxx,
approaches a finite limit as x - az. Note that RANGE3A is not NpA-complete, because
it contains answers to only a few of the questions needed to recognize, say, RANGEA in
polynomial time.

To prove that RANGE3A is pA-immune, it suffices to prove for each deter-
ministic polynomial-time algorithm M that C, the class of oracles A for which that
algorithm accepts an infinite subset of RANGE3A, is of measure zero.

Let M be applied to all inputs, A, 0, 1, 00,. in sequence and consider the finite
set of oracle strings first examined in the course of the computation on input w"

EXAM(A, w) {y" MA(w) examines y}-{y" =Iv < wMA(/)) examines y}.

Recall that a string y is said to be examined when any of the oracle strings affecting the
value of :A(Y) is queried. In general, we have regarded the oracle as having been chosen
probabilistically in the beginning, after which computations proceed deterministically
relative to it; however, when considering a fixed sequence of computations, it is
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permissible to regard :A(Y) as being decided probabilistically for each argument y at the
time that argument is first examined. Subsequent evaluations of :A(Y) must of course
return the same value.

In order to be useful evidence in favor of accepting a member of RANGE3A, an
examined string y must have A(Y)= XXX, for some x, and must have been examined
sufficiently early, ::lw<_xy EXAM(A, w), to influence the acceptance of x. The set of
strings for which this is so may be defined"

EVIDENCE(A) {y" y EXAM(A, w) and ::t,__>w:A(y) XXX}.

It is not difficult to see that, with probability 1, EVIDENCE(A) contains only finitely
many members. To prove this, note that the polynomial bound onM implies that, for all
but finitely many w, EXAM(A, w) contains fewer than 2Iwl/2 members. Furthermore,
since at the time each y in EXAM(A, w) is first examined, it has by definition not been
examined before, the event {A" ::ix _-> W:A(y)= XXX} is independent of all previously
examined parts of the oracle, and has probability 2-21wl or less, because of the
preponderance of 3n-bit strings not of the form xxx. Summing 2Iwl/ 2-21wl over all w,
one obtains a finite expected number of strings in EVIDENCE(A), and, by the
Borel-Cantelli lemma, this implies that {A" EVIDENCE(A) is infinite} 0.

We now define xk(A) as the kth input string accepted without evidence under
oracle A"

Xk(A) min {x’ x > Xk-l(A) and x MA and /yEVIDENCE(A)A(Y) : XXX}.

xk(A) may not always be defined (e.g., when MA, the language accepted by M with
oracle A, is finite, or when, with probability zero, EVIDENCE(A) is infinite); however,
when infinitely many inputs are accepted, then (with conditional probability 1) all but
finitely many of them are accepted without evidence.

The class C {A" M
g

is an infinite subset of RANGE3A}, which we seek to show
has measure zero, has the same measure as D C fq {A" EVIDENCE(A) is finite}. D, in
turn, can be viewed as the limit of the nested sequence of classes D1 D2 O3’
where

Dk {A" x(A) exists and [i<kXi(A) RANGE3A}.
D can have nonzero measure only if the ratio /z(Dg)//x(Dk_l) approaches unity as
k o. However, it is easy to see that this ratio has a lim sup not exceeding 1- e-0.632. This is the limiting probability that, at the stage when input x Xk (A) is accepted
without evidence, xxx, having no inverse image among the strings examined so far, does
have an inverse image among the nearly 231xl strings of length 31xl not examined so far.
Therefore,/z (D)=/x (C)= 0, and RANGE3A is pA-immune with probability 1.

The proof that RANGE3A is pA-co-immune with probability 1 proceeds
similarly. Here it is even clearer that if infinitely many members of the complement of
RANGE3A are accepted, all but finitely many of them must be accepted without
adequate evidence (no polynomial number of instances of y such that :A(Y) XXX

can increase above 1/e=0.368, the asymptotic fraction of oracles for which

Remark. The set RANGE2A={x :lyA(y)=XX} may also be pA-immune,
inasmuch as the obvious strategy for recognizing members of it yields only finitely
many. RANGE2A and RANGEA are pA-coimmune with probability 1.

5. Relativization of the P = ? NP fq co-NP question. It is unclear whether, relative
to a random oracle A, 1A is properly contained in the intersection of NPA and co-Nlg.
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If PA=NpA f’)co-NPA, then pA includes such non-oracle-dependent, seemingly-
difficult problems as factorization, known to be in NPf’)co-NP. By the corollary to
Theorem 5, this would imply that such problems are solvable probabilistically in the
sense of BPP, making them computationally tractable in a practical sense, contrary to
appearances.

On the other hand, we have not been able to find an oracle-dependent language in
NpA-pA whose complement is also in NpA-pA. The attempt to construct an oracle-
dependent language analogous, say, to FACTPROJ {(x, y): x _-> prime-factorization-
of(y)}, which encodes factorization, is frustrated by the existence of multiple inverse
images under the : function, in contrast with the uniqueness of factorization. Thus,
FACTPROJ is in both NP and co-NP, but the obvious A-dependent analogue,
XIPROJA {(x, y)’ :lx z and A(Z) y}, like RANGEA, is in NPA but not co-NPA.

If we replace the random function :A (X) by a function zr(x) which randomly maps
strings of each length onto one another in a 1" 1 fashion (i.e., a permutation), then it is
easy to show that, with probability 1, P= is properly contained in NP 71 co-NP=. The
probability measure is the product measure over n of an assignment of equal weight
1 / (2" !) to each permutation of n-bit strings. This separation can be demonstrated using
the oracle-dependent language PIPROJ’={(x, y): x -> r- (y )}, or, more simply,
HALFRANGE=={x ::ly.(Oy)-x}. Both PIPROJ and HALFRANGE are in
(NP f3 co-NP’)-P=.

By.a probf like that of Theorem 6, the oracle-dependent set HALFRANGE3
{x" :ly r(0y) xxx}, which belongs to NP f3 co-NP=, can be shown to be P=-immune
and P=-coimmune with probability 1.

All the theorems given earlier for complexity classes relativized to a random oracle
A hold for the analogous complexity classes relativized to a random 1" 1 function r. The
7r analogues of all but Theorem 3 are proved using the many-to-one random function
sC=(x) [the first [x bits of r(xx)], which has nearly the same statistics as A. The 7r

analogue of Theorem 3 can be proved using the language ODDPERM=={x" 7r

performs an odd permutation on strings of length Ix [}. For any string length n, odd and
even permutations are equiprobable, and they remain conditionally equiprobable as
long as two or more arguments of the permutation remain unexamined. On the other
hand, by exhaustively tracing all the permutation’s cycles, its parity can be determined
within a polynomial space bound. A random permutation can thus apparently substi-
tute for a random oracle.

On the other hand, we can think of no way to use a random oracle A to construct a
rapidly-evaluable random 1" 1 function zr, analogous to the construction of SeA from A;
for this reason, the 7r function is less intuitively appealing, seeming to have more
built-in structure, than the many-to-one function.

Oracles with even more complicated kinds of randomness can be imagined, and
indeed are apparently necessary to yield an easy proof, in the relativized setting, of
certain putative properties of the natural number system, viz., the ability to support
classical and public-key cryptography [DH]. A secure public-key cryptosystem, for
example, exists with probability 1 relative to the oracle A join B, where A is a random
oracle of the usual sort and B contains pairs of mutually-inverse random permutations
indexed by A; e.g., for each n-bit string x, if u and v denote respectively the first
and last halves of the 6n-bit string A(XXXXXX), then the functions B(uy)= uz and
B(vz) vy define mutually inverse random permutations between n-bit strings y and
z. Each user of such a system picks an x randomly and secretly, finds u and v from it
using A, and publishes u but not v. Other users then use B in conjunction with the
public key u to encrypt messages (y --> z) that only the original user, with private key v,



pA NpA WITH PROBABILITY 109

can economically decrypt (z y) (using keys of length 3n rather than n insures that,
despite the many-to-one nature of :A, all but finitely many of the keys will be unique).
The oracle A $oin B is a random analogue of the more complicated but recursive
cryptographic oracles of Brassard [Br]. As Brassard points out, it is difficult to find an
intuitively satisfactory asymptotic definition of cryptographic security. The relativized
cryptosystem described above is secure in the ordinary, non-asymptotic sense that for
typical message sizes (say n 100), standard cyptanalytic tasks such as chosen plaintext
attack could not be performed rapidly and reliably by a probabilistic query machine
with a small number of internal states.

6. Discussion, random oracle hypothesis. Without oracles, the hierarchy of
complexity classes includes the following known relations"

R_NP }LOGSPACE
_
P
_
ZPP .(R co-R)

___
BPP

_
PP

_
PSPACE.

I, co-R
___
co-NP

None of the inclusions is known to be proper, except that LOGSPACE PSPACE.
Relativization with respect to a random oracle A yields the following greatly sharpened
relations, with probability 1"

LOGSPACEA { , ppa PSPACEA.
RA= Bppa co-NpaJ

Relativization with respect to a random permutation function 7r, instead of the
random oracle A, yields all these results and, in addition, P NPf") co-NP with
probability 1, which we have been unable to decide for a simple random oracle.

In view of the large number of classes that are separated by random oracle
relativization, one might suppose that if there exists any oracle at all relative to which
two classes are distinct, they they will be distinct relative to a random oracle. That this is
not the case was shown by Hunt’s [Hu] construction of an oracle X for which
pX zppX, even though, by Theorem 5, these classes coincide with probability 1
relative to a random oracle. On the other hand, separations and identities that hold with
probability 1 relative to a random oracle can generally also be demonstrated relative to
particular recursive oracles.

Most of the random oracle results are obtained by using the oracle’s randomness to
force language recognition to depend on oracle queries, thereby in effect substituting
number and size of queries for the more conventional (but theoretically intractable)
dynamic computation resources of time and space. Thus, there is no immediate
prospect of proving similarly sharp results in the absence of an oracle. On the other
hand, random oracles by their very structurelessness appear more benign and less
likely to distort the relations among complexity classes than the oracles traditionally
used in complexity theory and recursive function theory, which are usually designed
expressly to help or frustrate some class of computations. This suggests that statements
that hold with probability 1 for languages relativized to a random oracle A are also true
in the unrelativized case A .

To formalize this conjecture, the universe of appropriate statements needs to be
defined. In particular, one wishes to include statements such as pA NpA, pA BppA,
and ::IS (S NPA and S is pa-immune), while excluding such incompletely relativized
statements as P pA, or "A is recursive."
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Since the languages of interest in relativized complexity theory are uniformly
A-recursive (i.e., recognizable by Turing machines that halt for all oracles and inputs),
they may be referred to by the G/Sdel numbers of their characteristic function, and a
k-adic relativized relation among such languages may be represented by a denumerable
set of k-tuples of G6del numbers of languages obeying the relation.

DEFINITION" A natural number is a uniform index if the function " is total and
zero-one valued for all oracles A.

In this definition, ,C/A, as usual, denotes the function computed by the ith Turing
machine with oracle A. Without loss of generality, these Turing machines may be taken
to be deterministic machines with no time or space bound, since nondeterminism,
probabilism, and uniform (i.e., oracle-independent) time or space bounds can be
incorporated implicitly by appropriate choice of the index i. A relativized language class
such as NPA (or equivalently the monadic relation L NPA) may now be formally
defined as an indexed collection of A-parameterized languages invariant under appro-
priate group operations.

DEFINITION. Let I be a set of uniform indices. The A-parameterized class of
languages CA {{x" q/A (X)= 1}’ i I} indexed by members of I is an acceptable rela-
tivized class iff"

1) for every oracle A, the class CA is invariant under pA-isomorphism [BH]" i.e., if

f is a 1 1 onto function such that both f and f-1 are computable in polynomial time with
oracle A, and if L is any language, then L CA iff f(L) cA;

2) the class CA is invariant under polynomial time Turing equivalences [La], ILLS]
of the oracle set; i.e., if B pA and A pB, then CA C.

Using this definition, it is not difficult to find index sets I for the language classes
pA, BppA, NpA, co_NpA, ppA, and PSPACEA. Other pA-invariant classes generable
in this manner are the class of finite languages and the class of languages with exactly k
members, k 0, 1, 2, etc. It is not clear, however, that more complicated classes such as
{S: S is Npa-complete} and {S: S NPA and S is pa-immune} can be generated by a
single set of indices. To handle such cases, higher order relativized relations appear
necessary.

DEFINITION: Let J be a set of ordered k-tuples of uniform indices. The A-
parameterized class R of k-tuples of languages indexed by the members of J is an
acceptable relativized relation iff:

1) for every oracle A, the relation RA is invariant under pa-isomorphism"
i.e., if f is a pa-isomorphism, and (L, M,..., Q) is a k-tuple of languages, then
(L, M,. , Q) R iff (f(L), f(M),..., f(Q)) RA;

2) RA is invariant under polynomial time Turing equivalences of the oracle set.
Among the important dyadic relations are language equality and complementation

(L M and L =/r) and reducibilities such as the relativized Turing reducibility _<A,
whose index set is the union over k of pairs (i, j) such that for all A, qA qg(j,A)joinA

A
where L(j, A) denotes the language whose characteristic function is q.. An important
refinement of <_A, obtained by restricting the index k to polynomial time bounded
machines, is the reducibility <_l’,A, which holds between two languages L andM iff they
are uniformly A-recursive and L is uniformly recognizable in polynomial time with
oracle M join A. Notice that simple Turing reducibility (or its polynomial refinement),
in which the oracle for the reduction is M rather than M join A, is not an acceptable
relativized relation, beca.use it is not invariant under pA_ isomorphism for typical A. In
the present context of full relativization, NpA-completeness should be taken to mean
completeness with respect to an invariant reducibility such as <_V,A.
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Intersection and union of languages may be expressed by acceptable triadic
relations, e.g.,

RA {(L, M, N)" L, M, and N are uniformly A-recursive and L M f3 N}.

The subset relation L_M, used for example in defining pA-immunity, may be
expressed by quantifying the above triadic relation as ::iN L=M f3 N, where the bound
variable N, like the free variables L and M, range over uniformly A-recursive
languages.

With the notion of acceptable relativized classes and relations thus delimited, it is
easy to define a broad class of statements to which the random oracle hypothesis may
reasonably be expected to apply.

DEFINITION. The A-parameterized statement A is an acceptable relativized
statement if it is definable in quantificational logic using

bound variables denoting uniformly A-recursive languages;
acceptable relativized relations on these variables;
the logical operators AND, OR and NOT.

The oracle set A and the relations’ index sets/, J, etc., appear only as parameters, and
cannot be acted on by any of the quantifiers or relations. Note that acceptable
relativized statements, by virtue of their invariance under P-Turing equivalence of the
oracle set, can only have probability 0 or 1. The random oracle hypothesis may now be
stated:

Random Oracle Hypothesis. Let sA b any acceptable relativized statement. The
corresponding unrelativized statement $ is true if and only if qA is true with
probability 1 when A is chosen randomly.

In particular, since. NPA pA and pA= BppA are acceptable statements that are
true with probability 1, the random oracle hypothesis would imply P BPP NP. We
believe that this hypothesis, or a similar but stronger one, captures a basic intuition of
the pseudorandomness of nature from which many apparently true complexity results
follow. The random oracle hypothesis could be strengthened by attempting to include
non A-recursive languages, by relaxing the invariances required of acceptable relations
(e.g., invariance under logspaceA-isomorphism rather than pA-isomorphism), and by
asserting further that results true relative to a random permutation are true absolutely.

The random oracle hypothesis does not deny all differences between no oracle and
a random oracle" clearly, machines equipped with a random oracle can recognize
nonrecursive sets, while unaided machines cannot. Similarly, there exist sets which are
immune absolutely, but, with probability 1, not immune relative to a random oracle
[Ba]. However, all known differences of this sort concern partially relativized proper-
ties; in a fully relativized setting the differences disappear, since (for example) the
nonrecursive sets recognized by random oracle machines are all A-recursive.

In view of the great amount of effort expended in unsuccessful attempts to prove
apparently true statements such as P NP, and NP PSPACE, it is possible that these
statements may be independent of other commonly accepted axioms of arithmetic and
set theory. The random oracle hypothesis is thus a plausible candidate for a new axiom.

The random oracle hypothesis would be proved if an easily computable substitute
for : (or A or ) could be found, e.g., a function 4’ that requires little time and space to
evaluate, but is pseudorandom in the sense that the inevitable correlations among 6(x)
for different x cannot be exploited without large amounts of time and space. The search
for this kind of pseudrorandomness is related to the search (also quite unsuccessful so
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far) for a provably almost-everywhere moderately-hard-to-compute function
[Rb], [GB].

It is not hard to invent polynomially computable functions that appear pseu-
dorandom; the difficulty arises in proving them so. For example, the function (x)=
[the third Ixl bits of cos (x)] appears to have the statistical properties of the : function,
and finding inverse images appears to require an exponential search, but no one knows
how to prove this.

[Remark. In defining it is necessary to skip an increasing number of early bits of
cos (x) because these early bits are more often 1 than zero, owing to the cosine’s
turning points at +1. The bias in the kth bit is of order 2-k/2; thus, the sequence of
(21xl+ 1)st bits of cos (x), for x 1,2,3,... should have a bias decreasing as x -1,
rendering it statistically indistinguishable from a random Bernoulli sequence. Other
more complicated deviations from pseudorandomness, e.g., those arising from the
nonuniform distribution of the difference between cos (x) and cos (x + 1), would
presumably be obliterated in the same way.]

By giving up the requirement that a function or set be easy to compute, one gains
the ability to prove that specific sets are pseudorandom, i.e., that they have the
properties of a generic random oracle with respect to bounded computation. A natural
but nonrecursive example would be an algorithmically random set such as the bit
sequence of Chaitin’s real number to [Ch], which expresses the halting probability of a
universal Turing machine with random input. The set {x the xth digit of to is a 1} is in
class A2 Of the arithmetical hierarchy, but passes all computable tests of randomness,
and could be substituted for the generic A in all the above theorems. Meyer and
McCreight [MM], using a priority construction, have exibited a recursive pseudoran-
dom set, recognizable in quadruple exponential space but appearing random with
respect to all test sets recognizable in double exponential space. Similar constructions
should yield a proof of a weak analogue of the random oracle hypothesis, viz., that if an
acceptable relativized statement A is true with probability 1 for random A, then it is
also true for some recursive A. The converse, of course, does not hold, since many
relativized statements [BGS] are known, to be true for some recursive oracles but false
for others.
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A NOTE ON THE COMPLEXITY OF GENERAL DOL MEMBERSHIP*

NElL D. JONESt AND SVEN SKYUM$

Abstract. In [Math. Systems Theory, 13 (1979), pp. 29-43], the authors obtained a number of upper and
lower bounds for various problems concerning L-systems. In most cases the bounds were rather close;
however, for general DOL membership the upper bound was , and the lower was deterministic log space. In
this note we show that membership can be decided deterministically in log2n space, which makes it very
unlikely that the problem is complete for . We also show that nonmembership is as hard as any problem
solvable in nondeterministic log n space. This is an improved lower bound unless DSPACE (log n)=
NSPACE (log n), which is also thought to be very unlikely.

Introduction. Let G (V, 6, a) be a DOL system (e.g., Herman and Rozenberg
[1]) so V is an alphabet, a V a letter from V, and 6’ V V* a mapping. Extending 6
to a homomorphism 6" V* V*, we define

L(G)=(Sr(a)lr=O,X, 2,...},

where 8 denotes the r-fold composition of 8 with itself.
In Sudborough [4] it was shown that for each G, L(G) is in DSPACE (log n) (our

notation is from Jones and Skyum [3]). Each set L(G) is a specific membership problem.
The general membership problem (MEMBERz) is" given a DOL system G and a
word v V*, to determine whether v eL(G). The problem was first addressed by
Vitanyi [5]. In Jones and Skyum [3] it was shown that this problem is in , and cannot be
solved deterministically in space less than log n. The purpose of this note is to obtain the
(apparently) tighter complexity bounds"

THEOREM. MEMBERL is in DSPACE (log2 n); and the nonmembership prob-
lem is hard for NSPACE (log n).

The lower bound is an improvement provided DSPACE(logn)C-
NSPACE (log n), which is widely believed. The new upper bound is not necessarily
stronger; however, some of the best researchers in the field have tried and failed to show
that f9

_
DSPACE (logz n), which provides circumstantial evidence that MEMBERL

is not complete for . The new bounds are close, since DSPACE (log2 n) is the smallest
deterministic complexity class known to contain NSPACE (log n). It would seem
difficult to show that MEMBER" is complete for any class in this complexity range,
since it seems quite unlikely that an NSPACE (log n) algorithm for nonmembership
exists, and no natural complete problems are known for any complexity class containing
NSPACE (log n) and contained in DSPACE (log2 n).

Proof of the lower bound. Define

AGAP {’IF is a digraph with node set {1, 2,. , n} for some
n, F has a path from 1 to n, and </" for each arc (i,/’) of F}.

This problem was shown complete for NSPACE (log n) in Jones [2]. We now show how
to construct from each digraph F a DOL system G=({1,..., n}, 8, 1) such that
h : L(G) if and only if is in AGAP1. Thus AGAP is reducible to nonmembership.
Consequently MEMBER is in DSPACE (log n) only if DSPACE (log n)=
NSPACE (log n).

Received by the editors September 15, 1978, and in revised form November 13, 1979.
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h is the empty string and ’ is a linear representation of F.
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To build G, first add the single arc (n, n) to F, obtaining F’. Now define 8(i)=
1" jk to hold just in case {/’1, ., jk} { (i,/’) is an arc of F’} and/’1 < j2 <" < !"k.
Clearly 8 may be computed deterministically in logarithmic space.

Letting Alph (w) equal the smallest alphabet A
_
V such that w A*, we see that

for r= 1, 2,..., Alph (sr(1)) is the set of nodes reachable from 1 by path of length
exactly r. Now F AGAP if and only if F’ has paths from 1 of arbitrary length if and only
if Alph (8r(1)) Q for all r if and only if h L(G).

Proof of the upper bound. For this we give an algorithm which operates in
DSPACE (log2 n). Our algorithm is similar to that of Jones and Skyum [3] (which in
turn is based on Vitanyi’s algorithm [5]), but has several refinements to make it operate
in log2 n space. Our notation is essentially that of Vitanyi.

Define b V to be mortal (b M) iff 8(b)= h for some s, and monorecursive
(b MR) iff 6 (b) M*bM* for some s > 0. The cycle CYCLE (b) of a monorecursive
letter b is the least s >0 such that 6(b)M*bM*. Let p be the number of letters in V,
and n the number of symbols required to write G and v.

It is easy to see that L(G) is finite iff 6 (a) contains only letters inM t_J MR, and that
if L(G) is infinite, then v L(G) iff v r(a) for some r<-p[v[. Our algorithm will have
the form "if L(G) infinite then test v 8r(a) for r 0, 1, ., p[v[ else test v L(G) by
another method". Thus we first show that membership in M and MR, and "v 8r(a)
for r<=p[vl can be determined in DSPACE (log2 n).

Now define the function NUMBER (b, c, s) for b, c v and s -> 0 as follows:

m if 8s (b) contains rn occurrences of c and m -< n,
NUMBER (b, S)

c otherwise.

Clearly b M iff NUMBER (b, c, p) 0 for all c V, and b MR iff there is a 0 < -< p
such that NUMBER (b, b, i)= 1 and if NUMBER (b, c, i)> 0 then c M tA {b}.

Using 0. =. 0=0, NUMBER can be computed by the following deter-
ministic algorithm, which clearly operates in space log2 (max (n, s))"

NUMBER (b, c, s)
it s 1 then the number of c’s in 8(b)

elseavNUMBER(b,d,). NUMBER (d, c, ).
Thus we can compute M, MR, and CYCLE (b) for all b V in log2 n space. Further,
L(G) is infinite iff NUMBER (a, b, p) > 0 for some bM MR.

In order to test "v 8r (a)," define the function, SYMBOL (b, s, i) for b V, s, -> 0
and Ilwll for w V* as follows"

/ # if 0 or > max (n, [SS(b)]), else
SYMBOL i) | c if c is the ith letter in 8(b),

/[w[ if [wl =< n,
c if not.

(b)ll can easily be computed in log (n) space using NUMBER if s is bounded by a
polynomial in n.

Now suppose c SYMBOL (b, s, i) for some i-< n, s >0, and 8(b)= blb:z’" bk.
Then 8(b) 8-(b)8-(b.). 8s-(bk), so c SYMBOL (br, s 1,/’) where

r--1
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and

r--1

m=l

Iterating, the path leading from a to b SYMBOL (a, s, i), i-<_ n in 8S(a) may be
traversed by the following algorithm:

b:=a;
forh:=s,s-1,...,2do
begin

let 8(b) bb2 bk
find r such that

Y II,h-(b.)ll<i <= IIh-(b.)ll;
m=l m=l

b :=b;
r--1

i:= i- E
m=l

end

Using SYMBOL it is easy to test "v 6(a) for some r<-p Ivl" in DSPACE (log2 n),
which finishes the test if L(G) is infinite.

However, in case L(G) is finite the smallest r such that v =8(a) may be
exponential in n. A different method is needed, and the key to this is the following
observation, due to Vitanyi [5].

Observation. If L(G) is finite, we can write 8(a) vav2a..’a,v,,+l, where
each a MR and vi M*. If v 8 r(a) for some r => 2p, then there exist a ,. ., a,
V* such that

a) o1o2 Om,

b) for each ]= 1,2,..., m, there is an r such that p<=r<2p and 6(ai) a,
c) r r, mod gcd (CYCLE (a), CYCLE (a)), for each pair ], ]’ with 1 ]’ < ] m.
Conversely, a), b) and c) together imply v 6(a) for some r. In addition, t t’ mod

CYCLE (a) implies ’(a) V*"(ai) V*; thus, if the only prefix of which
is derivable from a.

The algorithm testing a, b, and c uses a procedure FIND (i, q, k, r), 0 i, q, k, n:

procedure FIND (i, q, k, r); comment let v aa2 alol;
begin

b := "the ith monorecursive letter in 8P(a) if it exists,
otherwise reject;

k := CYCLE (b);
r := "the smallest p r < 2p such that (b) is a prefix

of a+a+2 all" if it exists, otherwise reject;
q := q + reject if q > I 1;

end

Before giving the complete algorithm we will see that FIND can be performed in
log2 n space.

First, to find the ith monorecursive letter in (a) in log2 n space, we can simply
modify NUMBER and SYMBOL to give the number of nonmortal letters or the ]th
nonmortal symbol. Note that [SP(a)[ may be exponential in n. r can be found by
computing ’(b), for t=p, p+l,... ,2p-l, one letter at a time, and comparing it
with v.
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The final algorithm for MEMBERL verifies condition a) and b) of the obser-
vation by calling FIND for 1, 2,.. , m, and verifies condition c) by calling FIND for
i’= 1, 2,..., i-1 in an inner loop for each value of i. The input is a DOL system
G (V, 6, a) and a word v e V*.

begin
it 6P(a) (Mt_J MR)* comment L(G) is infinite;
then accept if v 6r(a) for some r<-p Iv[ and reject if not;
else
begin comment L(G) is finite;

accept if v 6 r(a) for some r 2p;
q :=0;
m := "the number of monorecursive letters in v";

[if v 6 r(a) for some r > 2p then this equals the
number of monorecursive letters in 6P(a)]

fori:=l,2,...,mdo
begin

FIND (i, q, k, r);
q’:= 0;
for i’:= 1, 2, , i- 1 do
begin

FIND (i’, q’, k’, r’);
reject if r r’ mod GCD (k, k’)

end
end;
if q Iv[ then accept else reject;

end
end

There should be no difficulty in seeing that the algorithm operates in log2 n space.
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ON STRING PATTERN MATCHING:
A NEW MODEL WITH A POLYNOMIAL TIME ALGORITHM*

KEN-CHIH LIU-

Abstract. A polynomial time algorithm is presented for string pattern matching. Earley’s parsing
algorithm is adapted for context-free patterns and is extended to allow the augmentation of the immediate
assignment operation of SNOBOL4 and a powerful descriptive operator not previously implemented, set
complement. Canonical pattern definition systems are defined to describe patterns for which our algorithm
will perform pattern matching. The languages generated by such systems are called extended context-free
languages, and are shown to properly contain the family of context-free languages and all families of
k-intersection languages which have been shown to establish an infinite hierarchy between the family of
context-free languages and the family of context-sensitive languages. It is also shown that for an alphabet of
one character, the immediate assignment operator cannot be expressed in terms of the complement operator.
Some results on the closure properties and unsolvable problems for this new family are also shown. It is shown
that the worst-case time and space complexity of our algorithm is polynomial if the immediate assignment is
used, and that the time (space) complexity is cubic (cubic) if the complement but not the immediate
assignment operator is used, and is cubic (square) if neither operator is used. Our algorithm has no difficulty
with left-recursion or null string alternatives which are problems with the SNONOL4 pattern matching
algorithm.

Key words. SNOBOL4 patterns, pattern matching, pattern matching algorithms, context-free patterns,
context-free grammars, context-free parsing algorithm, formal languages, complexity

1. Introduction. String pattern matching is fundamentally a process of examining a
subject string for a substring which is one of set of strings specified by a pattern. It
provides a powerful facility for analyzing and manipulating strings of characters [8].
Especially, it plays a vital role in the programming language SNOBOL4 [11], which is
currently strongly predominant among string-manipulation languages and has many
different implementations. However, the inefficiency of the SNOBOL4 pattern match-
ing process has been widely recognized [2], [14], [16]. For example, Liu [14] shows that
for a pattern such as P=’B’I’A’ .P’c’[’A’ *P’D’, the SNOBOL4 pattern matching
algorithm takes at least exponential time. But the algorithm presented in this paper will
only take polynomial time for this pattern.

Also the SNOBOL4 patterns have been quoted as notoriously difficult to explain
and use [16], [18]. Each of these areas of difficulty relates to such things as two modes of
operation (quick/full scan), problems with left recursion, heuristics in the scan, etc.
Some difficulties are inherent with string patterns, but many result from the actions
taken by the pattern matching algorithm which are used to define the meaning of
patterns.

We take an alternative approach emphasizing that the meaning of patterns should
be independent of whatever matching algorithms might be employed. Recently,
Gimple [7] and Stewart [18] have discussed formal models for certain classes of string
patterns. Their models were directed at the pattern matching process, particularly as it
is affected by the combination of patterns under certain operations. These models do
not seem well suited to extension to the operations which we consider here. Based on
the analogy between context-free grammars and SNOBOL4 patterns [6], we use the
formal language approach and for the operation of interest we have developed a pattern
definition system together with a polynomial time pattern matching algorithm which is

* Received by the editors June 18, 1978, and in final revised form February 21, 1980.

" Sperry Univac, Roseville, Minnesota 55133. A talk based on an abbreviated version of this paper was
presented at the Sixth Annual ACM Symposium on Principles of Programming Languages. This wor!: was
supported by National Science Foundation grant DCR-75-05296, carried out at the University of Iowa, Iowa
City and revised at Sperry Univac.
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derived from Earley’s parsing algorithm [3]. The patterns to which the algorithm
applies include a wide subclass of the SNOBOL4 patterns and moreover permit a
powerful descriptive operator not previously implemented, set complement.

We describe the consideration of extending context-free patterns in 2. Section 3
presents the formal model upon which we base this work. Some formal language
properties of this new model is then discussed in 4. In 5, the informal description of
the new algorithm together with illustrative examples and the formal description are
given. A proof of correctness for this/algorithm is sketched in 6. Section 7 shows the
polynomial time and space complexity of the algorithm.

2. Context-free pattern and its extension. Fleck [6] defines a context-free pattern as
any SNOBOL4 pattern which can be constructed from only (1) alternation, conca-
tenation, unevaluated expression and assignment operators, (2) the primitive pattern
NULL, and (3) string constant and simple variables. Then he shows that for each
context-free pattern there is an isomorphic context-free grammar (and vice versa)
which defines exactly the same collection of strings.

Since the context-free languages are not closed under two set operations,
complementation and intersection, we consider the augmentation of context-free
patterns by these two operators for the purpose of the substantial increase in the
expressive power.

Example 1. Let ,E {A, B, C} be the alphabet we are concerned with.
(a) Context-free patterns E and F;

E=*E’C’I*Q’C’,
Q ’AB’I’A’ ,Q ’B’,

F ’A’ ,F ’A’, T,

T ’BC’I’B’ T’C’.

Patterns E and F represent the context-free languages

L(E) {a’BnC"[m, n >- 1}

and

L(F) {AmB"C"lm, n - 1}

respectively.
(b) Extended context-free pattern M augmented by the intersection operator.

The set notation f3 is used here for this operator.

M *E V) *F.

Its informal interpretation is that a string matches M if and only if it matches
both pattern E and pattern F. Pattern M represents L(M)=L(E)L(F)=
{AnB"C]n >-1}, which is not context-free.

(c) Extended context-free patterns P and R with the augmentation of the
complement operator, 9.

P -(*R).

Informally, this means that a string matches P if and only if it does not match pattern R.

R (*E)i (*F).
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The informal interpretation is that a string matches R if and only if it does not match
pattern E or it does not match pattern F.

Patterns E and -F represent the languages L(-E) Y,*-L(E) and L(-F)
E*-L(F), respectively. Pattern R represents L(R)= L(-E)t_J L(F) and pattern P
represents the language

L(P) L(R

E*-L(R)

E* ((E* L(E)) 13 (Y,* L(F)))

L(E) f’) L(F)

(By De Morgan’s Law)

={AnBnCnln >__l},

which is not context-free.
The immediate value assignment is signified by the binary operator $ in SNOBOL4

[11]. A careful definition of the semantics of this operation is difficult and will be
presented in the next section. Informally, P $ I causes the substring matched by the
pattern P to be assigned immediately to the variable L This new value may be
referenced later by mention of the variable. The augmentation of this operation allows
the definition of sets which are not context-free.

Example 2. Extended context-free pattern T augmented by the immediate
assignment operator, $.

T=’A’](,TSI),L

Pattern T represents the language L(T)= {Aan In => O} which is not context-free.

3. Canonical pattern definition systems. We now define canonical pattern
definition systems which are an extension of the context-free patterns. Informally, in
SNOBOL4 terms, we consider patterns which can be defined by means of the following
operations" assignment, alternation, concatenation, immediate value assignment, and
complementation (written as -). Notice that this set operator, complement, is quite
different from the not operator in some implementations (e.g., [12]). The set operator,
union, is implicitly included in these systems. Also the set operator, intersection, can be
expressed by these systems using two levels of complement operator as previously
described.

DEFINITION 1. Let C be a finite nonempty set of characters, PV a finite nonempty
set of pattern variables, IA V a finite ordered set of immediate assignment variables,
IALM a finite ordered set of immediate assignment left markers, IARM a finite
ordered set of immediate assignment right markers, and - a symbol for complemen-
tation. Let

T C PV IAV IALM IARM t_J {-q }

and

Z=CUPVUIAV.

Assume that IIA VI IIALMI IIARMI, and that C, PV, IA V, IALM, fARM and {- }
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are mutually disjoint. A word H over T is a canonical pattern expression over Z if
(1) H is one of the following primitive pattern elements:

(a) 0 (null string)
(b) u C+

(c) R PV
(d) IelAV
(e) --nR, where R PV,

or
(2) H is one of the following forms:

(a) uv (concatenation)
(b) (iu)i (immediate assignment to Ii IA V),

where u and v are canonical pattern expressions over Z, (i IALM, and )i IARM.
A canonical pattern definition system (CPDS) is a 8-tuple, G =(C, PV, IAV,

IALM, IARM, P, Q, IV), where
(1) Q PV, the "start" variable,
(2) P is a finite set of production rules of the form R H with R PV, and H a

canonical pattern expression over Z, and
(3) IV is a finite ordered set of initial values (from C*) of the corresponding

immediate assignment variables in the ordered set IA V; most often we will take IV to
consist of a single string and then write IV X_livl/l X-lXo, where IIv[ denotes the
length of that string and each xi C, -IIvl / <- <= O, and write IV 0 if IIvl- o. if
IAV IALM IARM then for most instances we still write IV 0 to indicate
that IV is an empty set.

Note that in SNOBOL4 terms the unevaluated expression operator would be
required for those pattern variables on the right side of production rules.

DEFINrrION 2. A labelled directed graph is a triple X (Y, F, B), where Y is a

finite, nonempty set of vertices, F a set of edges which are ordered triples of the form
(v, w, b) with v, w Y and b B*, and B is an alphabet, and nonnull strings over B are
used as labels. We say that the edges of the fom (v, w, 0) are not labelled, and those of
the form (v, w, b) with b 0 are labelled by b. A path in a labelled directed graph is a
sequence of edges of the form (/)1, /92, ba), (02/)3, b2), ", (/)n-a, tan, bn-1). We say that
the path is from va to vn and is of length n 1. We also say that the path is simple if all vi’s
on the path, except possible V and v,, are distinct. A cycle is a simple path of length at
least 1 which begins and ends at the same vertex.

DEFINITION 3. Given a CPDS, G (C, PV, IA V, IALM, IARM, P, Q, IV), we
define the characteristic graph of G as a labelled directed graph X (PV, F, {-}),
where PV is the set of vertices and F the set of possible labelled edges, and if U, R PV,
then

(1) the ordered triple (U, R, O)F (is not labelled) if ::IU uRvP, for some u,
v r*,

(2) the ordered triple (U, R,-)sF (is labelled by -) if U--> u-Rv P, for
some u, v T*. The graph X (PV, F, {-}) is called -a-acyclic if each cycle in X
contains no edges labelled by

We consider the following two basic assumptions for the CPDS’s we are going to
deal with.

BA1. IAV= {I}, IALM= {(}, and IARM= {)}; i.e., [IA VI=IIALMI=IIARMI
k, where k 1. This is only to ease the notations used in definitions and illustrations,
and the proof of the correctness of the algorithm. But the algorithm can be slightly
modified to work correctly for any positive value of k.
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BA2. The characteristic graph of the CPDS is --n-acyclic. This limits the scope of
CPDS’s which can be handled by the algorithm (but otherwise meaningful definitions
are elusive).

The reason for making this assumption BA2 is illustrated by the problems raised in
the following two examples in which the recursion in the pattern definitions involves
complement (i.e., there exists a cycle which contains an edge labelled by --a).

Firstly, a usual definition scheme for set solution of a system of equations is
summarized from Fleck [6]. After defining the pattern expressions and the languages
represented, he defines a pattern expression system over a character set C and a set of
pattern variables PV {R 1,"’", R,,} as a collection of assignments

Ri=ni, l<-i<--m,
where each H, 1 <_-i <-m, is a pattern expression over C and PV. Then he defines
L(R) L(H), 1 <-_i<-m, and L(R),..., L(R,) to be the collection of smallest sets
which satisfy this system of equations.

Example 3. Given a CPDS G {C, PV, IA V, IALM, IARM, P, O, IV 0}, where
ev={o},

IVA IALM IARM
P= {Q A, O -nOA}.

The characteristic graph of G has a -cycle and is given as follows.

Using the definition scheme similar to that used in Fleck [6] which we just
summarized for the languages represented by patterns, we discuss this example by the
following two cases"

Case 1. Ifthe alphabet C {A}, then L(Q) {A2+ln _->0}. Notice that L(Q) is the
unique smallest set which satisfies the following equation

($$) X {A} U (-X){A}.
We sketch the proof of this statement as follows. We note without proof that L(Q) is a
solution to ($$). Let S be a proper subset of L(Q). Then there exists a nonnegative
integer m such that A2"/1 eL(Q)-& Now A2m/2=A2"/IA (-nS){A} implies that
A2"/: e {A} U (-nS){A}. But A:’/: : L(Q) implies that A2"+2 S. Therefore, S does
not satisfy ($$). Namely, L(Q) is a smallest set which satisfies ($$). We claim that L(Q)
is a subset of any set which satisfies ($$). Let T be a set which satisfies ($$). Clearly,
A T and A:= AA et T. By induction on n, we can easily prove that A2n T and
A2n/le T for any nonnegative integers n. Therefore, L(Q) is a subset of T. This
completes the sketch of the proof.

Case 2. If the alphabet C {A, B}, then the above equation does not tiave a unique
solution. Both X1 and X2 are smallest sets which satisfy the equation, where

Xa={AZ"+aln >=OIU{wBAZ"[w C*, n >-_ 1},
and

XzU {A:"+ln -OIU{wBAZ"+aIw C*, n e 1}.

Example 4. Given a CPDS G {C, PV, IA V, IALM, IARM, P, O, IV 0} where

/’v={o}, IA V IALM IARM

P {Q Q}, C any set of characters.
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The characteristic graph of G has a --cycle is given as follows.

There does not exist any (smallest) set which satisfies the equation X X.
DEFINITION 4. For a characteristic graph X (Y, F, {-}) of a given CPDS, we

associate with each R PV a weight W(R) which is defined as follows.
Let R PV.
(1) p(R) denotes a noncyclic simple path p starting from R;
(2) W(p(R)) denotes the weight of the noncyclic simple path p(R) and is defined

as the number of labelled edges along p(R);
(3) S(R) denotes the set of all noncyclic simple paths starting from R (which is

clearly finite);
(4) W(R) denotes the weight of RPV and is defined as W(R)=

max { W(p(R))[p (R) S(R)}.
For those CPDS’s which satisfy our basic assumptions, we shall define the languages

they generate. To do so, we need the definitions of extended "direct derivation" and
"derivation" which are defined below for systems with one immediate assignment
variable. For the general case that there is more than one immediate assignment
variable, the definitions are similar to those given.

DEFINITION 5. Let G (C, PV, IAV {I}, IALM {(}, IARM {)}, P, Q, IV)
be a CPDS. Let T C U PV LI {L (,), - }, and let SK the set of stacks of depth up to D
(assuming that is the maximum nesting level occurring for the immediate assignment
markers), elements in which are nonnegative integers.

For each i, 0 < < W(Q) the relation - called extended direct derivation at the

level i, over T* x SK x C* is defined as follows" Let x, y, z C*, A PV, w, v T*,
K SK. Then

D1. (xAv, K, y)(xwv, K, y)if:l(Aw)P;

D2. (x(v, K, y) .(xv, K l, y) where Ixl;
D3. (x)v, K l, y) . (xv, K, z) where

J the null string if Ixl,
Z

at+lat+2 "atxt if x axa2

D4. (xlv, K, y) .(xyv, K, y);

D5. (x -Av, K, y) (xwv,i K, y) if (xA, K, y)/_ (xw, K, z) for all z, where i
is defined below.

DEFINITION 6. For each i, 0 <= <= W(Q), the relation --?., called extended derivation

at the level i, over T* x SK C* is defined as follows. Let B, B’, B" T* SK C*.,
B B’ if and only if

(1) B B’, or ,
(2) ::IB" such that B - B" and B" -.-.-B’.
In the above definitions, (Q, O, IV) will be the start symbol of the extended

derivations at the level W(Q). Extended sentential forms at the level i, 0 <-i <= W(Q),
are of the form (v, K, y) where v is a (conventional) sentential form, i.e., a string of
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grammar symbols. K is a stack of nonnegative integers, separated by "", defining the
positions of previously-produced "left markers" in v, and y represents the instan-
taneous "contents" of the immediate assignment variable I. If W(Q)- 0, then only
rules D1 through D4 may be applied in any extended derivation at the level 0. If
W(Q)>0, then D5 may also be applied in an extended direct derivation at the
level W(Q). In this case, a complemented pattern variable derives a substring at the
level W(Q) with the condition that, at the level W(Q)- 1, the pattern variable cannot
derive that substring. And the pattern variable will be used in the first component of the
new start symbol for the extended derivations at the level W(Q)-1. In general, for
0 < <= W(Q) if D5 is applied at the level i, then it depends upon extended derivations at
the level i-1. In other words, rule D5 may be applied W(Q) times to determine an
extended direct derivation at the level W(Q). In Definition 5, it can also be the case that
IA V IALM IARM , namely, no immediate assignment. This simply indicates
that rules D2, D3 and D4 may not be applied.

DEFINITION 7. If G (C, PV, IA V, IALM, IARM, P, Q, IV) is a CPDS then the
subset of C*

L(G) {x C*I(Q, O, IV) (x, O, y) for some y C* and W(Q)}.

is called an extended context-free (ecf) language. L(G) is said to be generated by the
CPDS, or represented by the pattern variable Q. A language L is called extended
context-free if there exists a CPDS G such that L L(G). L(G) consists of all strings
which match Q in their entirety (in SNOBOL4 terms, pattern matching would succeed
for POS(0) Q RPOS(0)).

Note that CPDS’s can actually generate exactly the context-free languages if
IA V IALM IARM Q and the --q symbol does not appear on the right-hand side
of any production rules. Namely, a context-free language is extended context-free.

Let us look at the examples given in 2, and see how the SNOBOL4 or
SNOBOL4-1ike definitions for patterns are represented by CPDS’s. Also the appli-
cations of direct derivation rules are illustrated in the following examples.

Example 5. In Example 1, we have defined the patterns M and P. Now we define
a CPDS G such that L(G) L(M) L(P). Let G (CC, PV, IA V, IALM, IARM, PP,
P, IV) where CC {A, B, C}, PV {E, F, P, R, (2, T}, IAV IALM IARM ,
IV 0, and

PP {E EC, E - QC, 0 AB, 0 AOB,

F AF, F AT, T- BC, T o BTC,

The characteristic graph of G is shown below. Note that W(P)--2, W(R)-1,
W(E) W(F)= W(Q)= W(T) 0.
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A derivation is shown below to illustrate that ABC L(G).

(P, O, O)-(-R, O, O)
2

(D 1 is applied and (P - - R) PP is used)- (ABC, O, O) (D5 is applied)
2

since I(R, 0, 0)--(ABC, O, z) for all z.

This results from the following two cases"

(1)

(R, O, O)-(-E, O, O) (D 1 is applied and (R - E) PP is used).

But (E, 0, 0) - (QC, O, O)
o

(D 1 is applied and (E QC) PP is used)

(ABC, O, O)
o

(D 1 is applied and (Q - AB) PP is used).

This implies that [ (- E, 0, 0) - (ABC, 0, 0). Also it is clear that [( E, 0, 0)
(ABC, O, z) for any z.

(2)

(R, O, O}-(-F, O, O)

Now (F, O, O) - (AF, O, O)
o

(ABC, O, O)
o

(D 1 is applied and (R --) F) PP is used).

(D 1 is applied and (F --) AF) PP is used)

(D 1 is applied and (F - BC) PP is used).

This implies that (-F, O, O)-(ABC, O, 0). And it is clear that (-F, O, O)
{ABC, O, z} for any z.

Since there are only two production rules in PP with R on the left-hand side, we

conclude that (R, O, 0)*- (ABC, O, z} for all z. Therefore, (P, 0, 0)-- (ABC, O, 0};
2

namely, ABC L(G). Note that L(G)= {AB’Cnln >-O} is not context-free.

Example 6. Let us consider the pattern T defined in Example 2. A CPDS G is
defined as follows such that L(G) L(T). Let G (C, PV, IA V, IALM, IARM, P,
T, IV) where C {A}, PV {T}, IAV {I}, IALM {(}, IARM {)}, IV 0 and
P {T-A, T- (T)I}. The characteristic graph of G is shown below. Note that
W(T)- O.
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A derivation is given below to illustrate that AAAA L(G).

(T,O,O) (The initial value of I is IV O)

((T)I, O, O)
o

-o (TII, $0, O)
o- ((T)I)I, ,0, O)
o

-o (T)I)I, ,050, O)
o

(A)I)I, $050, O)
o- (AI)L ,0, A)
o

(AA)I, $0, A)
o

(AAI, O, AA)
o

(AAAA, O, AA)
o

(D 1 is applied and (T (T)I) P is used.)

(D2 is applied.)

(D 1 is applied and (T - (T)I) P is used.)

(D2 is applied.)

(D 1 is applied and (T A) P is used.)

(D3 is applied and the new value of I is A.)

(D4 is applied.)

(D3 is applied and the new value of I is AA.)

(D4 is applied.)

Therefore, (T, 0, 0) (AAAA, O, AA). Namely, AAAA L(G). Note that L(G)
o

{A2" In _-> 0} is not context-free.

4. Formal language properties. We shall, in this section, discuss the formal
language properties of this new family of extended context-free languages. The
properties which have been learned previously are first summarized as follows:

(1) The family of context-free languages is contained in the family of extended
context-free languages, since we have shown, in the last section, that the canonical
pattern definition systems can actually generate all context-free languages if the symbol
-, the complement operator, is not used and if IAV IALM IARM f.

(2) The canonical pattern definition systems do generate languages which are not
context-free (see Example 5 and Example 6).

(3) The family of extended context-free languages contains all families of k-
intersection languages which Liu and Weiner 15] showed establish an infinite hierarchy
between the family of context-free languages and the family of context-sensitive
languages, since, as will be proved in Theorem 2, the family of extended context-free
languages is closed under intersection. Note that a k-intersection language is a language
which is expressible as an intersection of k context-free languages.

Now we might ask the question: Are the immediate assignment operator and the
complement operator independent? Although the answer seems to be positive intui-
tively, we only obtain a partial result on this question. We shall show that, for an
alphabet of one character, the immediate assignment operator cannot be expressed in
terms of the complement operator. Before doing so, we define the following terms.

DEFINITION 8. An IA-ecf language (for Immediate Assignment) is a language
which is generated by a CPDS in which the symbol does not appear in any of the
production rules. A complement-ecf language is a language which is generated by a
CPDS in which there exists no immediate assignment variables.

THEOREM 1. A complement-ecf language over an alphabet of one character is
regular.

Proof. Let L be a complement-ecf language over an alphabet C of one character.
Let G (C, PV, IA V, IALM, IARM, P, Q, IV) be a CPDS which generates L, where
IAV IALM IARM IV . For each k <= W(Q), let GkR (C, PV’, , ,, P’,
R, ) where R PV’, W(R)- k, PV’ consists of pattern variables in PV with weight
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<=k, and P’ consists of production rules in P such that the pattern variables on their
left-hand side are of weight <-k. We claim that L(G) is regular for each k <= W(O). We
shall prove this claim by induction on k. If k -O, then P’ consists of only context-free
production rules. Therefore, L(G) is context-free over C and is regular since any
context-free language over one character is regular. Now suppose that L(GR) is regular
for all <= m.

To prove that L(G"+1
R is regular, we consider a CPDS

G’= (C 1.3 S, PV’, , ,, P", R, ),

where
(1) S {bTl:l - T on the right-hand side of some production rules, and W(T) <= m}

is a set of new abstract symbols,
(2) P" consist of all production rules of P with each occurrence of T with

W(T) <= m replaced by bT.
It is clear that L(G’) is a context-free language over C LI S. Let f be a substitution

such that f(w) {w}, for all w C, and f(bT) C*--L(GWT(T)), for all bT S. Clearly,
f(L(G’)) L(G’+1 ). By the induction hypothesis, L(GT)) is regular. Since regular
sets are closed under complement, f(bT) C*-L(G(T)) is regular and is therefore
context-free for all bT S. Since context-free languages are closed under substitution,

m+l m+lL(GR )=f(L(G’)) is context-free. Thus L(GR is regular, since it is a context-free
language over C of one character. The claim is therefore proved. Now in particular,

w(o)when R O and k W(O), L(G() is regular. Since it is clear that G Go
L(G) L(G() is regular. Q.E.D.

COROLLARY 1.1. There exists an IA-ecf language which is not a complement-ecf
language.

Proofi As illustrated in Example 6, L={A:"In->_0} is an IA-ecf language. But
{A:"ln --> 0} is not regular. Hence L is not a complement-ecf language. O.E.D.

Now we shall study the closure properties of this family of extended context-free
languages under various operations. For definitions of the language operations such as
union, complement, intersection, concatenation, closure, substitution, homomorphism,
the reader can consult one of the standard references in the area of formal languages
such as Hopcroft and Ullman [13] and Salomma [17].

THEOREM 2. The family of extended context-free languages is closed under the
following operations" (1) union, (2) concatenation, (3) closure, (4) complement, and (5)
intersection.

Proof. We omit the proofs for (1), (2) and (3), since they are similar to the proof for
the family of context-free languages (see [17]). To prove (4) and (5), we assume that
L(G) and L(G’) are generated by the canonical pattern definition systems G=
(C, PV, IA V, IALM, IARM, P, Q, IV) and G’ (C’, PV’, IA V’, IALM’, IARM’, P’,
O’, IV’), respectively. We may assume that C, C’, PV, PV’, IA V, IA V’, IALM,
IALM’, IARM, IARM’ and {-} are mutually disjoint (since we can always rename
elements in certain sets) except that C and C’ may not be disjoint.

The language C*-L(G) is generated by the CPDS GI=(C, PV{R},IAV,
IALM, IARM, P (.J {R - O}, R, IV), where R is a new pattern variable.

The language L(G)fqL(G’) is generated by the CPDS G2=(Ct.JC’,PVt.J
PV {T, S} IA V IAV IALM t.J IALM IARM t.J IARM P (.J P’ {T - S
S - (2, S - O’ }, T, IV (A IV’), where T and S are new pattern variables.

Notice that" (1) If the characteristic graphs of G and G’ are --acyclic so are those
of G1 and G2. (2) W(R)= W(O)+ 1 and W(T)=2+the maximum of W(Q) and
W(Q’). Q.E.D.
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COROLLARY 2.1. The Boolean closure of context-free languages is contained in the
family of extended context-free languages.

THEOREM 3. The family of extended context-free languages is not closed under
homomorphism and therefore not closed under substitution.

Proof. It is known that a recursive enumerable set can be obtained as a
homomorphic image of the intersection of two context-free languages ([9, Lemma
4.7.1, p. 125]). If the family of extended context-free languages is closed under
homorphism, then recursive enumerable sets are all in the family of extended
context-free languages. This contradicts the solvability of the membership problem for
any CPDS. Q.E.D.

The above theorem actually tells us that the family of extended context-free
languages is not a full AFL, since a full AFL is closed under arbitrary homomorphism.
The reader is advised to consult Ginsburg et al. [10], Salomma [17] or Ginsburg [9] for
the definition of full AFL.

We now present the solvable and the unsolvable problems of canonical pattern
definition systems which generate extended context-free languages. A problem is
solvable if and only if there is an algorithm which outputs the answer for any given
instance of the problem. The reader is assumed to be familiar with the unsolvability
results of the context-free grammars. Standard references are Hopcroft and Ullman
13 and Salomma 17].

Since our pattern matching algorithm will determine whether a string is in the
language generated by a CPDS, the membership problem for any CPDS is solvable.

THEOREM 4. Each of the following problems is unsolvable for canonical pattern
definition systems G and G’:

(I) Is L(G) =?
(2) Is L(G) finite?
(3) Is L(G) infinite ?
(4) Is L(G)= C*?
(5) Is L(G) L(G’)?
(6) Is L(G) a subset of L(G’)?

(7) Is L(G) f) L(G’) (?
(8) Is L(G) f) L(G’) finite ?
(9) ls L(G)f-)L(G’) infinite?

(10) Does L(G) R, R a specific regular set?
(11) Is L(G) regular?

Proof. Any of the problems (4)-(11) is unsolvable because of the following two
reasons:

(1) The family of context-free grammars is a subset of this family of CPDS’s; and
(2) Any of the problems (4)-(11) is unsolvable for the family of context-free

grammars. Since the family of extended context-free languages is (effectively) closed
under intersection, the unsolvability of problems (7), (8), and (9) for context-free
grammars implies the unsolvability of problems (1), (2) and (3) for CPDS’s, respec-
tively. Q.E.D.

Notice that the problems (1), (2), and (3) are solvable for context-free grammars,
but are unsolvable for CPDS’s. Problems of (4)-(11) are unsolvable for both context-
free grammars and CPDS’s.

5. The pattern matching algorithm. Since many patterns can be specified in terms
of a general context-free grammar with some extensions, we adapt Earley’s parsing
algorithm [3] for pattern matching for context-free patterns, and extend it to handle the
additional features previously mentioned.

We shall first explain our pattern matching algorithm informally. Note that
throughout this section we treat only the case of systems with one immediate assign-
ment variable. Treatment of the cases where there are more than one such variable is
essentially the same, but the notation for the general case in the definitions and proof
of correctness is much more cumbersome.
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Given a CPDS G (C, PV, {I}, {(}, {)}, P, Q, IV), we number the production rules
in P arbitrarily 1, 2,. , d, where each production rule has the form

D. Cpl Cp2 Cpnp, l<_p<_d,

with np indicating the number of symbols on the right-hand side of the pth production
rule. We add a 0th production rule Do Q, where Q PV is the starting variable.

Let x 1, x2, , xn be a subject string. The pattern matching algorithm is to scan the
subject string from left to right. When the algorithm scans each character xi it constructs
a set of states Si and a set of complement states Ni to represent the current condition of
the matching (recognition) process, where a state and complement state are defined as
follows. Note that for the simplification of our description, we will write IV-
X-IIVI+I X-IXO and use position numbers ---IIVI and r- 0 to represent it.

DEFINITION 9. A state is a 7-tuple (p, ], f, l, r, K, V), which will also be written in
this section as a 6-tuple

(D(p)-Cpl Cpi * Cp(i+a) Cpn(p), [, 1, r, K, V)

with the dot (a new symbol not in T) symbolically representing j, where

Dp if 0 =,p <_- d,
D(p)=

I ifp=-l.

n(p) { np if0=<p=<d,

r-l ifp =-1.

p" (1) if 0 <_-p <_-d, then it indicates that a substring of the subject string that we
are currently scanning is derived from the right-hand side of the pth
production rule.

(2) if p =-1, then it indicates that a substring of the subject string that is
currently being scanned is derived from the current value of the immediate
assignment variable I. What is intended here is a "constructed" production
rule I Xl+l Xr.

]: (O<-]<=n(p))indicatesthataninitialportionofthesubstringhasbeenderived
from the leftmost ] symbols on the right-hand side of the pth production rule, or the
"constructed" production rule.

[: (0_-<f<_-n) indicates that the substring that the right-hand side of the pth
production rule can possibly derive starts from the [+ lth character of the subject
string.

l, r: (l <-r -< n) and r, used as left and right position numbers, together specify the
current value of the immediate assignment variable I which is a string Xl+l Xr and is
to be derived from I when such derivations occur. Initially, -]IVI and r 0 specify
IV, which is either 0 or x-lWl+l X-lXo, as the current value of L When a new value is
assigned to/, and r will be updated, in which case the current value of I is the substring
Xl+ xr of the subject string where 0 -<_ _-< r -< n.

K" is a push-down stack of nonnegative integers whose maximum depth is
the maximum depth of nesting of immediate assignments to I and whose elements
are bounded by n. a $a2’ $ ak is a notation for a stack with a at its bottom and ak
on its top.

V: (0 <-- V <-_ W(Q)) represents a bound on the weight of certain pattern variables.
Note that in those states with p =-1, the K and V components can be ignored.

DEFINITION 10. A state set is an ordered set of states. A state is added to a state set
at the end of the state set after testing to avoid duplication. State sets are denoted as Si in
the following.
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DEFINITION 11. A complete state is a state with j n (p) 0.
DEFINITION 12. A complement state is a 9-tuple (ic, fc, p, j, f, l, r, K, V), where all

components except the first two are the same as described above, and
ic: (0<= ic <-_n) indicates that Cp(j+l)= - and Cp(i+E)EPV and that a substring of

the subject string starting with xic+l may be derived from --q Cp(.+2).
fc: (-0 or 1) is a flag to indicate whether -n Cp(i+2) derives a substring when the

complement state is processed. If it is 0 when the complement state is processed, then
such derivation exists. Otherwise, it does not exist.
Note that, in this section, a complement state is written as a 8-tuple using the dot
notation from above

(ic, fc, D --> C1"’" C/.-q C,i+2) Cp,o, f, l, r, K, V).
DEFINITION 13. A complement state set is an ordered set of complement states.

Complement state sets are denoted as Ni in the following.
To start with, the algorithm constructs S0 {(D0--> O, 0, -IIVI, O, 0, W(O))} and

No . Then for the general case, namely, for each when 0 <= <_- n, we describe how
the algorithm operates on S and Ni as follows.

If there exists a state in Si which has not been processed, then we apply one of the
six processors described below depending on the form of the state. The states in Si are
processed in order. To describe these processors, we assume that the state being
processed has the following form:

s (D(p)--> Cp’" Cpi Cr,<i+)Cp(i+2)"" Cp,,<p), f, l, r, K, V).
The three processors of Farley, (1) predictor, (2) completer and (3) scanner,

process the first components of the states in the same way as in Earley’s parsing
algorithm ([3]) with the following extensions.

(A) The predictor is also applicable to a state with the immediate assignment
variable I to the right of the dot. It causes us to add to Si a new state in which the first
component is Io Xt+X’’’Xr, a "constructed" production which might derive the
substring Xl+l x, the current value of L If the predictor processes a state in which the
pattern variable to the right of the dot has an erasing production rule or the immediate
assignment variable to the right of the dot has null string as its current value, then it adds
immediately a new state to Si whose components are the same as in s except that in the
first component the dot is moved over that pattern variable or immediate assignment
variable to indicate that the variable has derived a null string.

(B) The completer is extended to apply to a state in which the dot is at the right end
of the "constructed" production. It adds to Si the state in St which has the immediate
assignment variable I to the right of the dot and has the same and r values. It moves the
dot over I in this state. This indicates that the string which is the current value of I has
been derived from L

When the completer applies to a complete state, it has to perform extra tasks as
follows. For each complement state in Ni which (a) has not been processed, (b) has D,
to the right of the dot in its third component, (c) has the same value as f in its first
component, and (d) has the same value as V + 1 in its last component, we set the flag fc
in its second component to 1, indicating that a derivation from D, to the substring
xr+ xi does not exist when the complement state is processed later.
The other three added processors are described as follows.

(4) Immediate assignment processor. This is applied to the state s for one of the
following two cases.

(A) If in the first component the immediate assignment left marker (IALM) is to
the right of the dot. It adds a new state to Si with its components the same as in
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s except that in the first component the dot is moved over that left marker and
that in the fifth component a new stack is constructed by pushing the value of
on the top of the stack K in the state s to indicate that a substring beginning
with Xi+l will be assigned as a new value to the immediate assignment variable
(IA V) later.

(B) If in the first component the immediate assignment right marker (IARM) is to
the right of the dot. It adds a new state to Si whose components are the same as
in state s except the following changes:

(a) In the first component the dot is moved over that right marker.
(b) In the third component we put the value of the top element, say l’, of the stack

K in the state s.
(c) In the fourth component we put the value of i.
(d) In the fifth component a new stack is constructed from the stack K with its top

element popped.
All these mean that the substring Xr+l xi has been assigned as a new value of the
immediate assignment variable/, and will be used for the derivation of I until another
value is assigned to I.

(5) Predictor for complement. This processor is applied to the state s if in the first
component to the right of the dot is the symbol for complement - followed by a pattern
variable (i.e., Cp(/+I)’--I and Cp(i+E)EPV). It adds one new state to Si for each
production rule with that pattern variable, Cp(j+2), on its left-hand side, and with a
nonnull string on its right-hand side. Note that in each new state"

(A) The first component is the production rule with the dot put at the left end of its
right-hand side which indicates that no substring has been derived from the
right-hand side.

(B) The second component is set to since the state is created in Si. Again a
substring beginning with xi+l may be derived from the right-hand side.

(C) The last component is set to V- 1. This means that a derivation from this new
state is one level lower in terms of the complement, and any such derivation
from the right-hand side of the production rule at the V- 1 level will deny a
derivation from Cp(j+2 at the V level.

(D) The rest of the components are the same as in the state s.
Then, it adds a complement state to Ni whose components are described as follows"
(A) The first component is set to since the complement state is created in N. Note

that -nC,(+2 may derive a substring starting with
(B) The second component is set to 0 if Cp(i+ has no erasing production rule, and

is set to 1 otherwise.
(C) The third through the seventh components are copied from the first through

the fifth components in the state s.
(D) The last component is set to V-1.
The applications of the six processors which we just described may add states to Si

and/or to S+1, and may add complement states to Ni. After all states in Sg are processed,
the algorithm checks if there exists a complement state in Ng which has not been
processed. If there exists such complement state, then we process the most recently
added complement state, applying the processor described below, and mark the
complement state as processed. Let s’= (ic, fc, p, ], f, l, r, K, V) be the form of the
complement state being processed. Note that Cp(i+l --n and Cp(]+2) PV.

(6) Completer for complement. This processor is applied to the complement state
s’ if fc, the flag in the second component, is zero. It adds to the state set Sg a state whose
components are described as follows:
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(A) The first component is copied from the third component of s’ with the dot
moved over -Cp(i/2), which says that the substring x/x xg of the subject
string has been derived from -Cp(i/2 at the V + 1 level. (See the description of
the predictor for complement.)

(B) The second through the fifth components are the same as the fourth through
the seventh components in s’.

(C) The last component is set to V + 1.
Then it resets the second component fc to zero. This makes the complement state

ready to be copied into Ni/l so that when it is processed in N/, the substring
Xic+l XiXi+l of the subject string may be derived from --ICp(j+2).

The application of completer for complement may add a state to Si. Now, since we
may have a state in Si which is not processed, we have to go back to Si and repeat the
process described above which operates on Si. Thus, the algorithm processed back and
forth between Si and Ni until all elements in Si and in Ni are processed and no elements
can be added to Si or Ni. Then it copies all complement states from Ni to Ni/ (with their
second components reset to zero), before we start to process Si+l and Ni+l.

Before we can scan the last character, xn, of the subject string, if we finish
processing Si and Ni, and Si/l and Ni/l are empty, then the pattern matching fails.
After the last character Xn is scanned, if there exists a state of the form (Do-->
Q., O, I, r, O, W(Q)) in Sn for some and r with <- r_-< n, then the pattern matching
succeeds. Otherwise, the pattern matching fails.

We now show the complete runs of the algorithm on two CPDS’s defined in
Examples 5 and 6. Example 7 shows the case which involves complement but not the
immediate assignment; the l, r, K components in the states and complement states
remain unchanged, and all complement state sets are not empty. Example 8 illustrates
the immediate assignment which causes the l, r and K components to be updated; all
complement state sets are empty, and the V component remains unchanged.

Example 7.
Start variable’ P-->R

R - -E -FE --, EC]OC
O --> ABIAOB
F --> AF[AT
T -> BCIBTC

Subject string" ABC
So(x=A)

P- ,-R 0,0,0,0,2
Ro--E 0,0,0,0,2
R --> ,-aF 0,0,0,0,2
E--> , EC 0,0,0,0,2
E-->o OC O, O, O, 0,2
F AF O, O, O, O, 2
F.AT 0, 0, 0, 0, 2
Q-**AB 0,0,0,0,2
Q,AQB 0,0,0,0,2
R --F 0, 0, 0, 0, 2
R --nE 0, 0, 0, 0,2

S(xz=B)
F-A F 0, 0, 0, 0, 2
FA T 0, 0, 0, 0, 2

0, ff P-o-R 0,0,0,0, 1
0,0 R-.E 0,0,0,0,1
0,0 R.--qF 0,0,0,0,1

N1
0, ff
0,0

P-*o-R 0,0,0,0,1
R-*o-E 0,0,0,0,1
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OoA * B 0,0,0,0,2
OoA .OB 0,0,0,0,2
Fo. AF 1,0,0,8,2
Fo,AT 1,0,0,0,2
To,BC 1,0,0,0,2
To,BTC 1, O, O, O, 2
Qo,AB 1,0,0,0,2
04. AQB 1,0,0,0,2
R oF 0, 0, 0, 0, 2
R o -E 0, 0, 0, 0, 2

S2(X3"-C)
QoAB
ToB,C
ToB TC
EoQ,C

ToBC,
EoQC
FoAT,
EoE,C
Po-R

83

0,0,0,0,2
1,0,0,0,2
1, O, O, O, 2
O, O, O, O, 2
0,0,0,0,2
0,0,0, O, 2

1,0,0,0,2
0,0,0, O, 2
0, 0, 0, 8, 2
0,0,0, O, 2
0,0,0,8,2

Example 8.
Start variable: T oAI(T)I
Initial value for I" null string
Subject string" AAAA
So(X A)

To, A O, O, O, 8, 0
0,0,0,8,0
o,o,o, o,o

To, (T)I
To( T)I

SI(xz--A)
ToA,
To(T )I
To(T), I

S2(x3---A)

To(T)I
To(T )I
To(T).I
Io. AA

S3(x4-A)

84
IoAA
To(T)I

O, O, O, O, 0
o,o,o, o,o
0,0, 1, 0,0
1,0, 1, 0,0

1,0, 1, 0,0
0,0,1,8,0
o, o, o, o
0, 0, 2, 0, 0
2, 0,2, 0, 0

2,0,2, O, 0

0,0 Ro,--nF 0,0,0,0,1

O, ff P o .--nR 0,0,0, O, 1
0,0 Ro.-E O, O, O, O, 1
0,0 Ro.-nF 0,0,0,0,1

0,0 Po.-’nR 0,0,0,0,1
O, ffl R o,-nE 0,0,0,0,1
O, g’ R o .F 0,0,0,0,1

N1 (

2,0,2,0,0
0,0,2,0,0

The algorithm. With this background we are now prepared to proceed directly to
our formal description, for which we need the following extension functions. Note that a
state is of the form s (p,/’, f, l, r, K, V) and that the initial value of I is written as
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IV X-llV[+l X-lXO and is specified by position numbers -[IV[ and r 0.

C(p, j, l) if p -1 then Xl+j else

D(p) if p -1 then I else Dp.

COMPLETE(s) if p -1 then ] _-> r- else j >- n..

n(p) if p -1 then r- 1 else n,.

The pattern matching algorithm (PMA) is a function of two arguments,
PMA(G, XlX2" xn), where G is a CPDS, and xlx2 .xn is a subject string, into the set
{"SUCCESS", "FAILURE"}, which is computed as follows.

Initialization"
for 0 step 1 until n do

begin Si- f Ni end;
add (0, 0, 0,-IIVI, O, 0, W(O)) to So;
Main loop"
For 0 step 1 until n do

begin
While (=la state in Si which has not been processed or =la complement
state in Ni which has not been processed) do

LI" begin
if (=ia state in Si which has not been processed) then
L2" begin

process the states of Si which have not been processed in some
order, performing one of the following operations on each state
s=(p,],]:, l,r,K, V).

(1) Predictor"
if not COMPLETE(s), p -1 and Cp(i+I)PVU{I} then

for each q such that Cp(.+l D(q) do
if n (q)= 0 then

add (p, j + 1, f, I, r, K, V) to Si
else

add (q, O, i, l, r, K, V) Si
(2) Completer:

if COMPLETE(s) then
begin
CI" for each (q, e, g, 1’, r, K, V) Sr such that Cqe/

D(p) do
if p -1 or (p -1, l’ and r r’) then

add (q, e + 1, g, l, r, K, V) to Si;
C2" for each complement state (ic, fc, q, e, g, l’, r,K, V)

in N which has not been processed such that
Cq(+2 D, and [= ic do
fc=;

end;
(3) Scanner"

if not COMPLETE(s) and C(p, j + 1, 1) xi+ then
add (p, ] + 1, f, I, r, K, V) to Si+ 1;
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(4) Immediate Assignment Processor:
i not COMPLETE(s), p -1 and Co(i+) {(,)} then

if Ci+1) (then
add (p, j + 1, f, 1, r, K i, V) to Si

else
add (p, j + 1, f, top(K), i, pop(K), V) to Si;

(5) Predictor for complement:
if not COMPLETE(s), Cpj+l) and Cpj+2) PV then

begin
fc =0;
for each q such that Cp(./2) DO do

if nq 0 then
add (q, 0, i, l, r, K, V- 1) to Si

else
fc=;

aaa i, [c, p, j, f, l, r, K, V- ) to N;
end;

end/, end L2 block ,/
else
L3" begin

if :la complement state in Ni which has not been processed then
perform the following operation on the most recently added
complement state s’= (ic, fc, p, ], f, l, r, K, V), and mark s’ as
processed.

(6) Completer for complement:
if fc 0 then
add p, + 2, f, l, r, K, V + l to Si

else
fc =0;

end;/, end L3 block ,/
end;/, end L1 block ,/
Ni/ Ni
if < n, Si+ & and Ni+ & then
output "FAILURE";

end;/, end Main Loop ,/
if (0, 1, O, I, r, O, W Q ) S, then

output "SUCCESS"
else

output "FAILURE";
/, end of the pattern matching algorithm ,/.
This pattern matching algorithm always terminates because of the following

reasons:
(1) Since a state is added to a state set only when it has not been a member, there

are no duplications of states in a state set. The addition of states does not cause infinite
loop.

(2) As will be shown in Theorem 5 in which we prove the time complexity of the
algorithm, the number of states in each state set Si is O(i+3) where 0 <= <_- n and D is
the maximum nesting level occurring for the immediate assignment operator. And the
number of complement states in each complement state set Ni is O(i+4) where
O<=i<=n.
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See Theorem 5 for details. Actually that theorem indicates that the algorithm always
terminates.

6. Corrections. A proof of the correctness of this PMA has been formally
presented in Liu [14], for which we outline the following.

(1) In Earley’s algorithm, a state s (p, ], f) in Si exactly when

Do XI’’" xI’Dpz

XI’’" xfCpl"’" Cpjap(j+l)Z’

X XfXf+a xCp(j+)z’, for some z and z’.

(2) In our PMA, a state s (p, j, f, l, r, K, V) is placed into Si just when

(Do, O, IV)

(Xl xrDpz, K’, y’)
v

- (X xrCp1"’" CpiCp(+1)z’, K’, y’)
V

(Xl XfXf+I XiCp(]+l)Zt,K Xl+l Xr),
V

for some z, z’ K’, y’ and IV X_liVl/l Xo
(3) In this PMA, when a complement state s’= (ic, fc, p, ], f, l, r, K, V) with fc 0

is processed in Ni, the following extended derivation is indicated.

<Xl""" xI:"Do"Z", K", y">

(x xt xtDt, z, K’, y’)
V+l

(XI" xfCpl’" Cpi -’1Cp(j+2)z’, K’ y’)
V+I

(Xl XfXf+l"’" Xic -"1Cp(j+2)Z’ K Xl+l’’"V+I

(Xl XicXic+l XiZt K Xl+l Xr)
V+l

for some f", p", z", z’, K", K’, y" and y’.
Note that if fc 0 when s’ is processed, then the last step in the above extended
derivation never occurs. Also note that if V= W(Q)-I, then (xl’" xr,Dp.z",
K", y")= (Do, 0, 1V).

(4) The complement states in N are processed in the last-in-first-out order. This is
due to the hierarchy of complementation in the extended derivations which requires us
to handle the complementation in a bottom up manner. See Example 8 and the
predictor for complement in the PMA for this justification.

(5) In the PMA we "predict" the immediate assignment variable/, by associating a
new production I XI+I Xr with the generated state (p, 0, i, l, r, K, V), p -1,
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assuming that s (p, f, f, I, r, K, V) is the state being "predicted" for I in Si. The
functions C(p, , l), D(p), COMPLETE(s) and n(p) for states s (p,/’, f, l, r, K, V) are
made conditional on the value of p to allow the scanner and completer to be
independent of whether the production associated with a state is, or is not, this special
interpretive production.

7. Time and space complexity. We shall measure the complexity in terms of
operations on such random access machines (RAM) as described in Earley [3] or Aho,
Hopcroft and Ullman 13]. Although the algorithm is described in a high level language
called Pidgin ALGOL [1], a Pidgin ALGOL algorithm can be translated into a RAM
program in a straightforward manner.

DEFINITION 14. The time [space] complexity of a pattern matching algorithm,
written as T(PMA) [S(PMA)], is defined as the time [space] needed by the algorithm
expressed as a function of the length of the subject string. If there is some constant c so
that the algorithm processes each subject string of length n in time [space] not
exceeding c*f(n), then we say that the time [space] complexity of the algorithm is
O(f(n)), read "order f(n)".

THEOREM 5. Given a canonical pattern definition system G, for a subject string of
length n, the following hold true:

(I) T(PMA)= O(r/2D’+7), if immediate assignment of up to D nesting levels
occurs in G;

(II) T(PMA) O(n3), if immediate assignment does not occur in G.
Proof.
I. (a) For 0<=i <- n, there are O(i(+2)+1) states in each state set Si because the

ranges of p, j, and V components of a state are bounded by some constants, while the f, I,
r and K components depend on i. Note that f, and r are bounded by i, and K, by O(i)
since the maximum depth of the stack K equals the maximum nesting level occurring
for the immediate assignment operator. Actually there are stacks of depth 1, 2 stacks
of depth 2, stacks of depth D, so, + 2 +... + stacks of maximum depth D.

(b) When we construct each state set St, lists of’states can be constructed in such a
way that each list is associated with each (f, I, r, K) where f, l, r and K depend on i, and
consists of the states of the form (p, j, f, I, r, K, V) for some p, j, V. Then to test if a state
(p, j, I, r, K, V) has already been added to Si, we search through the list associated with
(f, I, r, K). Therefore, the time for the testing is independent of f, 1, r, and K, and is
constant since the ranges of p, j, and V are bounded by some constants. Note that if
p 1 then there can only be one value of j associated with each (f, l, r, K). The lists can
be discarded after Si is constructed. Since duplication of states in Si is avoided,
duplication is impossible in Ni and hence no test is needed before a complement state is
added to Ni.

(c) The scanner, predictor, predictor for complement and immediate assignment
processor each execute a bounded number of steps per state in each state set Si. So the
total time for processing the states in Si plus the steps executed by the scanner,
predictor, predictor for complement and immediate assignment processor is
0(i(+2)+1).

(d) The number of complement states in any complement state set Ni is
O(i/z)/z) because of the same reason as in (a) and that the fc component is bounded
by 2, and the ic component depends on and is bounded by i.

(e) When the completer processes a state in $i: (1) The statement C 1 may have to
add O(f(D+2)+1) states for Sr where 0 _-< f-< i, the state set pointed back to, and therefore
executes O(i(D+)+I) steps in the worst case; (2) The statement C2 may have to set flages
to I for O(i(D+2)+) complement states in Ni. Note that for each N, lists of complement
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states can be constructed such that each list is associated with each ic where 0 <-ic <-_

and consists of complement states of the form (ic, fc, p, , f, l, r, K, V). Thus there are
O(i(D/2)/1) complement states in each list. Statement C2 then only searches through
the list associated with f= ic and sets flags. Namely, the completer executes
0(i(D+2)+1+(0+2)+1) O(i2(D+2)+2) steps in Si, and O(i(D+2)+I+(D+2)+I) O(i2(D+2)+2)
steps in Ni.

(f) The completer for complement may have to add O(i(D+2)+2) states to Si from
Ni. Namely, it takes O(i(D+2)+2) steps to process complement states in Ni.

(g) Therefore, the time in the completer is dominant no matter whether comple-
mentation occurs or not. Hence summing from 0, 1, , n gives O(n2(D+2)+2+1

O(n2D+7) steps. Note that since

we have

ik< ilk k=n * n =n
i=0 i=1

k+l

i=0 i=1

II. The proof is exactly the same as that for (I) except for the following:
(1) The immediate assignment processor will not be called.
(2) The l, r and K components no longer depend on i. In fact -IIVI, r 0 and

K 0. Thus D + 2 becomes 0 in all exponents in the proof. Therefore, the completer
executes O(i2) steps in Si and O(i2) steps in Ni. And after summing up, the.PMA takes
O(n 2+1) O(rt 3) time. Q.E.D.

THEOREM 6. Given a canonical pattern definition system G, for a subfect string of
length n, the following hold true.

(I) S(PMA)= O(nD+S),

(II) S(PMA)= O(nD+4),

(III) S(PMA)= O(n),

(IV) S(PMA)= o(na),

Proof.

if both complement and immediate assignment of up
to D nesting levels occur in G;
if immediate assignment of up to D nesting levels but
not complementation occurs in G;
if complementation but not immediate assignment
occurs in G;
if neither complementation nor immediate assign-
ment occurs in G.

I. For 0 -< <_- n, each S takes O(i(D+2)+l) space, each Ng takes O(i(D+2)+2) space.
Summing from 0, , n, the PMA takes O(n [(D+2)+2]+ O(n D+5) space.

II. As in the proof of (I), except that each N takes no space, we conclude that
the PMA takes O(n (+a)+l+a) O(rt D+4) space.

III. In this case, (D + 2) becomes 0 in the theorem. Therefore, O(rt [(D+2)+2]+1)
O(rt 3).

IV. As in the proof of (I) except that each Se takes O(i) space, and each Ng takes no
space, we therefore conclude that the PMA takes O(n a) space. Q.E.D.

THEOREM 7. Given a canonical pattern definition system G which allows J
immediate assignment variables (i.e., [IA V[ IIALM[ [IARM[ J) and up to D
nesting levels for immediate assignment, ]:or a subject string of length n, we have

(I) T(PMA)= O(n2J(D+2)+3), and
(II) S(PMA)= 0(n+2)+3).
Proof.
I. In any state or complement state, the l, r and K components should, in this case,

be replaced by a list of triples (l,rb, K) where l<=b<=J. The arguments are
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similar to the proof for (I) of Theorem 5 except that (D + 2) becomes J(D + 2) in this
case. Hence the time in the completer becomes O(iJ(D+2)+I+J(D+2)+I) O(i2J(D+x)+2) in
Si and O(iJD/2+I+D+x+I) O(i2D+2+2) in Ni. This results in the time complexity of
O(nEJ(D+2)+3).

II. In any state or complement state, the l, r and K components should, in this case,
Kbbe replaced by a list of triples (l b, rb, where 1 _-< b-<_]. Therefore, as we argued

before, (D + 2) should become J(D + 2) in the proof for (I) of the Theorem 6. Namely,
the PMA takes O(rt(D+2)+3) space. Q.E.D.

8. Conclusions. An empirical evaluation is given in Liu [14] which consists of
several case studies comparing an implementation of our algorithm using PL/I with a
SNOBOL4 implementation. Despite the fact that we program our algorithm using PL/I
in such a well structured manner that it is easy to understand, time comparison of the
SNOBOL4 pattern matching algorithm for some patterns are favorable for the imple-
mentation of our algorithm.

In SNOBOL4, a heuristic is incorporated in the pattern matching process to
prevent looping of left-recursive patterns and this introduces the possibility of produc-
ing incorrect results or interfering with intended matches. But this is not a problem for
our algorithm. This polynomial time algorithm is correct and powerful.
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LISTING AND COUNTING SUBTREES OF A TREE*
FRANK RUSKEY

Abstract. Given an ordered tree T, an ordering is defined on the set of subtrees of T. Algorithms are
presented for listing all subtrees in that order, and for determining the tree occupying a given position in the
list. The second algorithm runs in time proportional to the number of vertices in the tree. An explicit formula
is given for the total number of subtrees summed over all trees T.

Key words, ordered tree, subtree, lexicographic enumeration ranking algorithm

1. Introduction. This paper studies the problem of listing all subtrees of a given
ordered tree. The problem originally arose in solving a certain optimization problem on
networks [1 (in [1 subtrees were called "tree cuts"). We will also develop algorithms
for ranking and unranking subtrees. The rank of a subtree is the position that it occupies
in the listing and unranking is the inverse operation of taking a position and returning
the subtree occupying that position.

All trees in this paper are ordered trees. Let Tn denote the set of all ordered trees
with n vertices. Let T Tn have root r. A r-subtree of T is a subtree that includes the
root. By removing the root of T we get an ordered forest of subtrees T1, T2," Tk
called the principal subtrees of T. If Ti Tv, then vl + v2 +" + Vk n 1.

Let T Tn. A labeling of T is an assignment of the integers {1, 2,..., n} to the
vertices of T (distinct vertices get distinct labels). A heap-labeling is a labeling with the
property that children receive larger labels than their parents. Thus, in a heap-labeled tree
the root is labeled 1. A left-to-right breadth first search labeling, hereafter referred to as
a BFS labeling, is the labeling one gets by labeling the vertices on a lower level before
labeling those at a higher level. Vertices on the same level are labeled from left to right.
A preorder labeling (or left-to-right depth first search) is the labeling one gets by
labeling the vertices in the order that they are encountered in a preorder traversal of the
tree. Fig. 1 shows the BFS and preorder labeling of a tree.

(a) A BFS labeling.

FIG. 1.

(b) A preorder labeling.

A labeled tree is often represented by an array par where par[i] is the parent of
vertex (we will assume that par[root] 0). For example, the parent array of the tree of
Fig. l(a) is par 0, 1, 1, 1, 2, 4, 4, 5, 6, 6 and for Fig. l(b) par O, 1, 2, 3, 1, 1, 6, 7, 7, 6.
In a heap-labeled tree par[i] < i. In a BFS labeled tree par[i] <= par[i + 1] for 1 <- < n. A

* Received by the editors February 28, 1979, and in final form April 3, 1980.
t DepartmentofComputerScience, UniversityofVictoria, Victoria, BritishColumbia,CanadaV8W 2Y2.
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parent array is a convenient representation when working from the leaves to the root. In
working from the root to the leaves it is often more convenient to have the tree
represented by adjacency lists. We will assume that the adjacency lists preserve the
left-to-right ordering of the vertices. Both of these representations will be used
subsequently. There are algorithms for converting one representation into the other in
time proportional to the number of vertices in the tree.

We will express our algorithms in a Pascal-like notation. The adjacency list nodes
will be defined as node =record vert: 1...n; next" node end. The adjacency list
headers will be stored in an array head. Fig. 2 shows the adjacency lists for the tree of
Fig. 1 (a).

7:

9: [

10:

FIG. 2.

A subtree of a tree will be represented by a 0-1 array, called the characteristic
array, sub, where sub[i] 1 if vertex is in the subtree and sub[i] 0 if vertex is not in
the subtree. The sequence of values of the characteristic array will be referred to as the
characteristic sequence of the subtree. A r-subtree is characterized by the property that
sub[i] 1 implies that sub[par[ill 1. For definitions of undefined terms used in this
section the reader is referred to [2].

To generate all subtrees of a tree it is sufficient to be able to generate all r-subtrees.
To generate all subtrees one simply traverses the tree and when vertex r is encountered
generate all r-subtrees. We could also generate subtrees of free labeled trees by picking
an arbitrary vertex to be the root.

The paper is organized as follows. Section 2 discusses generating r-subtrees.
Section 3 develops a number of counting results for r-subtrees. The ranking and
unranking algorithms for preorder labeled trees are given in 4. These algorithms have
running times proportional to the number of vertices in the tree. The final section
contains some empirical results and mentions some further research questions.

The reader is cautioned that the suggested ordering for listing trees and the
ordering used in the ranking and unranking algorithms are different.
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2. The listing algorithm. Let T be a heap-labeled tree in Tn. We order the
r-subtrees of T by ordering the characteristic arrays lexicographically. Thus, the first
r-subtree consists of the root alone and the last r-subtree consists of all of the vertices of
T. Given a characteristic array, obtaining the next one in our lexicographic order is quite
simple. Scan sub from right to left changing l’s to O’s. Upon encountering a 0, say in
position k, if sub[par[k]]= 1 then change it to a 1 and stop; if sub[par[k]]=O then
continue scanning. If we scan through the entire array, then there is no next r-subtree.
The procedure NEXT, given below, implements these ideas.

procedure NEXT;
begin

k:=n;
while sub [k 1 or sub par[k ]] 0 do

begin
sub[k] := O;
k:=k-1;
if k 0 then last subtree

end;
sub[k] := 1

end;

Initializing and iterating NEXT ten times on the trees of Fig. 1 results in the
sequences in Fig. 3.

1000000000 1000000000
1001000000 1000010000
1001001000 1000010001
1001010000 1000011000
1001010001 1000011001
1001010010 1000011010
1001010011 1000011011
1001011000 1000011100
1001011001 1000011101
1001011010 1000011110

(a) First ten subtrees of
Fig. (a).

(b) First ten subtrees of
Fig. (b).

FG. 3

If NEXT is being used iteratively, as when generating all subtrees, then we can
make use of information gained in the previous iteration. For example, let kl and k2 be
the final values of k in NEXT on two successive iterations. The value of k may
determine k2 or at least restrict the values that k2 can be. Let Like] be an upper bound
on the values of k. We can then replace the assignment k := n of NEXT by k := L[k].
(Initially, k 1).

This array L[k] depends on the labeling that we are using. If the tree has the BFS
labeling, then we can set L[k to be the greatest vertex ] such that par[]] <= k. In other
words, if k is not a leaf then L[k is the rightmost child of k, and if k is a leaf then L[k is
the rightmost child of the greatest vertex less than k (in the BFS labeling) that is not a
leaf. Assuming that L is all O’s except L[n + 1] 0 (for proper termination), we can
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compute L[k] for BFS as follows.

for k := 2 to n do L[par[k]] := k;
{the non-leaves now have the right L values}
k:=l;
while k <_- n flo

begin
r := L[k];
k:=k+l;
while L[k] 0 do

begin
L[k] := r;

k:=k+l
end

end;

If kl is not a leaf, then k2 is equal to L[kl], but when kl is a leaf, k2 may or may not
be equal to L[kl]. For the tree of Fig. l(a), L 4, 5, 5, 7, 8, 10, 10,10, 10, 10.

If the tree is given the preorder labeling then L[k] is the greatest such that
par[l] ] for some/" _-< k. We can also calculate this L in O(n) time. For the tree of Fig.
l(b), L 6, 6, 6, 6, 6, 10, 10, 10, 10, 10. Note that the L in BFS uniquely determines the
parent array but does not in the preorder case.

The BFS labeling produces a more efficient enumeration of r-subtrees than does
the preorder labeling. At present this is not proven but the final section contains some
empirical evidence. As an example of the superiority of the BFS labeling, consider a
tree T with two principal subtrees, the left consisting of a single chain and the right a
single vertex. This tree has 2(n- 1) subtrees. The amount of computation required in
going from one subtree to the next is essentially proportional to L[kx]-k2. Call the sum
of L[kl]-k2 over all subtrees the complexity of that tree. The complexity of T is
(nE--n + 2) (counting n for the last r-subtree).

Let the average complexity be the complexity divided by the number of r-subtrees.
The average complexity of T is the worst possible, namely O(n). This same tree with the
BFS labeling has an average complexity of 0(1). No such example seems to exist with
the roles of BFS and preorder reversed.

3. Counting subtrees. It is well known that the number of ordered trees with n
vertices is

1(2n-2]bn=lTnl= n-l/"
Given T T, with root r, define p(T) to be the number of r-subtrees of T. The next
lemma gives us a recurrence relation for p(T).

LEMMA 1. If T T, has k principal subtrees T1, T2, , Tk then

1
p(T)

(1 + p(T1))(1 + p(T2))"" (1 + p(Tk))

Proof. That p (T) I for a single node tree is obvious. If n > 1, then there is at least
one subtree when the root is removed. Let r be the roo.t of T and ri the root of Ti. For
each subtree T an r-subtree either contains none of the vertices of T or is an ri-subtree
when restricted to T. This accounts for the factor l+p(T). The factors contribute
multiplicatively and hence, we have the lemma. [3
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For an example of the calculation of p(T) see below"

(4)(2)(11) 88.

Let an be the number of r-subtrees summed over all trees with n vertices. In other
words,

an ., p(T).
TTn

The next lemma provides us with a recurrence relation for an.
LEMMA 2. If n 1 then an 1, and if n > 1 then

n--1

an Y’. (aj + bj)an-.
i=1

Proof. Consider all trees in T, that have j vertices in the leftmost principal subtree.
Summing over all trees in T, gives aian_ r-subtrees that include the root of the
leftmost subtree and bian-i that do not include the root of the leftmost subtree. I-I

Using Lemma 2, we can compute a table of the an’s; see Table 1.

TABLE

n 2 3 4 5 6 7 8 9 10

b. 2 5 14 42 132 429 1430 4862
a. 1 2 7 29 131 625 3099 15818 82595 943259

Let A(x) and B (x) be the ordinary generating functions of the sequences an and bn,
respectively. The function B(x) is known to be (see [2])

()

and to satisfy the relation

(2)

By Lemma 2,

B(x) =1/2(1 -x/1-4x)

B(x)E=B(x)-x.

n-1

A(x)=x + E E (ai+bi)an-iX
n2 j=l

=x +A(x)2+B(x)A(x).
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Therefore,

(3)

Thus,

(4)

A(x)z +(B(x)- 1)A(x) + x 0.

A (x) 1/2[1 B (x)- x/(1 B (x))2- 4x]

[a-n(x)-4i-Sx-n(x]

1/2[(1 + x/i 4x)- x/1/2(1 + x/1 4x)- 5x].

By using (4), we can derive an explicit (nonrecursive) expression for a,. First,

1 (2m-2’1- Y. 22,._ (5x + B(x))
m>-I m \ m- 1 ]

Also,

k,.O ( m) kx kB m-k(5x+B(x))"= 5 (x)
>__ k

m kx k5"x + 5
k=O k

Y t(j, m- k)x i,
]>--m-k

where

t(n, k)= , bo,b,_ b,,
Vl+V2+"’+vk

vil

are the numbers defined and studied in [3], [4]. There it is shown that

t(n,k)=2n_k
Note that t(n, k) is the number of trees with n + 1 vertices and root of degree k. We now
know that 2A(x) is equal to

-2 b.,x "+ , 2zb,-,5"xm>-- rn>=l
(5)

m k
X
k+ 2 22m-1 5 2 t(], m-k)x

ml k =0 k ]m-k

From (5) it can be deduced that a, is

b. ((45-)" 1/2) + 2
b,.. a 5kt(n-k,m-k).
4 k =0

Note that the average number of r-subtrees of an ordered tree is exponential in n if
each tree is regarded as being equally likely.

4. Ranking and unranking subtrees. In this section, we derive ranking and
unranking algorithms for r-subtrees of an ordered tree, where the subtrees are given the
preorder ordering.
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The rank of an r-subtree is the position that it occupies in the list of r-subtrees. To
calculate the rank of an r-subtree we only need to know how many r-subtrees precede it
in the list. Let r(S, T) denote the rank of an r-subtree S of an ordered tree T. Let
T1, T2, ", Tk be the principal subtrees of T, and let $i be that portion of S that is in Ti.
If rl, r2, , rk are the roots of the principal subtrees then the characteristic sequence of
S can be written as

rl r:z rk

The number of r-subtrees such that Srl Sr2 Sr 0 and sri+l 1 will be denoted
by r(T.) and is equal to (1 +p(T.+l))(1 +p(T.+2))’’’ (1 +p(Tk)). Also, z(Tk)= 1.
Before changing any bit in T. all ri+l-Subtrees of T/I are generated, plus the empty
subtree. We can therefore express the rank as the following recurrence"

k

(6) r(S, T)= 1 + z(T.)r($i, T),
i=l

where r(4, T) 0.

For example (blackened vertices denote $),

=1+2.2.11+0.11+5=50.

This calculation is top-down (root to leaves). The procedure RANK, given below,
performs a bottom-up calculation using the parent array. RANK also makes use of four
other arrays rho, tau, rank and sib. If vertex/" has a left sibling then sib[j] i, otherwise
sib[]] none. The array sib is used in calculating the tau values. The other arrays rho,
tau, and rank have the values of the functions p, r, r, except that we specify the root
instead of the entire tree. Fig. 4 shows the data structure being used. The wavy lines
represent edges that are in the subtree being ranked, and dotted lines the sibling
pointers. The rank is computed along with the values of p, z, r in one pass over the tree.
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4 8 9

2 3!22 5
111

FIG. 4. The data structure used for computing ranks.

function RANK (sub characteristic__array): integer;
begin

for/" := 1 to n do rho[]] := tau[]] := rank[if := 1;
for ] := n down to 2 do

begin
rho[par[]]] := rho[par[]]] * (1 + rho[]]);
if sub[f] none then

tau[sib[]]] := tau[]] (1 + rho[]]);
if sub[if 1 then

rank[par[if] := rank[par[ill + rank[f] tau[]]
end;

RANK := rank 1]
end;
Clearly, RANK is O(n) where n is the number of vertices in T. If the values of p,

are already calculated and the r-subtree is given as a list of vertices (rather than a
characteristic array) then RANK runs in time proportional to the number of vertices in
the subtree.

The unranking algorithm runs best from root to leaves and so we will assume that T
is represented by adjacency lists (as outlined in the introduction). The r-subtree will be
returned as a characteristic array. The procedure UNRANK does a preorder traversal
of that portion of T that is in the subtree. It is assumed that the array sub is iniiialized to
all O’s

procedure UNRANK (rank: integer; v: vertex);
begin

sub[v] := 1;
rank := rank 1;
p := head[v];
while p nil do

begin
w := p.vert;
if rank >-_ tau w then

begin
UNRANK (rank div tau[w], w);
rank := rank rood tau [w]

end;
p := p.next

end
end;
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The running time of UNRANK(rank, 1) is essentially proportional to the sum of
the sizes of all adjacency lists of vertices of the r-subtree that occupies position rank in
the lexicographic order. This is at most O(n).

We can use UNRANK to produce random r-subtrees of a tree by first selecting an
integer r in the range i to p(T) at random and then calling UNRANK(r, 1). By random,
it is meant that every r-subtree is equally likely. One can also produce random subtrees
by first computing rho for each vertex in T, then choosing a vertex v at random (the
vertices being weighted by their rho values), and finally calling UNRANK(r, v) where r
is an integer chosen at random from {1, 2,..., rho[v]}.

5. Final remarks. The results presented here do not seem to fit into the general
settings for listing and ranking that are presented in [5], [6-1 and [7]. This is because our
algorithms are not based on any fixed simple recursion.

The worst case average complexity of the BFS labeling has not been determined
(for preorder it is O(n)). However, considering the sequence of trees with m2+ 1
vertices, where the root has degree m and each principal subtree consists of a chain with
m vertices, we can deduce that the worst case average complexity is not bounded by a
constant. It might be hoped that the average complexity averaged over all trees would
be bounded by a constant, but the following evidence indicates otherwise. By exhaus-
tively listing all trees with n 4,..., 10 vertices and all of their r-subtrees the results
shown in Table 2 were obtained.

In generating the trees for Table 2 it would have been possible to use the results of
[3], [4]. However, it was found easiest to proceed directly from one parent array to the
next in a lexicographic fashion. The parent array of a BFS labeled tree is characterized

TABLE 2

Average Worst Worst

average complexity average complexity tree

4 1.6667

5 1.2500

6 1.1278 1.3889

7 1.1754 1.4762

9 1.2611 1.7333
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by the following two properties: (i) 0 -< par[i] < and (ii) par[i] <-_ par[i + 1] for 1 =< _-< n.
Thus, we can produce the lexicographically next parent array as follows.

procedure NEXTmTREE
begin

end;

i:=n;
while par[i] i- 1 do := i- 1;
if 0 then last tree;
par[i := par[ + 1;
for k := + 1 to n do par[k] := par[i]

It would be interesting to have a nontrivial upper bound on the worst case average
complexity. Another subject for future research is the finding of listing and ranking
algorithms for r-subtrees with a fixed number of vertices.
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NONPREEMPTIVE LP-SCHEDULING ON
HOMOGENEOUS MULTIPROCESSOR SYSTEMS*

MANFRED KUNDES

Abstract. Unequal execution time task systems are nonpreemptively scheduled on rn _-> 2 identical
processors without additional resource constraints. Worst-case bounds for the ratio of the length of an
LP-schedule (longest path) and an optimal schedule are given for two classes of dependency structures--
chains and trees. Moreover, the asymptotic bounds, which are independent of the number of processors, are
given for these classes and for anti-tree-systems.

Key words, nonpreemptive scheduling, list scheduling, LP-schedules, worst-case analysis, performance
bounds, critical-path algorithm, multiprocessing

1. Introduction. In this paper we consider special classes of task systems to be
nonpreemptively scheduled on rn >_-2 identical processors. The tasks are thought to
have no additional resource requirements like memory space, etc. To find an optimal
schedule with minimal schedule length, or equivalently with maximal processor utiliza-
tion, is known to be polynomially complete for most of these problems 17]. Thus a lot of
work has been done to investigate heuristic algorithms producing suboptimal schedules.
One of these heuristics is the LP-algorithm (longest path), which has also been called
CP-algorithm (critical path), or LPT-algorithm (largest processing time).

There are several results concerning LP-scheduling, if all tasks have equal execu-
tion times. In this case the LP-schedule turns out to be optimal if the dependency
structure is a tree [10] or an anti-tree [16]. For so called n-free task dependency
structure the ratio of length of the LP-schedule and an optimal schedule is bounded by -[15]. For arbitrary dependency structure the bound is for two processors [2] and
2-1/(m 1) for m > 2 processors [1], [12]. In this case a special LP-algorithm, due to
Coffman and Graham, generates optimal schedules for two processors [4], and the
worst case is bounded by 2-2/m, for m > 2 processors [13]. The difference between
these bounds and the general bound for list scheduling 2-1/m [7] is significant only in
those cases where m is small.

If unequal execution time task systems are considered, then for arbitrary depen-
dency structure LP-scheduling does not improve the general worst-case behavior [8],
[9]. However, it turns out to be rather good if the tasks are independent [5], [7], [9],
even in the case of uniform processor systems [6], [14]. For m identical processors the
bound is - 1/3m [7].

In this paper we examine the worst-case behavior of unequal execution time task
systems with three kinds of dependency structures--trees, anti-trees, and chains. We
prove that for tree-systems the bound is 2-2/(m + 1), as conjectured in [9]. For
anti-tree-systems we cannot give the exact bound, but we show that this bound is
generally worse than the bound for tree-systems. That means, both bounds converge to
the factor 2 with a growing number of processors. However, for the class of chain-
systems, the intersection of the classes of tree- and anti-tree systems, we can determine
the worst-case-bound which is asymptotically limited by . That is, in a certain sense

* Received by the editors August 31, 1978, and in final revised form May 7, 1980.
’Institut fiir Informatik und Praktische Mathematik, Christian-Albrechts-Universitit Kiel,
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chain systems form a maximal class of task systems which are good for nonpreemptive
LP-scheduling.

2. The model. The scheduling model we want to use is a restricted version of the
one which is described comprehensively in [3]. A task system G (if, <,/x) for a given
set P {P1, ’, P,} of m _-> 2 identical processors is defined as follows:

1. -{T1,. ., Tn} is a set of tasks to be executed.
2, < is an irreflexive partial order defined on ff which specifies operational

precedence constraints. T < T means that T/must be completed before T. can
start.

3. tx R+ {x/x real, x > 0} is a map where/x (T) denotes the execution time of
a task T on a processor Pi.

For a task system G let IP (T)= {T’/T’ , T’< T, there is no T" with
T’< T"< T} be the set of all immediate predecessors of a task T, and IS (T)=
{T’/T’ , T IP (T’)} the set ofall immediate successors. For a setM the cardinality is
denoted by/M/.

Generally a schedule So,, for m processors and a given task system G is a
description of the work to be done by each processor at each moment of time. In our
case we say: A nonpreemptive schedule for m identical processors and a task system G
is a map S So.., :R (ff) with

1. S(a)=,fora<0.
2. /S(a)/<-- m, for all a .
3. There exists a minimal real number to(S) such that for all a => to(S) we have

S(a) . to(S) is the total execution time of S or the schedule length of S.
4. I,-J0a<to(S)S(a)= .
5. Let ts(T)=infT-Sa a be the starting time of a task T. Then TS(a) iff

ts(T) <- a < ts(T) +/z (T). That is, if a task T has started, then its execution is not
allowed to be interrupted.

6. ts(T) +/x (T) -<_ ts(T’), for all T’, T < T’.
Point 2 means that at most m tasks are allowed to be executed in parallel. Nothing

is said about whether a task T is worked at processor Pi or Pj, This is not important,
because all processors are identical.

For brevity we write t(T) instead of ts(T), if it is clear which schedule S is meant. A
task T’ is available or readyfor execution at time a, if t(T) +/x (T) -<_ a, for all T IP (T’).

A simple way to generate schedules is by using lists. A list is a permutation of the
tasks in -, L (T/l, .., Tin). Each time a processor P becomes free for assignment,
the list is scanned from left-to-right, until the first task T is found which is available. The
task T is then assigned. If there is no such task, the processor becomes idle. If more than
one processor becomes free at the same time, we assume that the task T is assigned to
that processor with the smallest index.

A schedule So,., is called optimal (with respect to the total execution time) if
o (Sc,,) < , (S’o,,) for all possible schedules So,.,. An optimal schedule is denoted by
SOP SOPo..,. It is well known that there may be no optimal schedule among all
schedules generated by lists. This is caused by the fact that list scheduling does not allow
processors to be idle while tasks are available. But normally quite good results are
derived by list scheduling. A special kind is the LP-scheduling discipline where the tasks
are ordered according to their length or level.

The length of a task T is given by

I(T)=u(T) iflS(T)=, and

l(T) =/x (T) + max l(T’) otherwise.
T’IS(T)
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The length of a set N is defined as I()--0, and

l(N)=max l(T) ifN.
TN

A list of tasks L (Til,. , T.) is called an LP-list, if (Tij) >- (Tk), for all j and k,
with 1 -<_ ] < k -<_ n. A list-schedule S generated by a LP-list is called a LP-schedule and
denoted by SL.

Now let us classify special sets of tasks. A task system G is called
a) an independent system G IND) iff

for all T , IP (T)= IS (T) .
b) a chain-system (G CHAIN) itI

for all T -/IP(T)/<- 1 and/IS(T)/<- 1.
c) a tree-system (G TREE) iff

for all T /IS (T)/=< 1.
d) a anti-tree-system (G ATREE) iff

for all T -/IP (T)/<- 1.
A chain is a subset of tasks C {Til, ’, Tik} with IP (Th) , IS (T)= , and

Tj IS (Ti,_), for/" 2, , k.

3. Results. If F is a set of task systems, then the worst-case behavior of F with
respect to LP-scheduling on m homogeneous processors is defined by

WCB.,(F) sup ( w (SLy,.,))).v w(SOP,m

It is known that there are sets F for which we get WCB., (F) 2-1/m [8]. That is, for
those sets there is no difference in worst-case behavior between LP-scheduling and
arbitrary list scheduling [7]. But the situation changes if independent tasks are consi-
dered.

TtEOREM 1 [7].

4 1
WCB,,(IND)

3 3m’
m >_- 2.

This result shows that LP-scheduling is quite good for independent systems.
Moreover, a generalization of this result [5] demonstrates that better bounds can be
obtained in many cases.

In [9] an example of a tree-system, due to G. S. Graham, is given showing that the
ratio o(SL)/w(SOP) can be arbitrarily close to 2-2/(m + 1). In the next section we
prove this to be a general bound for tree-systems, and therefore we can state the
following.

THEOREM 2.

2
WCB,,(TREE) 2

(m + 1)"
The proof of this theorem is essentially based on a result for tree systems given in

[11]:

to (SL) <_l+(m_l)max{l(T)/T}
w(SOP)- .,Trtz(T)

One can easily check that this bound is worse than 2-2/(m + 1) for certain
tree-systems. Nevertheless the above result shows that the LP-algorithm is quite a good
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heuristic, if the execution times of single tasks are small compared with the sum of all
execution times in the tree-system.

Reversing all precedence constraints (arc directions) in a tree-system we get an
anti-tree-system. Though we cannot give the exact worst-case behavior of anti-tree-
systems, the next theorem states some lower bounds for WCB,(ATREE). For some m
it turns out that worst-case behavior of anti-tree-systems is slightly worse than that of
tree-systems.

THEOREM 3.
a) If m 2k 1 for an integer k >= 2, then

WCB(ATREE) _-> 2

b) Them are integers m’ with

WCB,,,(ATREE) > 2-

re+l"

The proof is given by the general examples of 7. The bounds given in Theorems 2
and 3 are both near to 2 if the number of processors m is large. A fundamentally better
bound can be achieved for chain-systems, the intersection of tree- and anti-tree-
systems.

THEOREM 4.

WCB (CHAIN) 1 +
(m-2k+1)(2k-1)

max
__<k__<(/l/3, (rn -2k + 1)(3k 1)+ k 2"

k integer

It will be shown in 5 that the right side of the above equation is a bound for
chain-systems. In 6 a general example shows that this bound is tight.

Obviously we get the bound 1 + (m- 1)/(2m- 1)for m 2, 3, 4. Moreover, we can
get the following Theorem 4’, allowing an easier computation of WCBm(CHAIN) than
Theorem 4. Because of its purely algebraic nature the proof is omitted here. The
interested reader can find some hints in the appendix. Let x be a real number, then
Ix] =max {i/i an integer, i<-_x} and Ix] =min {i/i an integer, i>-x}.

THEOREM 4’.
a) For m 2, 3, 4 we have WCB.(CHAIN) 1 + (m 1)/(2m 1).
b) Form>-5 let x., (rn + l/2rn)(/l + 2m-1), and A., {[x,,,], [x,]}; then

(m-2k+l)(2k-1)
WCB,(CHAIN)= 1 + max

kA.. (m -2k + 1)(3k- 1)+ k2"

The next theorem gives upper bounds for various classes of task systems consi-
dered in this paper. These bounds are independent of the number of processors and
might especially illustrate the result of Theorem 4. Let WCB(F) lim,_,oo WCBm (F),
define the asymptotic worst-case behavior of a given set F of task systems.

THEOREM 5.
a) WCB(IND) ,
b) WCB(CHAIN)= ,
c) WCB(TREE)= 2,
d) WCB(ATREE)= 2.
a), c), and d) are obvious by Theorem 1, Theorem 2 and Theorem 3. That

{WCB,(CHAIN)} converges to is derived from Theorem 4’ and shown in the
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appendix. The result of Theorem 5 is of special interest. Note that the following
relations hold"

c TREE
IND CHAIN

ATREE

and

CHAIN TREE f3 ATREE.

It is easy to observe that the asymptotic worst-case behavior is still 2, if binary
tree-systems or binary anti-tree-systems, that is,/IP (T)/<_-2 or/IS (T)/_<-2, respec-
tively, are scheduled. But 2 is the asymptotic worst-case behavior for an algorithm
which produces an arbitrary list schedule [7], [8], [9]. That means that there is no
difference with respect to the asymptotic bound if we consider arbitrary list schedules or
LP-schedules for tree- and anti-tree-systems. In this sense a chain-system is a maximal
structure for which LP-scheduling is suboptimal.

4. Bounds for tree-systems. Let G (, <, ) be a tree-system and S S.,, a list
schedule. In the following we will write t(T) instead of ts(T), if it is clear which schedule
S is meant.

Let d(T)- ds(T) denote the minimal time at which T is available. That is,
d(T)-0, if T has no predecessor, and d(T)-max {t(T’)+I(T’)/T’ ziP (T)} other-
wise. Now define R {T/T , t(T) > d(T)} to be the set of all those tasks which are
ready for execution at a certain point of time, but are not assigned because other tasks
are preferred. If R , then the number of tasks without any predecessor is less than or
equal to the number of processors, because G is a tree-system. In this case the schedule
is optimal, of course. If there is a T in R, then note that all processors must be busy
during [0, t(T)), since G is a tree-system.

Before proving Proposition 1 we give two preliminary lemmas which are used in
the next section, too.

LEMMA 1. Let S be a LP-schedule for a tree-system G. If TR, then for all T" with
t(T")<t(T) we have I(T")>-I(T).

Proof. Assume that there are tasks in R for which the lemma is wrong. Let Q be the
subset of all those tasks, and let T Q be a task with minimal starting time"

(1) t(T) =< t(T+), for all T+ Q.
(2) Let T" be a task with t(T")< t(T), and l(T")< I(T).

T is ready for execution during [d(T), t(T)]. That means, for all T+ with d(T) <- t(T+) <
t(T) we get I(T+) _-> l(T) because of LP-scheduling. Therefore we have

(3) O<-t(T")<d(T) and IP (T) .
The set M {T+/t(T+) d(T)} is not empty, because at least one T’ IP (T) finishes
execution and there are tasks ready for execution. As G is a tree-system, all T’ IP (T)
have at most one immediate successor, namely T, and hence all tasks in M are in-
dependent of all tasks in IP (T). At time d T), /M/ tasks start their executions and for
/M/tasks execution is finished. Therefore there must be a task T* M with d(T*)<
t(T*), hence T* 6 R. From (3) and (2) follows t(T") < d(T) t(T*) and l(T") < l(T) <=
l(T*). But T* Q and t(T*)< t(T) contradict (1).

For an arbitrary schedule S define N {T/T , t(T) + l(T) to (S)}. Obviously
N # , because there is at least one task T with t(T)+I(T)= t(T)+ I(T)= to(S). Let
Ro N R. If Ro , then for all T in N we have d(T) (T). That means, in the case
IP (T) there is a T’ IP (T) with t(T’) +/.t (T’) t(T), and thus T’ N. As there is
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only a finite number of tasks in the system, there must be a T N with IP (T) . From
TR we get t(T) 0, hence o)(S) l(T) w(SOP).
Summarizing the above discussion we can state"

LEMMA 2. If S is a nonpreemptive schedule with Ro f, then S is optimal.
Now we are going to prove Theorem 2. Some basic ideas are similar to those which

are used by Kaufman in [11].
PROPOSITION 1.

(m-l)w(SL)
<-1+

w(SOP)- (m + 1)"

Proof. Let G be a tree-system and SL be a LP-schedule for G on m identical
processors. Because of Lemma 2 R0 # is assumed. From the definition of R and Ro
we know that r=max{t(T)/TRo}#O and /SL(x)/=m, for all x,O<=x<r. With
q w (SL) r we get o) (SOP) >- r + q/m. If r -> q, then

(1o.__.(SL
<_ 1 + _-< 1+.

w(SOP)- q m+l
m

Now suppose r < q. By definition of r there exists a subchain C with length l(C)= q,
starting time r and finishing time w (SL) r + q. Lemma 1 implies that each task T of set
AI={T/t(T)+IX(T)<=r} or of set A2={T/t(T)<r<t(T)+IX(T)} has length l(T) >-
l(C)=q.

To get a lower bound for 0 (SOP) we transform G into a system G’ in the following
way.

Split up each T e A2 into a subchain T’< T" with ix (T’)= r-t(T) and ix (T")=
ix (T)-ix (T’). Let B consist of all those T’ and of all tasks in A 1. Note that for each
T B we have ix (T) -< r and l(T) => q. Thus each T e B has a successor T" with
I(T") l(T)-ix(T)>-_q-r. Moreover, by construction we have TeBIX(T) rm.

Furthermore, if there is a task T in the subchain C with (T) > q r > (T) -/x (T),
then split up T into T’ < T" with ix (T’) (T) (q r) and ix (T") ix (T) ix (T’). Note
that l(T")=q- r. If there is no such task, then let T" denote that task in C with length
l(T") =q-r. Let D consist of all those tasks T of this new chain having length
(T) > q r. Obviously T" is a successor for each T e D and YTeD ix (T) r.

Thus each task T e B CI D has at least one successor T" with l(T") >- q r. Since in
an optimal schedule SOP’ for G’ there is at least one such T" after executing all tasks in
B LI D, we conclude

oo (SOP) >= w (SOP’) >= (-) Y ix T) + q r
TeB’D

rm+r r r
=+q-r=q+-->r+--

m m m

Hence

r+q m-1(SL)
< < 1 +

o) (SOP) r m + 1
q+--

m
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5. Bounds for chain-systems. In this section we give a proof for Theorem 4. Since
every chain-system G (if, <,/) is a tree-system, we are allowed to use some results of
4. For a LP-schedule SL let R0 be defined as before. From Lemma 2 we know that

Ro yields to (SL)/to (SOP) 1. Therefore R0 # is assumed for the remaining part
of this section. As above let r and q be real numbers defined by r max {tsL(T)/T e R0}
and q toL--r, where tOL is an abbreviation for to(SL). Moreover, we shall use tOop
instead of to(SOP).

To have a good estimation for a minimal schedule length for a task system G we
now construct a new task system G’ in the following way (compare Fig. 1):

1. Remove all chains C with l(C) < q. Note that Lemma 1 states that such a chain
is not started in SL before the time point r.

1/8 ,X3/2

Yx2/2 4/8

_X5/2

6/5

"X7/2

X8/9 X9/6 -X11/2

Xio/2

(X1’X3’X5’X8’X9’X4’X6’X2’X7’X10’X11) generates the LP-schedule:

R X6,X9,X10,X11

r t(X6) 8.

q L r 7

Ci

X ,X2

X3,X4

X5 X6 X7

X8

X9 ,X10

l(C i

10

I0

i i

X

X4

X6

X8

X9

i (T*
i

0

7

9

.
u(T i)
8

t(T[)
0

I 11 5

8 no 5

2 10 yes 5

4 9 yes 6

5 8 no 5

a.

u(Ti)

Ui<Vi
yes

yes

no

yes

yes

(Vi)
5

t.

FIG. 1. Example for a chain-system.
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2. Let m +k, k -> 1, be the number of chains with length greater than or equal to q.
These chains are called main chains. (Note that k _-< 0 yields Ro- .) In each of these
chains Ci, 1 <- <- m + k, there is a task T* with

tsL( T* <-- r and TS >-_ q > T* lz T* ).

For i- 1,. , m +k let

ai l(T,.* q and ti tsL(T*i + ai.

If ai--0, then rename V/= Ti*.
If ai # 0, then split up T* into a subchain of two tasks Ug < Vi with

tz(Ui)=a and tx(Vi)=tx(T)-ai.

Let H {i/ti r} be the set of indices of those V which "start in SL" at time r.
Rename T V for all H. LetJ ={1,. ., m + k}-H ={i/tg <r}be the set of indices
of those Vi which "start" before r. For J do the following:

If tsL(T* +/x (T*) -< r, then Ti V/and/xi (T/) =/x (V).
If tsL(T/* +/z (T*) > r, then split up V into a subchain Ti < W/with

and

txi ix(Ti) r- ti r- tsL(T*i )-- ai,

/x (W/) -r + tsL(T/* )+/x (T/*).

Note that for all Ti, 1, , m + k, we get l(T/) q.
For brevity we write I {1,. ., m + k}. For all I let

li= l(Ci)-l(Ti)= l(fi)-q.

The following lemmas are evident.
LEMMA 3. If Oop is the schedule length of an optimal schedule for G, and o’op that

for G’, then Oop _-> o ’op.
LEMMA 4.

E li+ , tzi=rm.
iI iJ

We now state some technical results which will be used frequently in the sequel.
Lemmas 5 and 6 give some insight into the dependence of the various quantities given
by the construction of G’. Both results will be used in the proofs of Lemma 7 and 8
which give lower bounds for Oop. These bounds are needed to state Proposition 2
containing the fundamental part of Theorem 4. Moreover, Proposition 3 will make use
of Lemma 7. Let h =/H/be the number of those subchains with length q starting at
time r.

LZMMA 5. Let A and B be disjoint subsets of J. Then

E (l,+tzi)>-r(/A/+/B/+h-k) ,, (li-lJ,i)-E li"
iaA iB iH
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Proof. From li +/xi -< r for all J and Lemma 4 we get

rm Eli + E
iI iJ

Y’, li+ . (li+#i)+ ., (li-t-tzi)+ ., (li-[-Ii)
iH iA iB iJ-(At_JB)

2 li "Jr- 2 (li’3t"ld’i) - 2 (li+t-t,i)+r(/J/-/A/-/B/)
iH iA iB

Thus, with/J/= m + k- h,

2 li -lt- (li-t- [.i) -- 2 (li Jr- tZi) >-.r(m -/J/+/A/+/B/)
iH iA iB

r(/A/+/B/+ h k).

LEMMA 6. If m >=k-h >0, then there exists a set B J with/B/= 2(k-h) and

iB d’i (k h )r.
Proof. Let So, sl, and sz be respectively the number .of processors to which 0, 1, and

at least 2 tasks T, J, are assigned. Let F be the set of indices of those tasks T*, J,
assigned to the s2 processors.

Suppose [= /F/ -> 2(k h). If s2<-k-h, then pick any subset B of F, /B/=
2(k- h). Then 2iB [’Zi s2r <= (k- h)r. If $2 > k- h and B’ is a set of indices of tasks
assigned to k h of the s2 processors, then/B’/>= 2(k h). In this case pick a subset B
of B’ to fulfill the lemma.

On the other hand, if f < 2(k h), we can take B to consist of F and any 2(k h) -]
indices of the rest of J. Then iB/xi <- (sz + 2(k h)-f)r. But So + sl + s2 m and

f+ s m + k h imply [- s2 >= k h, thus iB txi <- (k h )r.
Now let x WL Wop, that is, Wop r + q x. The following two lemmas give lower

bounds for Wop depending on this difference x.
LEMMA 7. If m > k and r>-_q, then m(q-x)>-(2k-1)q-(k-1)r.
Proofi Obviously from Lemma 4

(1) m(r+q-x) >- (li+q) ’. li+ (Ixi+q-txi)+hq.
iei ii iJ

rm + (q-lxi)+ hq.
iJ

In the case k- h > 0 let B be a subset of J satisfying Lemma 6. Then we get
i](q-txi)>-Y.in(q-lxi)>-2(k-h)q-(k-h)r, and with (1) and r>=q,

m(q -x) >- 2(k h)q -(k h)r + hq (2k h)q -(k h)r

(2) (2k 1)q-(k 1)r + (h 1)(r- q)

>=(2k-1)q-(k-1)r.

On the other side, if h >- k >- 1, then (1) and r >-q immediately imply

m(q -x) >- hq >= kq (2k 1)q -(k 1)q
(3)

_-> (2k- 1)q-(k- 1)r.

> /(2k- )+LEMMA 8 If m > 3 k 1 then tOop x q.
Proof. Assume that tOop r + q x < xk/(2k 1) + q or equivalently

(1) r < (2/k_ 1
+ 1)x.
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In a given optimal schedule SOP let ti denote the starting time of each task T, L If
there isan el with ti >=xk/(2k- 1), then tOop>=ti + l(Ti)>=xk/(2k 1)+q > tOop, which
is a contradiction. We may therefore assume that

xk
(2) to max ti<

iI 2k-l"

If k- h >0, then let B c__J be a set with /B/= 2(k- h) and ,gB lzi <= (k- h)r. The
existence of such a set is guaranteed by Lemma 6.

Three sets of indices are defined in the following way:

fI-(HUB) if k-h>0,
D (I H J otherwise;

(3)
E {i/i D, lg + txi <= to}

F {i/i D, lg +/x > to}.

Let be d =/D/, e =/E/, and f=/F/. Note that

(4) /E’/. to Y’. (I, + [dl.i) O,
iE’

for each subset E’ of E. Now set rg--li + tJ, for each F and r0--to. Furthermore
assume that F {1, ., f}, provided F # , and

rl<--r2 <-’ ’--r[.

This is always possible by rearranging the indices. Now we prove the following
statement.

(5) If k > h, then there is a subset A of D with/A/= k and

Y (I, + q) _-< (2k h )0)op-- E (li d- lUl, i) + kto.
iHLJB iA

If e -> k, then take any subset A of E -< D with/A/= k, and by (4) we immediately get
(5).

On the other side consider e < k. Then we have

f =d-e=m+k-(2k-h)-e
m-k +h-e >3k-l-k+h-k >-k.

We know that all tasks T, F, start on execution not later than to and are ready with
execution not sooner than r. Thus, in the time interval Ira-l, ri), 1 <- =< f, all tasks T.,
with =</" -< f, are assigned to some processor. Therefore at most rn (f- + 1) proces-
sors are available during [r-l, rg) for the tasks of the main chains Cj, B t_J H. Set
a k- e, and note that for <-a

m-(f-i+l)=m-(d-e-i+l)

=m-(m-k+h-e-i+l)

=k-h+e+i-l<2k-h.

Generally the 2k- h main chains Q, j B CI H, may be assigned to at most 2k- h
processors. But this is only possible during the time intervals [0, to) and Ira, Wop) as
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shown above. Thus we conclude that the following inequality must hold:

l(Ci)<-(2k-h)to+(2k-h)(tOop-ra)+ , (k-h +e +i-1)(ri-r_l)
i=1

(6)

=(2k-h)(tOop+to-ra)+ i(r-r_l)+(k-h+e-1) (ri--ri-1)
i=1 i=1

a-1

(2k h)(cOop + to- r) + ara , ri- ro +(k h + e 1)(ra r0)
i=1

a-1

=(2k-h)toop+(k-(e-1))(to-ra)+ar-to- ri
i=1

a-1

=(2k-h)toop+(a + 1)to- (a + 1)r +ar-to- , ri
i=1

(2k h )tOop "+" ato- , ri.
i=1

Set A E U (1,..., a). Then from (4) and (6) follows

(li+q)<-(2k-h)toop+ato ri+eto- , (li+tzi)
i=1 ice

(2k h)toop + kto , (! +
iA

and (5) is proved. In view of Lemma 5 and (5) we conclude

, l,+(2k-h)q= l(Ci)
iBI_JH iBI_JH

<- (2k h )coop + kto- . ([i q- i)
iA

<-_(2k-h)toop+kto-r(/A/+/B/+/H/-k) + , (li--I-[Ul,i)q-- 2 li"
iB iH

By Lemma 6 follows

(2k h)q <= (2k h)toop -- kto- r(2k h) + Ixi
iB

_-< (2k h )(r + q x) + kto- r(2k h) + (k h )r,
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and with (1) and (2),

0 _-< -(2k h)x + kto + (k h)r

<-(2k-h)x+k 2krk-1 +(k-h) l+2k 1
x

k
-(2k h)x + (k h )x +2k 1

(k + k h)x

2k-h
-kx + kk2 1

<= -kx + kx O,

which is a contradiction. Thus for this case the assumption (1) cannot be true.
If h => k, then there is a subset A of D with/A/- k and

(7) E l(Ci) <= hoop- E (li + txi) + kto.
iH iA

The proof technique is the same as that for (5). If e => k, then take any subset A of E
with/A/= k, and (7) follows immediately from (4).

If e < k, then define a k-e. Note that (3) and m-> h yield f= m + k-h-e->
k-e >0. During the time interval [ri-1, ri), 1 <-i <-f, all tasks T/ with i_-<j-<_f are
assigned to some processor. Thus for the h main chains Ci, H, only m- (f-i + 1)
processors are available. Analogously to (6) we conclude;

l(Ci)<=hto+h(wop-r)+ (h-k+e-l+i)(ri-ri_l)
iH i=1

a-1

=h(wop-ra+to)+(h-k+e-1)(ra-ro)+ara- ri-ro

(8)
i=1

a--1

hroop-(a + l)(ra-to)+ara- E ri-to
i=1

hogop- ri + ato.
i=1

With (4) and (8) it is easily checked on that A E t_J {1,..., a} fulfills (7).
From (2), (7) and Lemma 5 we derive

-}" hq l(C)
iH iH

<=h(r+q-x)-r(k +h-k)+ Y li+kto,
iH

and thus 0 < -hx + k(k/(2k 1))x -<_ 0, and this is impossible. Therefore the assumption
(!) cannot be true, and the lemma is proved.

Now we can state the main part of the proof for Theorem 4.
PROPOSITION 2. Let G (, <, ) be a chain-system to be scheduled on m >= 2

processors. If m + k, 1 <- k <- (m + 1)/3, is the number of main chains in G, then

WL (m 2k + 1)(2k 1)
_-<1+

(m-2k+l)(3k-1)+k2"
Oop



NONPREEMPTIVE LP-SCHEDULING 163

Proof. Set (.Oop r / q x. If x 0, then there is nothing to prove. So if x > 0, then
there is a real number b > 0 with

(1) O)op bx + q,

or equivalently

r=(l+b)x.

Thus we can write

x
(2) OL.=r+q=1/

tOop r + q x bx + q

Lemma 8 states that

(3) b_->
2k-l"

If q > r, then q > (1 + b)x, and with (2) and (3) we get

tOL

(.Oop

x 2k-1
<1+__<1+

2bx + x 4k 1

(4) 1+
(m-2k+l)(2k-1)

(m -2k + 1)((3k- 1)+ k)

(m 2k + 1)(2k 1)
(m-2k+l)(3k-1)+k"

In the case r => q, Lemma 7 gives

(5) (q -x)m >--- (2k 1)q -(k 1)r.

With (1) follows q(m-2k / 1)/m >-x-(k-1)(1 + b)x/m, and thus

(6) k-1q=> 1- (l+b x.
m-2k+l m

Therefore from (2) and (6) we conclude

(7)

tOL 1-
x

O)op bx + q
bx + 1-. (1 + b) x

m-2k+l m

m-2k+l
b(m -2k + l)+ m-(k-1)(l + b)

m-2k+l
b(m-3k+2)+m-k+l
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Since m 3k + 2 -> 0 and b >= k/(2k 1), we have

(8)

(.OL (m 2k + 1)(2k 1)
_1 <
Oop k(m-3k +2)+(2k-1)m-(2k-1)(k-1)

(m 2k + 1)(2k 1)
m(3k-1)-5kE+5k-1
(m-2k+l)(2k-1)

(m-2k+l)(3k-1)+k2"

PROPOSITION 3. If there are m + k main chains and m <= 3 k 2, then

(.OL m-1
-<1+

2m-l"O)op

Proof. As above let WL r + q, Wop r + q x, and x > 0. Note that

m-k 3m-m-2 m-1
(1) -<

m+k-3m+m-2 2m-1"

First assume that (.OL 2q. Then Wop >-_ (m + k)q/m and (1) imply

2mq m -k m 1(’0L =1+_<1+
Wop (m+k)q m+k- 2m 1"

In the case (.OL > 2q, let be r q + y, y > 0. By r + q/m <- Wop r + q x we get mx <-

(m- 1)q. Thus for y-x >-_-q/m we may conclude

(.0L X (m l)q m 1
=1+ -<_1+=1+
O)op 2q + y X 2mq q 2m 1"

If y-x <-q/m, then (m +k)q <--toop. m<2mq-q, and thus k <m. Therefore we
allowed to use Lemma 7 claiming m(q-x)>=(2k-1)q-(k-1)r=kq-(k-1)y, or
equivalently

(2) (m-k)q>=mx-(k-1)y.

Thus from (2), 3k 2 m ->_ 0, and y < x, we get

(m k)wop (m k)(2q + y -x)

(3) >= 2mx 2(k 1)y + (m k)y -(m k)x

(m + k)x-(3k-2-m)y ->2(m -k + 1)x.

Therefore from Wop-> 2x + 2x/(m k) >= (2m 1)x/(m 1) we get

WL X m--1
_I+--<__I+

(-Oop (-Oop 2m 1"

Note that the bound given in Proposition 3, 1 + (m 1)/(2m 1), is the same as in
Proposition 2, if k is restricted to k 1. That is, to describe worst-case behavior we
only have to consider chain-systems with m + k main chains, where 1 -<_ k _-< (m + 1)/3.
This will be done in the next section.

Remark. In [5] there is given a generalized bound on LP-scheduling for indepen-
dent systems. A more detailed result for chain-systems may be formulated in the
following way"
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If there is a chain-system with m + k main chains, then

(.OL

0.lop
<=1+

(.Oop

(m -2k + 1)(2k- 1)
(m-2k+l)(3k-1)+k2

WL m- 1
<_--1+

2m-1

for 1 =<k_-<(m +1)/3;

for (m +l)/3<k_-<m-1;

<=1+ fork>m-1.
(.Oop m +k

6. Examples for chain-systems. In this section we show that the bound given by
Proposition 2 is the best possible one. First of all note that 1 <= k <= (m + 1)/3 implies
2k -_< m, hence -2k 2m -<_ -m -4k, and

4km-2k-2m +1 <=4km-m-4k + l,

or

(2k 1)(2m 1) <_- (4k 1)(m 1),

and thus

2k-1 m-1
4k-l-2m-1

Therefore m 3k- 1 yields

(m 2k + 1)(2k 1) k (2k 1)----Y-L<=I +
(m-2k + 1)(3k 1) + k2=

1 +
09op k((3k-1)+k)

2k-1 m-1
--<1+-14
4k-l- 2m-l"

That is, to find the best bound we only have to consider the cases where

(1) l_-<k<
(re+l)

But it is easy to find a chain-system which describes the worst-case behavior for the case
k (m + 1)/3. Now define

(2)

x (2k 1)(m 2k + 1),

r=(3k-1)(m-2k+l),

q (2k 1)(m k + 1)-(k 1)k (2k 1)m -(k 1)(3k 1),

y=(k-1)(m-2k+ 1) (2kk211) x
z r-x k(m -2k + l)= (kk__ l)X.
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Note that m > 3k 1 => 1 implies x > 0, r > 0, and q > 0. It is easy to see that

(3)

r-q=k(m-3k+l)>O,

q-x=k2>O,
z+y=x and z+q=r+q-x.

For brevity we set p m -2k + 1. Now let G (-, <,/x) be a chain-system which is
defined as follows:

={TJi 1,..., k} U{Ui.Ji 1, p, ] 1,..., r-q+1}

U{V,Ji 1,..., k, j=O, y +1}

U{W,Ji 1,..., k-l,]= 1, 2}.

2. Fori=l,...,plet

gi,1 < gi,2 <" < gi,r-q+l

tx(Ui,)= 1 for ]= 1,..., r-q, /x(U) q.

3. For i= 1,..., k let

/x(T/) r

and

withV V/,0 < V/,1 <’" < V/,y < V/,y+l Vi,

/x(V/*)=z, /z(V,)=l forj=l,...,y, iz(V;)=q-x.

Note that V* z + y + q x q.
4. Fori=l,...,k-llet

Wi,1 < Wi,2, with

[.(Wi,1)-’X and /z(W/,2)=q-x.

Note that I(W.I)= q.
If k 1, then the set {W,i} is empty, y 0, and z x. The only thing to do is to

assign the tasks V and V to processor P (compare Fig. 2).
Obviously the schedule shown in Fig. 2 is a LP-schedule, and so we have

O)L=r+q.

Now we show that the schedule given by Fig. 3 is optimal. There are only two little
problems to be understood.
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k

k+1

2-I UL_I, 11
m-k+1

m-k+2

T

T

Tk

Uk-] ,r-q

Wk-1 ,I

r-q

Vl q-x+l

k-I Vk- .,q-x+l
1,2

L q

r+q-x r+z

FIG. 2. LP-schedule for a chain-system.

r+x r+q

k+l

T
k v

2k

2k+I u1, Um-3k+2,

0

Uk+1, r-q
-I-

U+

WI,1

FIG. 3. Optimal schedule ]:or a chain-system.

op
q

r+q-x
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1. For/x(Ui.j)= 1, for all 1,...,p and j= 1,..., r-q and

p r--q

E Y. P,(Ui4)=P(r-q)
i=1=1

(m- 2k + 1)k (rn- 3k + 1)

=(m-3k+l)z,

it is possible to execute these p(r-q) tasks in z time units on m- 3k + 1 processors.
2. Similarly, if k > 1, then ky tasks Vi, can be executed on the k- 1 processors

Pro-k/2,’’’, P,, in the time interval Ix, r). This is an immediate consequence of the
following equation:

k

Y 2 tx(V,i)= ky k(k 1)p (k 1)(r-x).
i=1 /=1

Thus we have by (2) and (3)

oi x (2k 1)(m 2k + 1)
=1+ =1+
Oop r +q-x (3k- 1)(m -2k + 1)+ k2"

6. Examples for anti-tree-systems. The general structure for all examples is shown
in Fig. 4. For an integer k -> 2 an anti-tree-system G (3, <,/z) is defined by

Y= {VJi = 1,..., k-l} U{UJi= l, k}

U{Ti.i/i =0,..., k-2,]= 1,..., m-l-i}

U{FJi= 1,..., m-l}.

V TO,I TO,2

U2 /l, T2,2

TO %m-2

TI ,m-2

T2,m-3

eTo,m-1

V

Vk-

Ukr U
k

F F Fm-

FIG. 4. Structure of an anti-tree-system.
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2. Fori=l,...,k-2,1et

g/<u.

V<Tu forj=l,...,m-l-i,

Vk-1 < Uk-1 and V-I < U.

3. Let m 2 1. Then the execution times of the tasks are defined as follows:

for i- 1, , k-l,

for i- 1,..., k,

for =0,..., k-2; ]=1,...,m-l-i,

for 1, , m-1.

Note that for 1,. ., k-2
8

(u,) , (u,) k + (U,+) (+).

The e is thought to be real and less than 1/2k. The LP-list L=
(V1, U1, V2, U2,. U,_I, U, T-2.1," To.,,-1, F1," ", F,,-1) generates a LP-
schedule SL with

k-2

OL o)(SL) Y 2 + 2-1 2k
-e= -1-e.

i=0

SL is shown in Fig. 5.

k-1

k+1

(---V

TI ,2 I T2’I

U

U

U

U

TO,k-2

TO,k-1

T1,k-3 T2,k-4

T1,k-2 T2,k-3

T1,k-1 T2,k-2

Tk-3,2 Tk-2,

Tk-3,3 Tk-2,2

rO,m- TI ,m-2

O (To,

T2 ,m-3 Tk-3 ,m-k+2 Tk-2 ,m-k+1

k-2

mL i__O (Ti,l) + (Uk)

(Ti,

FIG. 5. LP-schedule of an anti-tree-system.
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A list which generates an optimal schedule is, for example,

Lop (V," ", Wk-1, F1,""", Fro-l, U1," ", Uk-1, rk-2,1, rk-2,2," ", rq,m-1).

The optimal schedule is shown in Fig. 6. For the schedule length we get

(-Oop 2k- + e.

Vl ,Vk_

U [

!.Fk-

k+3 Tk_

k+2 Tk-2’2

Tk-2,m+1-k

Tk-3,m-k

l’iTk_2,m_k Tk-3,m-k-1 Tk-4,m-k-3 To,m-1

2k-2+ 2k-2+2k-3+ 2k-I+
k-1op

FIG. 6. Optimal schedule for an anti-tree-system.

The problem is to show that it is possible to execute the set of tasks {T.Ji
0,..., k-2,f= 1,..., m-l-i} on m-k processors in 2k-1 time units. Note that

k-2 k-2 k-2

E (k-1-i)2’= Y Y T= E (2’+a-l)
i=0 i=0 /’=0 i=0

2(2k-1-- 1)-- (k- 1)

=2k--l--k

Thus we can conclude

k-2 m-l-i

i=O

k-2 k-2 k-2

/x (Tu) Y. (m 1 i)2 (m k) Y 2 + (k 1 i)2
=0 =0 =0

=(m-k)(2k-l-1)+m-k
=(m-k)2-1.
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Therefore we get

0L 22k-l-l-e
O)oo 2-1 + e

1+3e 2+6e
=2--2k--2--2-1+e

;2- =2
2
-1+.

-.o m+l m+l

But there are anti-tree-systems and certain m-processor-systems such that
WL/0op > 2-- 2/(m + 1). For example consider the case where m 10 and k 3. For the
task system G (3, <,/x) let be the task set 3, the structure, and the indices the same as
in the example above. The execution times of the tasks are defined by

i-1
/x(Ui) 6--x-- e for i= 1, 2, 3,

/,(To,,) 2

.(T1,;) 3

8
/x(V/) for i= 1, 2,

/x(F/)= e for 1,..., 9.

For the LP-schedule as shown in Fig. 5 we then have

(.OL =/z (To,l) +/z (T1,1) +/z (U3)= 11- e.

It is easily shown that an optimal schedule has schedule length

O)op 6+ e.

Thus we have for e 0

OL 11 1 2 2
+=2- >2-i-=2-Wop 6 m+l"

8. Conclusions. In this paper we have analyzed worst-case behavior of longest
path schedules for three classes of dependency structuresmtrees, anti-trees and chains.
The exact bounds for tree- and chain-systems and the asymptotic bounds for all of the
classes were determined. However, determining the exact bound for anti-tree-systems
is still an open question.

Appendix. For an integer m->5 let g.,(x)=(m-2x + 1)(2x-l) and h,.(x)=
(m-2x + 1)(3x- 1)+x2 be two functions defined on E={x/.5<x <(m + 1)/3+.5}.
Then for all xeE we have h,,,(x)>g.,(x)>O, and thus f.,(x)=g.,(x)/h,(x)>O is
differentiable on E. Let x,. defined by x. (/1 +2m-1)((m + 1)/2m). We want to
show that

(1) a.,= max .(k)=max{f,,,([x.]),fm([Xm])}, and
l<=k<=(m+l)/3
k integer

2
(2) lim a. =-.
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We get the first derivative of fm by the well-known formula f’=
(g" hm-gm" h)/(hm)2. It is easily shown that (hm (x))2. f’(x)
-2mx2-2(m + 1)x +(m + 1)2, and thus f(x)>-O iff x2 + ((m + 1)/m)x-
(m + 1)/(2m) -< 0. That is, fro(x) has only one local maximum on E in xm. A short
computation gives 1<= LXm] <=Xm -< [Xm] <--(m + 1)/3. Moreover, note that f’(x)>0
iff .5 < x < Xm, f(X) 0 iff X Xm, and f(x) < 0 iff Xm < x < (m + 1)/3 + .5. Thus to get
the maximum value for fm (k), if only integers are allowed, it must be those nearest to the
real maximum. But these are [XmJ and [Xm], and (1) is proved.

Now let kin, [XmJ --<-- km __<- [xm], be that integer satisfying am fm(km). Evidently we
have

(3) am
(m-2km+l)(2km-1) <2km- 1 2

(m -2km + 1)(3km 1)+k 3km 1 3"

Moreover, we get Xm -< /1 + 2m--1 <=2/--1 and thus km-< 2/. If m >-64, then
4-4 >- 4/2 and therefore

k2 4m 44m
m-2km + 1-m-44G 4-4

This yields

2km-1 2km-1,> form>-64.k 3kin+7
3kin-l+

m-2km+ 1

Since {km} is unbounded, we get limm-,oo am >-; hence with (3) we have (2).

Acknowledgment. The author wishes to thank the referees for their helpful
comments. In particular, the proof of Lemma 7 is due to one of the referees.
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OPERATOR PRECEDENCE GRAMMARS AND THE NONCOUNTING
PROPERTY*

STEFANO CRESPI-REGHIZZI’, GIOVANNI GUIDAf AND DINO MANDRIOLIf

Abstract. The notion of noncounting language, initially introduced for regular languages recognized by
counter-free finite machines, and recently extended to parenthesized context-free languages, is here further
studied for general (i.e., nonparenthesized) context-free languages.

While weakly equivalent context-free grammars do not, in general, fall in the same class with respect to
the noncounting property, it is shown by a complex proof that weakly equivalent operator precedence
grammars are all counting or all noncounting (a property which distinguishes the operator precedence
languages from classical deterministically parsable families).

Key Words. context-free, noncounting, operator precedence, parsing, derivation

1. Introduction. Counter-free machines and their languages (noncounting
languages) have been widely investigated in the literature of formal language theory 1 ],
[8], [9], [10], [14], [18]. Intuitively, a counter-free machine is a finite-state automaton
without the capacity of counting modulo n > 1; i.e., which cannot distinguish two strings
which differ only in the number of repetitions of some substring.

Noncounting regular languages (or events in [9]) have been proved to have several
interesting algebraic properties and relations with other classes of languages; e.g., they
are characterized by a syntactic monoid having only trivial subgroups, they are the
closure with respect to Boolean operations and concatenation of locally testable events,
they can be characterized by star-free regular expressions [9], [15], [16], [17].

More recently 1 ], it has been observed that the noncounting property can be found
even in languages which are not described by a regular grammar but by a context-free
grammar; e.g., in no natural language is a noun phrase required to have an odd number
of adjectives; Algol does not impose writing programs with a number of blocks which
multiplies, say, 3 [1], [23]. It seems therefore a reasonable goal to extend the notion of
noncounting languages to the context-free model.

In [1], we have formalized the notion of noncounting for parenthesis context-free
languages [2], [4], [5] or, equivalently, sets of trees recognized by tree-automata [11],
[12], [13], as a natural extension of the notion of noncounting events stated in [9].

It was realized that some properties of noncounting events naturally extend to
noncounting context-free parenthesis languages and grammars, notably the charac-
terization in terms of permutation-free graphs [1], [2], [9], while for other properties
several difficulties, if not altogether impossibilities, arise [1].

In this paper, we raise the question whether it is well-posed to define noncounting
general (i.e., not parenthesized) context-free languages; the problem ig shown to be a
nontrivial one. The answer is shown to be positive for operator precedence languages.
The main result states that the noncounting property for an operator precedence
language does not depend on the particular structure (parenthesization) of the
language.

As a by-product, new algebraic properties of operator-precedence languages are
added to other previously studied ones [3], [6], [7].

* Received by the editors April 17, 1979 and in revised form June 25, 1980. This work was supported by
CNR.

+ Istituto di Elettrotecnica ed Elettronica del Politecnico di Milano-Politecnico di Milano, Piazza
Leonardo da Vinci, 32, 1-20133 Milan, Italy.
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The paper is organized as follows. In 2, basic formal definitions are given; in 3,
the noncounting property is briefly discussed and the main result is introduced; 4 is
devoted to the proof of the main theorem, and 5 to the discussion of the result and of
possible extensions.

2. Basic definitions. Let G (N, T, P, $) be a context-free (CF) grammar, where N
is the nonterminal alphabet, T the terminal alphabet (not containing "[" or "]"), P the
production set and S

_
N the set of the axioms of G. The parenthesis (P) grammar

associated to G is t (N, ,/, $), where T {[,]}, P {A fee ]IA c P} [1 ],
[2]. G is the CF grammar underlying .

We adhere to the following conventions, unless otherwise stated. Nonterminal
characters are denoted by upper case italic letters, terminal characters by lower case
italic letters from the beginning of the alphabet, terminal strings by lower case italic
letters from the end of the alphabet, and strings over N LI T by lower case Greek letters.
e denotes the empty string. Furthermore, *x will denote any cyclic permutation of x"

different occurrences of *x will not denote in general the same permutation of x, unless
the contrary is explicitly stated.

Let lal denote the length of the string c. For a CF(P) grammar G and a
+

nonterminal A, A c denotes a derivation of G of length and A a (resp. A :=> a)
G G G

the reflexive and transitive (resp. transitive) closure of =:>.
G

Let L(A) {x]A => x, x T*}, and L(G) Us,sL(Si), the language (resp. P
language) generated by a CF grammar (resp. P grammar) G. Assuming that for a CF
grammar G (N, T, P, $), each production of P is labeled by an identification number

in t (where t is the set of natural numbers), A c, with r /, denotes a parsing.
[4] corresponding to the derivation A :=> a. Let T be a terminal alphabet riot containing

"[" or "]" and 7 T {[,]}. We define the homomorphism h" 7 T, sucli that

h(a)=a for anyaT,

h ("[") h ("]") e.

The stencil [2] of a string a (TN)+ is the string u =/(a) in (T LI {-})+, where "-"
is a new character and is the homomorphism f(a)= a for any a T, f(A)=- for
any A N. For a string c,(1)a(resp, c (1)) denotes the leftmost (resp. rightmost)
terminal character of a.

Two grammars G and G2 are weakly equivalent (resp. strongly equivalent) iff
L(G1) L(G2) (resp. L(I) L(2)).

A string Z 7x* is well-parenthesized (w.p.) iff there exists a P grammar ( such
that

Si , Si S.

A CF (P) grammar is backwards-deterministic (BD) or invertible iff no two produc-
tions have the same right part [2]. A CF(P) grammar is reduced itt no two distinct
nonterminals A and A2 are equivalent (A and A2 are equivalent [2] if for every
context a -/ such that a/ is w.p., either both cA/ and cA2/ are derivable from some
St eS in the grammar or neither one is derivable) and it has no useless nonterminal [2].
It is known from [2] that:

STATEMENT 1. Every P grammar has a strongly equivalent BD reduced P grammar
effectively obtainable from it.
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We refer to [3], [4], 16] for the definition of operatorprecedence (OP) grammar and
we recall from 16] the definition of Fischer Normal Form (FNF) and of structural
equivalence.

An OP Grammar G (V, VT, P, S0), where S0 VN, is in FNF iff
(1) G is invertible;
(2) So does not occur in the right part of any production of P;
(3) there are no renaming rules except those with left part S0 (if any).

Structural equivalence is the same as strong equivalence (v.s.), except that it refers to
the following slightly different definition of parenthesization of an OP grammar,

(N, P, So),

where

f" T (_J {[,]},

/3 {A --> [a ]l A --> a s P and a N},

(that is, renaming rules are not parenthesized).
It is known [6] that:
STATEMENT 2. For each OP grammar a structurally equivalent OP FNF can be

effectively constructed. 3
In this paper, we assume a slightly different definition of OP grammar; namely,

consistently with the above definition of CF grammar, we allow an OP grammar to have
a set of axioms S N, instead of exactly one axiom as in [3], [4]. As a consequence, the
FNF, now devoid of renaming rules [6], will be called a modified FNF (mFNF).

Statement 2 holds with the clause "FNF" substituted by "mFNF" and, therefore,
without any loss in generality we shall consider in the sequel only OP grammars in mFNF.

Note that for OP grammars in mFNF the two concepts of strong and structural [6]
equivalence exactly match.

An operator precedence parenthesis (OPP) grammar is a P grammar such that its
underlying CF grammar is OP (in mFNF).

STATEMENT 3. Every OPP grammar G (in mFNF) has a strongly equivalent BD
reduced OPP grammar (in mFNF) effectively obtainable from it. 71

Proof. The hypothesis G is in mFNF implies that G is BD and does not contain
useless nonterminals. An algorithm is well known [2] for obtaining from G a strongly
equivalent BD grammar G’ without equivalent [2] nonterminals. Since G and G’ are
strongly equivalent, their precedence relations on T are identical by virtue of an
obvious extension to mFNF-grammars of a result given in [7, Statement 2.3] for
FNF-grammars.

Let C (N, , AS, S) be a P grammar. The language L((), or, equivalently, (
itself, is noncounting (NC) iff there exists an integer n >0, such that for any, 5, if, t, )7 7*, such that if, t;ff5 are w.p., and for any integer rn > 0, t;"ffS")7 eL(C))
iff +"5+’ L() [1].

It is a straightforward consequence of the properties proved in 1] that we have the
following:

STATnMnNT 4. L(() is NC iff there exists an integer >0 such that, for any, , , , f’* such that , are w.p., and for any integer n >-_ t, L(()
implies 5"++;L(). [q

Let ( be a P grammar.
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+
A derivation A => d is cyclic iff d --/A3.

o +
A cyclic derivation is counting itt it is of the type A dA with m > 1 integer,

+
and no derivation exists A =:> cA/ [1].

It is known [1]:
STATEMENT 5. Let be a BD reduced Pgrammar. L(t) is NC iffno derivation ofG

is counting.
LEMMA 1. Let G be a BD reduced P grammar. There exists an integer Q > 0 such

that L() is NC iff there exists an integer n > 0 such that, for any , , , , ’* such
that , vt are w.p. and I1, ItTI, [3[, [al, 1371-<- O, for any integer m > O,nffan L()

We omit the simple proof of this lemma, based on eliminating useless cyclic

derivations in Si :v and in Si ://. Details are in the homony-

mous report [-24]. For other usual concepts and definitions occurring in the following
pages but not explicitly recalled here, we refer to [4].

3. Discussion of the NC topic and introduction to the main result. The notion of
NC we introduced is suitable for context-free parenthesis (i.e., structured) languages; it
is a natural generalization of NC regular languages in the sense that the parenthesis
language L((), with G a regular grammar, is NC according to our definition iff
the underlying regular language L(G)= h() is NC according to McNaughton and
Papert [9].

Furthermore, the investigation of NC parenthesis languages can be relevant from
the point of view of grammar inference [1], [20]. ,

Incidentally, we notice that according to our definition, for a derivation A =. ’A
to be counting, both and must be the repetition of some strings t; and , n > 1 times: to
illustrate the point, a language such as L(Go), where (o is {S- [aAc], A--> [bA2c],
AE-)[aAlC]l[d]}, which counts an even number of c but only at the right end of the
string, is NC. It would be entirely reasonable to give other definitions leading to the
notions of left (or right) NC languages (not to be confused with the concepts of [22]).

On the other hand, the question naturally arises whether the NC concept can be
applied to general (i.e., unstructured) context-free languages. A first remark is that the
definition of NC languages cannot be applied to general CF languages (removing the
condition that if, and t;fft be w.p.) since all nontrivial languages would result counting.

Consider, e.g., the language L1 {a"b’lm >-1}. For no n would the requirement
for NC be verified, since for any n, we can choose x e, v a 3, w e, u b 2, Y b", and
find xv"wu"y.L while xv"/wu/lyL. On the other hand, we feel that every
reader would intuitively consider L as a noncounting language; this is due, perhaps
to the fact that its "natural" grammar G’ ={S-aSb, S-ab} generates a NC
parenthesis language L while the weakly equivalent grammar
G’ {S aBb, B aSb, S ab, S aaAbb, A aaAbb, S aabb}, which generates a
counting parenthesis language , appears to be far less "natural".

On the other hand, the intuitive tendency to consider L2 {a2cb2ln >- 0} as a
counting language has to be resisted since L2 is generated by two equally "natural"
grammars, tcounting and t NC, with G’2 {S -> aAb, A --> aSb, S -> c} and
{S --> aaSbb, S --> c }.

The goal of exactly defining the "natural" grammar of a language as a foundation
for extending NC concepts to unparenthesized languages seems elusive. However, in

In the conclusion, however, we present an interesting alternative definition suggested by a referee.
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case the language is operator precedence, a clear solution of the problem can be given
thanks to the main result of this paper" If two operator precedence grammars are weakly
equivalent, then either both are noncounting or both are counting.

As a consequence, a structural property of languages, to be NC or not, is in this case
independent of the particular structure given to the language. Intuitively, the main
result is due to the fact that the parsing of an operator precedence string does not
depend on the nonterminal alphabet of the grammar (Lemma 2), but only on the
precedence relations on the terminal alphabet; as a consequence, the parsing of n
repetitions of a string must be identical in any context. Furthermore, operator
precedence grammars allow the deterministic construction of any bottom-up parsing,
not necessarily of a reverse-rightmost one as happens for LR and simple precedence
grammars.

This result does not hold for other classes of classical deterministically parsable
grammars such as LR, LL or simple precedence grammars [4]. For example, the above
grammars G& and G are at the same time LR and LL, while G& is simple precedence
and counting, and the next grammar G3 generating the same L2 is simple precedence
and NC,

G3 {S - A 1B, X ABI, A - AX, B1 SB, A a, B b, X - c}).

Unfortunately, we have not been able to give a simpler proof of our result than the
one we propose; we feel this is a typical situation which requires the exhaustive
examination of several cases to characterize the behavior of the iterative pairs [21] of a
context-free language.

4. Main result. Let us first give two preliminary lemmas.
Let (N, 7,/5, S) be an OPP grammar and G (N, T, P, S) the OP grammar

underlying G.
Assume that corresponding productions in P and P have the same identification

number.
LEMMA 2. If

oaAa2a2 :: aalaaEa2,
G G

Si := 1ala22,
andf(a) f(/3), i.e., a and J have the same stencils, with Si, Si S, 01, 02, 0, jill, 2, fl
(N T)*, then there exists B N such that

Si =a a Ba29. =G
and, for the two derivations

p

A =:> , B => ,
(,;) c]

Intuitively, Lemma 2 states that the parsings of two strings identical up to the
names of nonterminals, within the same terminal context, must be identical up to the
names of nonterminals.

A proof by induction on the length of zr is given in [24], but is not reported here
since it is a straightforward generalization of [7, Statement 2.4], which formally states
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that parenthesization of OP languages depends only on the OP matrix, which in turn is
not affected by the nonterminal alphabet.

LF.MNA 3. (Fundamental lemma). Let ( be an OPP grammar and G the OP

grammar underlying (. If AA[3 where k>l, of/e(TUN)+ and (resp. )
displays only <. and (resp. > and precedence relations, then there exist, , such

that h() a, h([) fl and A=kA[k.
$

kof kk, (1) (1)0 (1) (1)Proof. Since A a kA[3 k a kArl it follows that of <. and fl >
G G

In order to prove the assertion, we must show, that ofA/ is a phrase [3 ], [6] of G; then by
Lemma 2, the thesis will follow. To this purpose, we shall utilize a" geometrical
construction.

2Let of oflof2 __Op, ofi " ofi+l

where for any 1,..., p, ofi (TU N)*, and if ofi contains the terminal characters
all, ai2, , ai,, in this order, then ail ai2, ai: "- ai3, , aini-1 aini.

Similarly, let

where for any/" 1,..., q,/3j (TU N)*, and if/3j contains the terminal characters
bji, bi2, bij in this order, then bi bi2, bi2 "- bi3, binj_l "-:- bin.

It is convenient to rename the substrings of in order to locate their positions
kwithin of

k
Of ofl/lof2/1 ofp/lofl/2of2/2" ofp/2" ofp/k,

where, for i, j 1, , k and n 1, ., p, ofn/i ofn/] ofn and

where, for i,j= 1,.. , k and n 1,. , q,
We can graphically represent the parsing [3], [4] of the sentential form of’A " in

the following way. Let us consider the first quadrant of an integer Cartesian plane/3, of;

we associate in an orderly way to the abscissas 0, 1, 2,. ., of the/3-axis the strings
[q/k, [q-1/k, q-2/k," 1/1, and to the ordinates 0, 1, 2,. , of the a-axis the strings
ofp/k, ofp-1/k, ofp-E/k," ’, of 1/1. We denote by q/o (resp. ofp/o) the point on the/3- (resp.
of-) axis immediately following/1/1 (resp. of 1/1). Since G is OP, each of in of (resp. flj in
) entirely belongs to a prime phrase, and the parsing [3], [6] of the phrase ofkA[3k can
be graphically represented in the fl,of-plane by a continuous polygonal called a parsing
line (see Fig. 2), which is a path starting in the origin, i.e., (/k, ofp/.k_), and ending in
(flq/0, of,/0), made of three sorts of segments: diagonal (of length /2), horizontal (of
length 1), and vertical (of length 1).

Precisely, if the point (/g/, of,,/,) is on the parsing line:
the diagonal segment (fli/, of,,/,)(fl-l/, ofm-1/n)3 belongs to the parsing line iff

ofm/
":" i
the horizontal segment (fl/., of,,/,)(/-l/, of,./,,) belongs to the parsing line iff

ofmln <" ili
the vertical segment (fl/i, of,./,)(fl/i, of,.-l/’) belongs to the parsing line iff

ofm/n i/j.

2For al, a2E(TUN)*, 01 <. o means ax) <’ (1)02.
We assume that if i= (resp. m 1), i-1/j (resp. a,_i/) denotes q/j-1 (resp. ap/,_l).
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Let us consider, as a clarifying example, the sentential form a3Ai 3, with a
abbcd, cad generated by an OP grammar G having the precedence matrix [3] in Fig.
1. In this case, we have

at=a, a:=bb, a3=c, o4=d, fl3=c, fl2=a, fll=d

a . <
b "-> <

a b c d

FIG.

and the parsing line of o3Afl 3 is graphically represented in Fig. 2. Note that the parsing
line must start in (Bq/k, ap/k) and, since akAfl k is a phrase of G, it must terminate
exactly in (/q/o, ap/o).

FIG. 2

In order to prove that aA is a phrase of G, we must show that the parsing line
reaches (Bq/k-1, at,/k-I).

TO prove this fact by contradiction, suppose that the parsing line does not reach
(fl,/k-, a,/k-t). Since the parsing line reaches the point (//0, a,/o), there must exist an
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integer l, with 1 <l_-<k, such that the parsing line reaches the point (iq/k-l, Olp/k-l),
while it does not reach any (q.k-i, ap.k-i) with 1," ", l- 1.

Now denote byX the abscissas and by Y the ordinates of the ,a-plane; for a point
P (i/j, a,/,), the X, Y coordinates are

X (k -j)q + (q i), Y=(k-n)p+(p-m).

Decompose now the parsing line L into disjoint portions Lj, 1 <_-/" _<-k, such that if
P---(X, Y) is in Li, then for ] > 1, (j- 1)q <X <-]q, and for ] 1, 0 _<-X <_-q; denote by

Pi (X., Y.) the point of Li with X.=fq and Y. =max {rl (X,., Y)
For each Li, define the new lines L. by the following transformation of coordinates"

X’=X-(j-1)q, Y’= Y-(/’- 1)p.

Observe that Lj, and therefore L., are still continuous polygonal since, by construction,
from any point P---(X, Y) of L onward, the remaining part of the path is completely
contained in the first quadrant of the Cartesian plane assuming P as origin; in other
words, L is never directed downward nor leftward.

The hypothesis assumed per absurdum entails P1 # (q, p). Let us consider only the
case P1 (q, Yx), Yx < p since the case Ya > p is similar; on the other hand, LI contains
(lq, lp); i.e., for L’l, P =-(q, Y), Y >-p. Thus, there exists ) such that 1 <-<_l,
Y-_ <p, Y-->p, but this implies, by the continuity of any L, that there exists
P’ (X’, Y’) of intersection between L1 =-L and Lr. Furthermore, since L consists only
of the three elementary segments described above (in particular no segment of the type
(X, Y)(X + 1, Y- 1) may belong to it), X’ and Y’ must be integers. But this means that
(/ r/r, am and (B r/k, a ,/k), with r =q-X’, fit =p- Y’, belong respectively to Lr and
tl.

Fig. 3 gives a pictorial explanation of the above reasoning: in the absurd hypothesis
that the parsing line exhibits a path as the one shown there, L andL would intersect in

b

c

a O O if2, O1 b, O2 a

" =B2’ B1, B2= C, B1 =d
P’ =2,1

Fo. 3

the circled point to which corresponds in L2 the one denoted by a small square. On the
other hand, since the two points (fir/r, a,vr), (ir/k.Olra/k) belong td the parsing line, it
follows that the same parsing action must be performed in both of them since at both
points the precedence relation between a ,a and B holds (in fact, the parsing line of Fig.
3 would imply a precedence conflict b-" c, b. > c); thus, the parsing line must display
from (fir/r, ana/-) onward exactly the same shape as from (fir am on (i.e., it is
periodic). This prevents the parsing line from reaching the point (flq/k-l, a,/k-) since
P would be (lq, Y + (l-1)p) and concludes the proof. 73
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THEOREM 1. (Main theorem). Let G1 and G2 be OP grammars (in mFNF) and t,
2 the associated OPP grammars. IfL(Gx) L(G2), then either both L(x) and L(2)
are NC or neither one is NC.

Proof. By virtue of Statement 3, there exist two BD reduced OPP grammars (
and 0 such that L(() =L((x) and L(0) =L(t2). Therefore, it suffices to prove
that if L(Gx) L(G2), then either both L() and L(t) are NC or neither one is NC.

If we show that L(() NC implies L(() NC, then similarly L(t) NC will imply
L(() NC and the thesis will follow from the tautology (A^B)v(A^-B)
(A B)^ (B A). Suppose L(() is NC, and let /2 be an integer satisfying the
conditions for ri of Statement 4 for 2.

Let Q1 be an integer satisfying the definition of Q in Lemma 1 for (. Then let
1, 1, al, Tx, 371 *, such that tlffl, ffl are w.p. strings and

I11. [.311. Ill. 1;11.1711 <= O1.
By virtue of Statement 4 and Lemma 1, we must prove that there exists a sufficiently
large integer ,1 SUCh that for any integer n >_-,1,

ZI .1Ll’1/1 (L(() implies
~n+l n+l;1/)1 W1/X 1L(t).

Let us assume first ri _-> ri2 / 2Q1 / 1.
Let G and G’2 be the OP grammars (in mFNF) underlying ( and (2, respec-

tively. Let z XVnWUny with x h(;l), v h (t;1), w h(ffi), u h(t), y h(371), and
n+l n+lz’= xv wu y. Our target is to prove that z’ eL(G’I) and then to show z’= h(5),

2 e L(( ). Since, by hypothesis, L(GI) L(G2), hence L(G’ L(G), and, in order
to prove that z’ eL(G’I), it suffices to prove z’ eL(G).

As a preliminary step, let us parse the substrings v and u in z e (G2). Assume
first v: e and let v"= vv"-Ev, so that we can parse v -2 in the context v-v. Let us
consider the following construction which parses all that can be parsed inside v" by first
parsing inside v, then parsing all factors vv standing within v ".

Step 1. Let a’= v.
Step 2. If a’ does not contain any prime phrase [3], [6], then let

n--2(1) a’- v

and go to step 6.
4Step 3. Let a’--a <.a2 .>a, where a contains no .> and <. prece.dence

relations and the rightmost and leftmost characters of a and a3, respectively, are
terminal ones.

Step 4. Reduce all the prime phrases <. a .> in a ’-2’, let

Step 5. Let a’ =a’xA’a’3 and go back to step 2.
Step 6. Let

:==e,

4 From now on, the notation a aa (D a,,, where stands either for .> orfor (., will abbreviate
1 ff2 ffn 1()2 On--l(Ol.n
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Step 7. If a ’n-s does not contain any prime phrase, then let

n--2(2)

and exit.
Step 8. Let a’ a > a z <" a 3, where a and a 3 contain no.> and <. precedence

relations respectively, and the leftmost and rightmost characters of a are terminal
ones.

Step 9. Reduce all the prime phrases <. a. > in ’"- let

Step 10. Let

s=s+2

and go back to step 7.
Observe that the predicate

h
(a’ o*v) ^ (a’ ((T (.JN)+-N)^ (l:l<[a’l 01),

where *v’ is a cyclic permutation of v and h <= Oa (since Iv] <- Oa), is a loop invariant [25]
of the two loops of the above construction, because of Lemma 2, since G’2 is an OP
grammar. Therefore, since this algorithm halts in a finite number of steps, derivation (2)
is obtained with s -<_2Qa and a (T N)/-N. Moreover, by construction, a ’"-s

may not contain both .> and <. precedence relations.
Similarly, if u # e, from u uun-2u it follows that

(3) q/3’"-t0 u "-2,

k
where t<-2Oa, ’ *u, with k -<_ Qa,/3’ (T& U N& )/-N&, *u is a cyclic permutation

of u, and/3 ’"-t does not contain both <. and.> precedence relations.
We thus obtain

* y.(4) Sixa -tOY

Notice that we have been able to state these derivations thanks to the fact that, G being
an OP grammar, the parsing of v is not affected by the parsing of x, w, u , y.
Furthermore, the same relations hold, possibly with a different Si, for any n ’, n" > n such
that xv"’wun"y L(G2).

Let us now discuss the following three cases.
A. v # e, u e. In this case, v "-2 is obtained by means of a derivation of the type of

derivation (2). If a’= a >a then we can factorize a ’"- as

a =a’aa’>a’> >ace n-s-ltimes
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with a ca =*a’, where *a’ denotes a cyclic permutation of a’, and therefore,.
a *v. Since n >= ti2+2Q1+ 1 and s <=2Qx from well-known properties of CF gram-
mars, it follows that z L(G’) must be obtained by means of a cyclic derivation of

* kthe type A OAa with ]NI---k -> 1.

Since Ixl, lvl <= Qa, from the hypothesis ]a 1 < ]a’ <= Ivl <= Q1, because G does not
contain any e-rule [4], [6], Isl < la’l" Qa <= Q, and because of the above construction, it
follows that Ixva’l<= 3Q + Q. Thus, if tl has been chosen sufficiently large5, it must
be the case that 0 e.

By virtue of Lemma 3, there exists one derivation A [k’rAk,.with h() a and

r{0, 1,2,..., Q}. But since ( is BD reduced and L(() is NC by virtue of
Statement 5, it follows that k 1.

In conclusion, z L(G’) is obtained by means of a unilateral derivation of the type

(5) A Aa,

with a * v, in the following way:

Si O xA;’

A :=> A*v m times,

where Si 2, T2 and w v xv wy z. Therefore, by applying the deriva-
,

tion A =>A*v m + 1 times, z’ is obtained, and thus z’ L(G’z).

Similarly, if a’=a <’a2, it follows that z L(G’z) is obtained by means of a
unilateral derivation of the type

(6) A aA,

with a o *v, and then z’ L(G’).

B. v e, u e. In this case, u n-2 is obtained by means of a derivation of the type of
derivation (3). Similar to the preceding case A, if/T fl <./ (resp. fl’= fl[ .>/3), it
follows that z L(G’) is obtained by means of a unilateral derivation of the type

(7) B /B,

(8) (resp. B o Bfl),

with/3 o *u, and then z’ L(G’2).

Precisely,/1 --> (/2 + 201 + 1) + (301 + O21 )’ [N I.
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C. v e, u e. This case is split into two subcases.
C1. The string z =xvnwunyL(G’2) is obtained by means of two unilateral

derivations of the type of derivations (5) or (6) and (7) or (8). Similar to the above cases
A and B, it follows that z’ L(G’).

C2. In the derivation of z L(G), there exists a bilateral cyclic derivation of the
following type6:

(9) A a kA/3 k2,

with kl, k2 - 1, and

c *v,

If kl= k2, by virtue of Lemma 3 and Statement 5, it follows that k k2 1 and
therefore, z’ e L(G’2).

If k kz, let us discuss the case kx < kz (the case kl > kz can be treated in a similar
way).

Let us consider the language

L’={zlz=xvn’wu"y,n">-n’>-x,z L(G)}.

Notice that because of derivation (9), since n"- n’ can be arbitrarily large, L’ . From
L’L(G) and L(G)= L(G ), it ensues that L’ L(G’). But this implies that there
exists in G a cyclic derivation of the type

h 7(10) Hx Hx* u with h -> 1.

By virtue of derivation (10), for any integer > 0, there exiffts inL’ a string z xvn’wu’y
such that n"/n’> t. But, since L’ _c L(G’2), this requires that there exists in G’2 a cyclic
derivation of the type

A Ak A*u

Since L(G’2) is NC, by virtue of Lemma 3 and Statement 5, it follows that k 1, and
then

(11) AA*u.
Moreover, since L’ __.L(G), there exist in L’ strings z xv" wu’"y such that n"= n’.
This implies, since L’_ L(G), that there exists in G a cyclic derivation of the type

* (,E v)hE,

with h >- 1. Again, by virtue of Lemma 3 and Statement 5 it follows, with L(G’) NC,
h 1, that

(12) Z*vZ.

Obviously "tertium non datur;" i.e., the exclusion of the preceding cases necessarily implies the
existence of a derivation of type (9) if ril is sufficiently large.

7 This can be obtained by reasoning similar to that used above for G.
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Now, having demonstrated the existence of derivations of type (9)-(12), we can
analyze how the strings z XVn’WUn"y L’ are derived in L(G’2), recalling that the
relations (4) hold. We consider two cases.

If n">> (k2/kl)n ’8, then z is obtained by means of derivations of the type (9) and
(11); precisely, we can state:

STATEMENT 6. For any z eL’, if n">>(k2/kl)n’, z is obtained by means of a
derivation of the following type:

(i)

(ii)

(iii)

(13) (iv)

Si At6Y,

At At At*u f times,

At .Btq2 .Bt(* u q2,

* % % (*u)%,

(v) Bl aBfl (*v)BI(*U) times,

qBI 6v wu,
where:

(vi)

SiS2,

--X,--ll-U,j, can take any value in

qtl {0, 1,.. , kl 1}, qty’{O, 1,. , ke-1};

q, q are unique natural numbers, q, q, q2<r(lN’2l), where r is a recursive
function of IN I;
Bt {B1, B2, B/}, where B1, B2, ", B N’2 and

with
r, k :[3 2[31 ka a’" a=a and =

ProofofStatement 6. Consider a bottom-up (not left-to-right!) parsing [3], [4] of z.
Since by hypothesis we have assumed the existence in the derivation of z of a derivation
of type (v), a parsing corresponding to (vi) must be first performed. (vi) cannot contain
any cyclic derivations of the type

(viii) C ol hiCf3 h2,

not containing (v), since this would imply the repetition of the parsing corresponding to
(viii) while C is in the context (*v) hi -(*u)h2, thus preventing the parsing (v).

8 In the rest of the paper m >> n stands for the expression m > n + r, where is a positive integer which
depends only on N (or N )" we avoid its cumbersome computation, since it is sufficient to show that is
recursively bounded by NI (or N ).
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Consequently q , q are bounded by a recursive function r([N’21) and are the same
for any derivation of type (13). Successively, the parsing corresponding to (v) is
repeated times while B1 has as left context 3 (*v)kl (by hypothesis (*u)k2 will be a prefix
of its right context).

* k kConsider now the derivation B ==> a B1/3 and expand it as (vii) (note that if
/3 2/3 /3 =/3, then/= k2, in any other case k2 </). Since, after the parsing of (v)

times, B1 will be in the context x(*v)q’l- (*u)"ty, m >> k2, qt < ka, derivation (iv)
will be constructed, which is a portion of (v).

Afterwards, a number q2 of *u will be reduced to/3 and then to an At, possibly
involving a portion of x, until a cyclic derivation of type (ii) is identified: x, v being of
bounded length, q2 is bounded and a derivation of type (ii) will be ultimately parsed and
repeated ] times, as far as a right context * ufi will occur at the right of At. Finally (i) will
be parsed.

Note that in general, q2 and A, will depend on Bt. [3
If n’_-< n"<< (kz/kl)n’, z is obtained by means of derivations of the type (9) and (12).

Similarly to Statement 6, it can be proved that:
STATEMENT 7. For any z L’, if n’ <- n"<< (k2/kl)n’, z is obtained by means of a

derivation of the following type:

,
Si XEs,

Es * yes g times,
,

Es :::> (* v)qlBs,

(* qt qt2(14) Bs => v) Bl(*U)
93

(, kl k2Bx v) Bx(*u) times,

* qB 5v wu,

SiS’2

= v,

?=u,

g can take any value in ;

qtx E {0, 1, , kl 1},

q’l, q2’ are exactly the same as in derivation (13); q, q2, ql < r(IN’21) as in Statement 6;
and Bs U { BI, Be, BZ}.

Let us now consider how the same strings z xv" wu y L’ are derived in L(G[).
For n">> n’, recalling that by hypothesis
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we obtain z by means of a derivation of the following type:

Si Hy,

Us HItU ps,

H1 HI*u h f times,

(15) H1 ,gtu p’u

Kt 19 PK1 u

K =>vKu

K => VP"WU p’,
times,

where:

SiESl,

x,

ti u, fi =*u;

f, can take any value in N;

p E{O, 1,..., h-l}, h_->l,

pt{O, 1,..., k-l}, k->l;

p" is a unique natural number, p", p’ <r(lN’ [); Hs s{H, H2,’", Hh}, where H1,
Ha," , Hh N’ and

H H2* u, H2 H3* u, "’’, Hh H*u

Kt {K1, K2, Kk}, where K, K2, Kk N’ and

K1 :: 19K2u, K2 : 19K3u, , Kk vKx u.

Note that, while K1 and p" are the same in any derivation of type (15), H1, p’, and
possibly h itself depend on Kt (but the parenthesization of the n"-n’ occurrences of u
at the left of y does not depend on it).

More simply, for n"= n’, z is obtained by means of a derivation of the type:

Si == xKty,

gt 19 P’K1 u P’,
(16) K1 vkKu k times,

K1 19 P"wu ’’,
where"

SiSi,

pt.{O, 1,..., k- 1}
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p" is a unique natural number, exactly the same as in derivation (15);

K, e {K, K2,..., K}.

We can now derive some relations between indices.
Let us now consider a fixed n’ and choose n" such that

n" >> (k2/ kl)n’

then z e L’ is obtained by means of derivations of type (13) and (15) in G’. and G,
respectively. We thus have,

(17)
qtl+ikl+q’ + l =p"+pt+lk,

j+q2+qt.+ik2+q +1 =ps+fh+p’+p"+pt+lk+l.

Since the first member of fire second equation can take any value n">- q2 +%+ q’a + 1
in N such that n" >> (k2/kl)n’, because of the arbitrary number j of repetitions of

AttAr*u, the same must be true also for the second member of the same
equation; i.e., it must be possible, by means of a derivation of type (15), to produce in
z L(G’I) any integer number (n") of occurrences of u in order to satisfy (17).

In particular, for a given value of n’, Pt also, and therefore, p’, H1, and h in (15) are
fixed. As a consequence, for any fixed n’, ps must take any value in {0 h 1}.

Let us now decrease the value of f in derivation (15) in such a way that (without
changing the value of n’) n’ << n"<< (k2/k)n’. In this case, z is obtained in G by means
of a derivation of type (14). Therefore, we have

(18)
g +q +% + ik + q + 1 + pt + Ik,

qt2 + ik2 + q’ + 1 ps +fh + p’ + p" + p, + lk + 1,

with the same h, p’, Pt, l, k, p" as in (17).
Since the second member of the second equation can take any value n"_->

p’ +p"+pt + lk + 1 in N, it follows that % must take any value in {0, 1,..., k2-1}
(since q is fixed).

Finally, set n" n’; z eL is thus obtained by means of derivations of types (14) and
(16) in G and G respectively. Therefore, we have

g + ql -b qtl -t-- ikl + q’l + 1 Pt + lk + p",

qt2 nt- ik: +q + 1 Pt -t- lk + p".

Since % can take any value in {0, 1, , k- 1}, we can choose i, qt, in such a way that
n"= n. Successively increasing% by one (or, if % k- 1, letting qt_ 0, and increasing
by one), we obtain n"= n + 1. In the first member of the first equation, the values of q,
%, q, and corresponding to n"= n change accordingly by only a bounded amount as a
consequence of the change by one in qt2 (or in i). But, since g can take any value in N, we
can choose it in such a way that n’= n + 1. Therefore, we can conclude that, also in this
last case, z’= xv"+lwu’+ly eL(G).

To conclude the proof, we have only to show that z71 eL(G’ and z’ eL(G’ imply
z’ L((). But this is an immediate consequence of the fact that z’ is obtained by
means of a derivation of type (16) and of Lemma 2.

5. Concluding remarks. As a consequence of Theorem 1, we are now able to give
the following.
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DEFINITION. An operator precedence language L is noncounting iff for any
operator precedence grammar G such that L(G)- L, L() is noncounting.

This definition, of course, does not mean that all (nonoperator precedence)
grammars generating L are noncounting, and conversely; e.g., the language L=
{a 2n In >= 1} is generated by a counting, regular, and hence operator precedence,
grammar, but also by the noncounting grammar {S - aSa, S aa } which is not operator
precedence.

We found in all examples considered that the NC property associated in this way to
OP languages coincides with the intuitive notion of the concept.

Our result raises the problem of attaching the noncounting property to a wider
class of (deterministic?) languages. For example, we would like to have some formal
tool to claim the language L {anba In >= 0} to be noncounting, in accordance with the
fact that its "natural" grammar is noncounting. But, which is, in general, the "natural"
grammar of a language from the NC point of view?

We wish to mention here the following possible definition suggested by a referee.
A context-free language L is counting if there exist x, v, w, u, y such that

xv"wu"y eL for infinitely many m and xv"wu"yL for infinitely many m.
This definition seems, at first glance, to be well-posed, i.e., to extend previous

definitions in a natural way, and to open several interesting questions (e.g.,
decidability).

Finally, we notice that the strict interdependency of syntax structures which we
have discovered for equivalent operator precedence grammars hints at the following
conjecture" if G and G’ are equivalent operator precedence grammars and G counts
modulo k, G’ also counts modulo k. Were this conjecture true, one could start working
on the equivalence problem for operator precedence grammars.

Note added in proof. An example, however, has recently been discovered concern-
ing the definition suggested above which seems worth consideration.

The language L1 ={(ab)nc2"[n >= 1} is NC according both to the above defini-
tion and to ours. On the other hand, the language L2 ={(ab)*(ab)c2} turns out
to be counting according to the referee’s definition ((ab)2c2L2/n>=l,
(ab)2/1c2/1 L2/n >= 1). This is in contrast with our intuition, which likes to think the
concatenation of two NC languages to be NC, and with the fact that any OP grammar
generating L2 is NC.

This example reopens the debate about what does "noncounting" mean in the
framework of context-free languages. Our intuition is that the term noncounting is
really meaningful if applied to the machine which generates, or recognizes, a language
rather than to the language itself.

Nevertheless, we agree with our referee that there is much space for subjective
feeling in such a topic.
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SEQUENCING JOBS WITH UNEQUAL READY TIMES
TO MINIMIZE MEAN FLOW TIME*

M. I. DESSOUKY" AND J. S. DEOGUNt

Abstract. This paper presents a procedure for sequencing a set of jobs on a single processor (machine)
with the objective of minimizing the mean flow time, when the jobs may have unequal ready times. The
procedure involves implicit enumeration with the branch and bound technique, coupled with some devices to
improve the efficiency of the search. The devices include a sufficient optimality condition, a simple but tight
lower bound and rules for tree pruning. The approach has potential applications to other sequencing
problems.

Key words, sequencing, scheduling, branch and bound

1. Introduction. The problem of sequencing n jobs on one processor or machine
has been studied extensively under different assumptions and objective functions. In
the simple problem of sequencing n jobs with equal ready times and no imposed due
dates with the objective of minimizing the total flow time, it has been shown [2] that the
shortest processing time (SPT) rule provides an optimal solution. According to this rule,
jobs are sequenced from beginning to end on the basis of an ascending order of their
processing times. One of the most constraining assumptions in this simple problem is
the equality of the ready times of the jobs. The ready time of a job on a machine is the
earliest time that the job can be made available for the machine to start processing it.
This time is dictated by the completion time of the last operation conducted on the job
at other machines, the arrival time of materials to the machine, the dispatching time of
job instructions, and other relevant factors. It is conceivable that in the general case, the
job ready times may not be identical.

The inequality of the ready times has been recognized in research on other single
machine problems, where due dates were also taken into consideration [1], [3]. The
objective of this paper is to develop an optimal scheduling procedure for the case when
the ready times are not equal, and the total flow time is to be minimized. No due dates
will be considered. Lenstra et al. [4] have shown that the problem is NP-complete;
accordingly, an enumerative procedure for solving the problem will be needed.

2. Problem statement. A set N of n jobs, N={i[i= 1, 2,..., n}, is to be
processed, one job at a time, on a single processor (machine). For each job i, the ready
time, ri and the processing time, pi, are given. Completion of all jobs requires
establishing a sequence S (Sl_, s2_, , s_), where sy is the index number of the job in
position y. When a job parameter or variable is identified by the job’s position in a given
sequence rather than its index number, the position is indicated as an underlined
subscript to the parameter or variable. Thus r4_ means the ready time of the job in
position 4 in the sequence considered.

Suppose that a sequence is constructed by adding one job at a time, starting from
position 1. At any point, we have a partial seqaence S: of a job set K

___
N, SK

(s_, , S_k). The earliest start time of a job N, Ri, and its completion time, Ci, are

* Received by the editors January 11, 1979, and in revised form January 23, 1980.

" Department of Mechanical and Industrial Engineering, University of Illinois, Urbana, Illinois 61807.
t Department of Computer Science, University of South Carolina, Columbia, South Carolina 29208.
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given by

(la-c) Ri max (ri, C___)
max (ri, C_

if =s_,
if =syeK, 1,

if eK =N-K;

(2) Ci Ri + pi.

For any job i, the flow time F and the waiting time W are defined as follows"
Fi Ci-r and W/=Rg-r. For a sequence S, the total completion time C(S)=
Y.i=l C(S), the total flow time F(S)= Y.i=l F(S), and the total waiting time W(S)=
Y’.i= W(S). Conway, Maxwell and Miller [2] show that a sequence SO which minimizes
C(S) will also minimize F(S) and W(S). In addition, the mean values C, F, and W are
minimized. The purpose of this paper is to present a procedure for determining S such
that C(S) mins C(S). This problem, with equal or unequal ready times, is commonly
called the n/1/F problem [2].

3. Two sequencing rules. First, we present two rules for sequencing the n jobs
which are utilized in the derivation of a procedure for solving the n/1/F problem
addressed. Each rule specifies priority criteria for adding a job to an existing partial
sequence, Sc, K

_
N, starting with position 1.

A. The earliest completion time (ECT) rule: Select job with mining Ci. Break ties
by choosing with min Ri, and further ties by choosing with mini. Update R and Ci,

K, after each addition using (lc) and (3).
B. The earliest start time (EST) rule" Select job with mingRg. Break ties by

choosing with min C, and further ties by choosing with mini. Update R and Ci, K
after each addition using (lc) and (2).

It can be easily shown that for any job set K
_
N, an EST sequence guarantees the

minimum completion time for the last job in the set.

4. The approach. The proposed procedure involves a branch and bound search
conducted along the branches of a tree in which a node at level k represents a partial
sequence S/ of a set K of k jobs. For each node SK, we compute a lower bound
C_(S*IS:) and an upper bound (S*IS:) on C(S*IS:), the minimal total completion
time of any sequence starting with S:, that is, conditional on Sn.

A node at level k + 1 is formed by selecting a job K and adding it to SK in
position k + 1 to form (Sc, i). At any iteration, the node being expanded is called the
current node and has the current lowest lower bound. A closed (fathomed) node is one
whose corresponding partial sequence has been found dominated, and, hence, is
eliminated from consideration. Dominance is tested between nodes generated from the
same parent. A partial sequence (Sn,/’) is dominated if another partial sequence (Sc, i)
exists and C(S* (S:, i)) >= C(S* (Sr, ])); it is strictly dominated if C(S* (S:, i)) >
C(S*I(S:, ])). We apply a number of tests (pruning rules or elimination criteria) to
identify dominated nodes. A set V contains all active nodes ordered by nondecreasing
lower bounds with the current node placed at its beginning. An active node is one which
has not been found dominated.

5. Optimality and dominance properties. In this section, we present relevant
properties of the n1/F problem which are useful in testing a sequence for optimality,
in defining lower bounds and in devising elimination criteria. We state the properties as
theorems with proof given in the Appendix. We will identify Rg and Ci by the sequence
in question whenever it is not clear from the context.
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THEOREM 1. Given a fob set N and a partial sequence S:, K c N, if a fob
K N Khas pi <- Pi all] K, and a fob h Khas Rh (SK) >= Ri(SK), then dominates

h in position k + 1. IfRh(S:)> Ri(S:), then (S:, i) strictly dominates (S:, h).
THEOREM 2. Consider a fob set N of n fobs, and a partial sequence S: of k fobs,

K N, and let fob iK have Ci(S:) <- Ci(Sc) all ] 6K. A partial sequence (S:, f) is
strictly dominated if r >- Ci(S:).

THEOREM 3. Given S:, K
_
N, and two fobs i, K, ifp <-_ pi and C.(S:) >-_ Ci(S:),

then (S:, i) dominates (S:, f).
In a sequence S, define a block b

_
S as a set of consecutive jobs with the first job s_,

having r_, > C___(S) and all other jobs S_w b having rw_ <- Cw___(S).
THEOREM 4. LetS be an ECT sequence ofthe setNconsisting ofone block with fob

at the beginning and S be another sequence of the same set starting with fob f. If ri rj,

then C(Sc) <- C(Sa); and if ri < ri, then C(S
COROLLARY 4. An ECT sequence ofa fob set is optimal if it consists ofa single block

and the first fob has the smallest ready time.
THEOREM 5. A sufficient condition for the optimality ofa sequence is that every block

is ordered according to ECT and starts with the fob having the smallest ready time.

6. The algorithm. The algorithm consists of three basic phases" initialization,
branching and termination. Initialization involves defining the initial values of the
variables, constructing an initial sequence and testing the sequence for optimality.
Branching is an iterative procedure; in each iteration it generates the descendents of the
current node, eliminates dominated nodes, computes lower and upper bounds for active
nodes, updates the file of active nodes and identifies the next current node, the one with
the least lower bound. The upper bound at a node is the value of a complete sequence
starting with the node’s partial sequence. A noncurrent node is dominated if its lower
bound is not smaller than the current lowest upper bound, which is the best solution
reached thus far. The termination phase consists of identification of the optimal
sequence SO and computation of C(S) and F(S).

Since the procedure for determining the lower and upper bounds at a node S: is
used repetitively in the algorithm, we list it separately below as procedure BOUND. To
compute the upper bound t(S* S:), we construct a complete sequence S. We define S
as S (St, Sg), where Sg is an ECT sequence of K following Sc. We later demonstrate
that S is generally a tight upper bound. To determine the lower bound C_ (S* S: ), we
construct a sequence S’= (S, Sg,) which is similar to S above, in the order of jobs and
their processing times, but with the ready times partially relaxed. To construct S’ given
S:, schedule each job S’_k /_h, 1 _--< h -<_ n -k (S’_k /_h is identical to S_k /h_ in S) to start at the
completion time of the preceding job S’_k/_h-_l, or at the minimum ready time of
unscheduled jobs, including S’_k/_h itself, whichever is greater. The sum of completion
times of the jobs in S’, C(S’), is a lower bound at Sr, _C(S* Sr). This statement is proven
in Theorem 6.

I. Initialization.
1. LetN be the set of n jobs {ili 1, 2, , n}. Define the parameters ri and pi for

all N.
2. Set k =0, V=K=cb, S: =b, K=N-K and Ck(S:)=C(S:)=O.
3. To construct an ECT sequence S of N and compute upper and lower bounds,

define y k, Y K, Y K, Sy S:, C(Sy) C(S:) and C’y (Sy) C(Sy) 0. Go
to procedure BOUND. The lower bound _C(S) LB, the upper bound (S) UB
and S Sy. Set the lowest upper bound LUB UB.

4. Apply the optimality test of Theorem 5 to S. If S passes the test, go to step
12; otherwise, proceed to step 5.
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II. Branching.
5. Define the set of jobs eligible for adding to S: as E K. Compute Ri(S:)=

max(r;, C_k(C:)), C(S:)=R(S:)+P, and C,(S:)=mingC(S:). Eliminate all ]
from E for which r. _>- C, (S:) (Theorem 2).

6. Identify v satisfying p. =min.gp. If v c E, eliminate all joE for which
R(S:)>-R(Sr) (Theorem 1).

7. Eliminate ] from E if some icE exists for which pi>-p and Ci(S)<-_Ci(S:)
(Theorem 3).

8. For each icE, determine the lower and upper bounds at (Sr, i) and the
conditional ECT sequence S as follows: set y k + 1, Y {K w i}, I7 {/( i}, Sy
(SK, i), C(Sy)= C(SK)-I-Ci(SK) and C’ (Sy)= Cy(Sy)= Ci(SK). Go to procedure
BOUND. We obtain C_(S*I(SK, i)) LB, (S*I(K, i)) UB, and S Sy. If LB >_-
LUB, eliminate from E; otherwise, set LUB- min (LUB, UB).

9. Remove node SK from V, and add nodes (SK, i), all icE. Store Ci(SK),
_C(S* (S, i)), (S*l(Sm i)).

10. Identify the node So in V with the least lower bound. Let the number of jobs in
the set O be q. Set k=q,K=Q,K=N-K, S=So, C(Sc)=C(So) and C_k(S:)
C, (So). Let the last job in S be i.

11. To recreate the conditional ECT sequence S i, set y=k, Y-K, -/,
Sy S, C(Sy)- C(Sc.)_and Cy(Sy)- Ci(Sy). Go to procedure BOUND. If K or
__C(S*[Sc) LB UB C(S*[S;c.) proceed to step 12; otherwise, go to step 5.

III. Termination.
12. Let So= S g, C(S) (S*ISc), and F(S’) C(S)-,= r.
Terminate.
Now to determine LB, UB and S at a node representing a partial sequence Sv of y

jobs ending with job i, follow procedure BOUND outlined below. The variables C(Sy),
C’ (Sv) and Cy(Sv) have already been defined in the calling step of the main algorithm.

Procedure BOUND.
B1. Initialize" x y, X Y, Sx Sy, LB UB C(Sv) and C C_ C_(Sy).
B2. Let m_x+_ min. r. and compute R =max (C_, r.), and C. R+pi, all ] c.
B3. Select h cX such that Ch --mini2 C. Break ties by choosing h to minimize

B4. Place h in position x +1 and set R’_/_ R, max (C,, mx_/_),C_+_ C’h
Ch, LB LB + C,/1_, and UB UB +Rx+l +Ph, Px_+l_ =Rh, Cx_+!

B5. Set x x + 1, X {X (_J h }, X {X h }, and Sx (&,, h).
B6. If x=n, set S=Sx; C_(S*ISy)=LB; and (;(S*ISy)=UB and return to

calling step; otherwise, go to step B2.
The sequence defining the upper bound UB is S (Sy, S .), an ECT ordering of Y.

Now let S’= (Sy, S?,) be the sequence defining the lower-bound LB; that is, LB
C(S’). It may be seen that S and S’ are identical in their job order but that their job start
and completion times may be different. Theorem 6 establishes that C(S’) is a lower
bound on the optimal solution conditional on Sy.

THEOREM 6. C(S’)= C(Sy, Sz,) C(S*ISy).

7. Example. This example is especially constructed to demonstrate most of the
features of the procedure. Table 1 exhibits the job set parameters. For simplicity, we
have ordered the jobs by ECT. Detailed computations for the first iteration are given
below, where the step numbers correspond to those in the algorithm.

1. n 5, and values of ri and p for 1, 2,.. , 5 are given in Table 1.
2. Setk=O,K=4,Stc=4 andK=(1,2, 3,4, 5). Set C_k C(Sc)=0.
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TABLE 1. Job set parameters

Job Indices Ready Times Processing Times

35 3
2 22 18
3 34 17
4 37 21
5 66 25

3. S (1, 2, 3, 4, 5). From procedure BOUND, _C(S* SK) LB 205 and
.(S*[SK)= UB= 386.

4. The optimality test of Theorem 6 fails because the first job does not have the
minimum ready time.

5. E (1, 2, 3, 4, 5). C1 38 is the minimum among all Cj,/" e E. R5 66 > C1
38. Therefore, removing job 5 from E (Theorem 2), E (1, 2, 3, 4).

6. Job 1 has the shortest pi, p1=4. Since r4--37> rl 3, eliminate 4 from E
(Theorem 1). E (1, 2, 3).

E=(6)

(2,1,3) LB=334

(4, 5) UB 346

E=(5)

(2, 1, 3, 5) LB 346

(4) UB 346

K=b LB =205

,3,4,5) UB=386

/ (2, 3, 4, 5) UB=386

K_ (2) LB 334

g (1, 3, 4, 5) UB 346

E=(4)

(2, 1) LB 334

K (3, 4, 5) UB 346

FIG.
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7. C3--54, >Cz=40 and p3 17 <p2 18, hence job 2 dominates job 3
(Theorem 3). Remove job 3 from E, E (1, 2).

8. Compute lower and upper bounds by procedure BOUND. LB(1)=
_C(S*I(1)) 380 and UB(1)= ($*1(1))= 386. Similarly, LB(2)= _C(S*[(2))= 334 and
UB(2) (S* (2)) 346. The lowest upper bound LUB is updated as follows" LUB
min (386, 346)= 346. As _C(S*[($:, 1))= 380 LUB 346. Remove job 1 from E.
E (2).

9. Node (2) is added to set V.
10. Locate the node in V with the lowest lower bound. Set y 1, Y K {2},

Y=K ={1, 3, 4, 5}.
11. Using procedure BOUND, reconstruct Sg (1, 3, 4, 5) and LB(2)-

_C($* (2)) 334 and UB(2) ($* 1(2)) 346. Neither / 4, nor LB(2) UB(2)
therefore, proceed to step 5.

This completes the first iteration in the branch and bound algorithm. The complete
tree of optimal solutions generated is shown in Fig. 1. The optimal sequence is
(2, 1, 3, 5, 4) and the minimum value of the total completion time is 346. The minimum
total flow time is 152.

8. Experimental evaluation. The algorithm was programmed and tested on a
Cyber 175, using a FORTRAN G compiler. Two tests were conducted, the first test
consisting of 220 job sets, each generated randomly from two independent probability
distributions of ri and pi. Four distributions for ri and eleven for pi combined to produce
44 job set distributions, each generating five problems (job sets of 20 jobs each). The
second test consisted of 44 job sets, 50 jobs each, with each job set from each of the
forty-four distributions above. The probability distributions were chosen to be uniform
to avoid biasing particular values within their ranges, and to eliminate the need for
truncation. They are specified by the upper and lower limits of their ranges. We selected
the distributions to include the ranges which are most challenging to the algorithm.

Table 2 shows the experimental results for all problems in the first test. Out of the
220 problems, 214, 215 and 217 were solved within , 1 and 2 seconds respectively.
Within the two-second limit, the mean and maximum computation times were .05 and
1.88 seconds, the mean and maximum number of nodes generated were 13 and 514,
and the mean and maximum number of iterations were 9 and 497. The three problems
which were not solved within two seconds were later run to completion. The maximum
computation time for any problem was 4.61 seconds. The mean time to solve all 220
problems was 0.08 seconds. Comparing the optimal solution for each of the three
problems with that obtained within two seconds, the mean and maximum per cent
deviation from optimality were 17.6% and 31%. Averaged over all problems, the mean
per cent deviation was 0.24%.

Apart from these summaries, Table 2 also indicates that the performance of the
algorithm deteriorates as the ratio of the range of ri to the mean of p exceeds 2.5.

In the second test all problems were run to completion. Table 3 shows the
experimental results for the second test. Out of 44 problems, 30, 39 and 40 problems
were solved within 1/2., 1, and 2 seconds. The mean and maximum computation times
were .96 and 8.47 seconds, the mean and maximum number of nodes generated were 47
and 640, and the mean and maximum number of iterations were 42 and 484. These
results demonstrate that the algorithm can be effectively used to solve large problems.

The effectiveness of ECT sequencing may be demonstrated by the fact that in 173
out of the 220 problems the initial sequence was optimal, although it was recognized as
optimal in only 53 problems. The mean deviation from optimality of the initial ECT
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TABLE 2
Summary of results" Branch and bound--ECT procedure for N/1/F (20 jobs in each set)

Range
of

ready
times

Range of processing times

1-25 26-50 1-75 51-75 1-125 76-100 1-175 1o-125 1-225 126-150 1-275

0-200

25-175

21 8 8 10 2519 11 2 2 00 2 11 0 0
32 17 14 34 17 14 810 00 3 4 11 0 0

64 24 21 13 9 01 7 9 00 1113 11 3 4 00 3 4
178 43 10 7 3 10 7 7 00 710 11 00

3 10 9 8 01 10 2 4 00 2 01 3
Min Min 0 Min 3 Min 0 Min Min 0 Min 2 Min 0 Min Min 0 Min 0 Min 0

Max 43 Max2 Max 14 Max4 Max 19 Maxl Max 13 Maxl Max4 Maxl Max4 Max 43
Meanl3 Mean0 Mean8 Meanl Meanl0 Mean0 Mean7 Mean0 Mean2 Mean0 Meanl Mean3
13 5 44 12 ’8’ 11 3023 ’00 ’9 14 4 4 01’ 1010
71 43 96 2517 11 3 10 7 6 00 812 00 4 6
25 56 10 23 23 4 5 00 3 4 00
395150 00 2 11 00 2 12 3 4 00 4
497188 00 11 5 12 2 12 2 3 23 3 3 00 3 4
Min Min 0 Min Min 0 Min Min 0 Min 2 Min 0 Min 3 Min 0 Min Min
Max 188 Max6 Max 17 Max2 Max 23 Max2 Max 14 Max3 Max 12 Maxl Maxl0 Max 181
Mean 78 Mean3 Mean6 Meanl Meanl0 Mean0 Mean6 Meanl Mean5 Mean0 Mean4 Meanl

50-150 102 5"0 11 7 9 00 3 4 11
18 8 2 3 14 10 0 0 8 10 0
6 3 11 10 9 01 2 2 11
3 13 12 12 17 13
9 7 11 6 6 00 11
Minl Minl Min6 Min0 Minl Minl

Max 50 Max3 Max 12 Maxl Max 17 Max3

2 00 3 3 00 3
2 2 00 610 01 3

2 00 00 2 3
2 00 2 4 00
0 00 01

Min Min 0 Min Min 0 Min Min 0
Max2 Max0 Maxl0 Maxl Max5 Max 50

Meanl3 Meanl Mean9 Mean0 Mean6 Meanl Meanl Mean0 Mean3 Mean0 Mean3 Mean3
’75-’175 96’ 47 7 1i 00 6 7 2"

58 21 00 2 10 2736 oo
16 9 11 4 4 10 4 4 01
3 2 1921 2 0 0 00

25 14 00 2 11 2 11
Min2 Min0 ’Minl Min0 Min0 Min0

Max 47 Maxl Max 21 Max2 Max 36 Max2

0 0 12 01 0 0
22 12 12 00 22

12 2 2 12 0 0
12 13 12 00 21
2 3 12 3 01 3 6

Min0 Min2 Minl Min0 Min0 Min0
Max3 Max3 Max5 Max2 Max6 Max 47

Meanl8 Mean0 Mean7 Mean0 Mean9 Mean0 Mean1 Mean2 Mean2 Mean0 Meanl Mean-3

Minl Min0 Minl Min0 Min0 Min0 Min0 Min0 Minl Min0 Min0
Max 188 Max6 Max 21 Max4 Max 36 Max3 Max 14 Max3 Max 12 Max2 Maxl0
Mean 30 Meanl Mean7 Mean0 Mean8 Mean0 Mean3 Mean0 Mean3 Mean0 Mean2

Number ofjobs 20
Minimum computation time 0 Minimum number of iterations 0
Maximum computation time 188 Maximum number of iterations 497
Mean computation time 5 Average number of iterations 9
Number exceeding 1/2 second 6 Minimum number of nodes generated
Number exceeding one second 5 Maximum number of nodes generated 514

Average number of nodes generated 13
Note: For each box, the first column is the number of iterations and the second column is computer time in

centi-seconds. The *’s in a column show that the corresponding problem was not solved in 2 seconds.

sequence was 3% for all problems. Thus, the use of ECT sequencing provides fairly
tight upper bounds which can help to eliminate many dominated nodes.

9. Conclusions and recommendations. This paper presents an analysis of opti-
mality and dominance conditions for the n/1/F problem with unequal ready times and
a procedure for solving the problem. Although the proofs of the theorems are rather
lengthy, the procedure itself is simple. Experimentation with the algorithm on a Cyber
175 computer showed in the first test that for 220 job sets with 20 jobs each, the
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TABLE 3
Summary of results: Branch and bound--ECT procedure for N/1/F (50 jobs in each set)

Range of
ready times

1-25

0-200 308 633

Range of processing times

76- 101-1211256026-501-7551-751-1251001-1751251

372 22 162 12 3881 141 555 13 511 142

25-175 455773 10i2 28 76

50-150 313847 3 14100

75-175 484553 5 7 50

3 37 92 2 4 5 48 0 2 31 87

15 1250 3 7 191i 01

11 7
Min 2
Max 633
Mean 106

039 1118

652 04i 8 21

12 448 3 6’49 12 447 5 2 7

Iin 553 3 50 2
Max 847 72 162 5
Mean 701 23 97 3

Number offobs 50
Minimum computation time
Maximum computation time 847
Mean computation time 96
Number exceeding second 14
Number exceeding second 5

48 3 11 11 5 7
92 41 55 3 87 42 67
67 13 40 2 49 31 28

Min 2
Max 773
Mean 104

Min
Max 847
Mean 103

Min 2
Max 653
Mean 70

Minimum number of iterations 0
Maximum number of iterations 484
Average number of iterations 42
Minimum number of nodes generated
Maximum number of nodes generated 540
Average number of nodes generated 47

Note: For each range ofprocessing time, the first column is the number ofiterations and the second column is
computer time in centi-seconds. The statistics Min, Max and Mean are shown for computer time only.

algorithm was capable of solving any problem within a maximum of 4.61 seconds of
computer time and that all but 3 out of 220 problems were solved within two seconds,
with an overall average of 0.08 seconds.

The second test demonstrated the effectiveness of the algorithm to solve large
problems. For 44 job sets with 50 jobs each, in the second test, the algorithm solved any
problem within a maximum of 8.47 seconds and an overall average of .96 seconds.

The algorithm can be used to test alternative heuristics for closeness to optimality.
It can also be applied to two and multiple machine problems in the process of computing
lower bounds on the optimal solution to those problems.

Minimizing the sum of completion times is only one of many interesting functions
that could be considered. However, only this function has been addressed in this paper
because it gives a simple measure of the effectiveness of a schedule and it yields an
algorithm which may be extended to solve more complex functions. Natural extensions
are to minimize the sum of weighted completion times, and to minimize the maximum
flow time.

Appendix. Proofs of theorems.
Proofof Theorem 1. Any sequence sh (Sc, S) having h in position k + 1 and in

position y, y > k + 1, will have rg <--Ri(SK)Rh(SK) Rk_/_ (SK)<--Rx_ (Sh), k <x < y.
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Interchanging with its immediate predecessor in position y- 1 will not increase the
completion time of the jobs in positions y- 1 and y, nor that of any preceding or
succeeding job in S h. Repeating the interchange backward to position k + 1 following
S: will produce a sequence S having C_ (Si) <= C_ (sh), 1 <= x <= n, and C(Si) <= c(sh);
that is, (S:, i) dominates (S:, h). Similarly, we can show that if Rh (SK) > Ri(,K), then
(S,:, i) strictly dominates (S:, h). Q.E.D.

Proof of Theorem 2. Let S be the optimal sequence of N given that/" is in position
k + 1 following S:. An idle time gap equal to r.- C_ (Sj) will exist on the machine
between the jobs in positions k and k + 1. If job is shifted from its position, say g, to
position k + 1 without changing the order of any other job, it will occupy no more of the
machine time than the gap and will gain a reduction in its completion time. Now form S
starting with S:, followed by i, then/’, then the remaining jobs in the same order of S(
Shifting the jobs in positions g + 1 to n as early as possible may reduce their completion
times without influencing the completion times of the jobs in positions k + 2 to g, which
remain the same. Therefore, C(S) < C(S) and (S:, ) is strictly dominated. Q.E.D.

Proof of Theorem 3. Let S be an optimal sequence of N given that is in position
k + 1 following S:. Consider removing jobs and from the schedule. Without affecting
the completion times of any other jobs, job may be scheduled in position k + 1 as
C(SK) <= Cj(S:); and job j may be scheduled in i’s former position as p <=Pi. The total
completion time of jobs and j is not increased as neither is completed later in the new
schedule S than the other was in S’. Thus C(S) >- C(S). Q.E.D.

Proof of Theorem 4. Assume that the ready time of each job y N is modified to
r’y max (ry, ri). This assumption will not affect the start or completion time of any job
in S or sa, as no job in either sequence starts before ri.

Consider the case when r ri. First, we show that C_ (Sc) <= C_ (sa), 1 <- k <= n. For
a given k, reorder the first k jobs in sa according to their earliest start times (EST),
assuming modified ready times, and breaking ties by giving priority to the job with the
smallest completion time among tied jobs. Call the resulting sequence $:; as
mentioned in 3, C

_
(S t) <= C

_
(sa). Note that S is both an ECT and an EST sequence

of the modified set N. Therefore, at the first position x, 1 =< x <= k in which C_ (S)
C_(St), it must be true C_ (S)< C_(St) and s_S. Therefore, replacing s_ with s_
will not result in an increase in any Cr (S’), 1 <= y <= k. This replacement may cause the
set of jobs in Sc following the new s o lose its EST sequencing property. In that case,
reordering the set by EST will not increase C_ (S t) since C_ (S t) has been reduced.
Redefine S to describe the new sequence. Repeating this procedure for all y, x < y =<
k, comparing C and Ct. and making necessary changes as shown above will produce a
sequence identical to th partial sequence of the first k jobs in Sc, without increasing C.
Thus C7, <C, <C 1 <k <_k, =n and C(S) k= C 2=1CC c(sa), proving the
first part of the theorem.

For ri < rj, applying the same procedure yields C_7, _<- C_, 1 _-< k _<- n. From Theorem
3, C -< C/implies that if pi > pi then C(S) < C(S) and the theorem is proved. If pi <- pi
then C_ C7 < C C_, and C(S) < C(S ). Q.E.D.

Proofof Theorem 5. Let the number of blocks be B. If B 1, the theorem is true by
Corollary 4. Suppose that the theorem is true for the first b blocks where 1 <= b < B.
From the definition of a block and the conditions of the theorem, r. > Ci(S) for all in
block b + 1, where is the last job in the optimal sequence of the first b blocks. By
Theorem 2, all jobs in block b are dominated by job i; therefore, for optimality, no jobs
in block b + 1 should be scheduled earlier and block b + 1 can be optimized separately
and then combined to form a complete optimal sequence for b + 1 blocks. By induction,
all B blocks can be optimized separately. Since each block satisfies the optimality
conditions of Corollary 4, then the sequence is optimal. Q.E.D.
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Proof of Theorem 6. First, we define the parameters of the set of jobs Y’ in
S’=(Sy, Sf,) to satisfy the following conditions: (1) for each S’x E Y, y <x<=n, rx_
r_, p p_; and (2) $ ?, is an ECT sequence of Y’ following Sy. Therefore, if we show
that $9 passes the test of optimality of Theorem 5, then C(S’)=C(Sy, Sg,) <-
C(Sy, S) C(S*]Sy), where S is the optimal sequence of I7" following Sy since the
ready time constraints of Y’ are either equal to or more relaxed than those of Y. If we
define r r_ and r_x, y _-< x =< n, iteratively by

(3) r_ min {r_x, max (C__, m_)}, y < x -<_ n,

where mx miny<x<,rx, then mx<=rx =rx, satisfying condition (1)for Y’
Furthermore, the earliest start time of S_x,

(4)

(5)

and

(6)

[C’_x__,R_ max(C__, r_ max min {r_, max (C’__, m)}].

Since m_ _<- r_, this expression reduces to

R’ (C’max x-l, m_

C’ =R’ +p’ =R’ +px.

Therefore, (5) and (6) define R and C, as given by step B4 on procedure
BOUND. We now show that the resulting sequence S 9’ follows the ECT rule. For this
to be true,

(7) C’x_ =R +px_=max(C_l_,r_ )+p_<=max(C’_x,r’w_)+pw_, x<w<--n.

Consider any w, x < w -<_ n. Since S 9, has the same order of S 9, which is an ECT
sequence of Y, then

(8) C_ =max(Cx__l_,r_)+px_<=max(Cx__x_,rw_)+pw_, x<w<=n.

Before we proceed, we observe that R’ <R_, C’ <Cx and for x < w, C’ dR’ and_w

m_-<_ m_. From (3) and (5),

(9) r_x min (r_, R’_x ).

Two cases exist:
Case 1 r_x > r_w. From (8), p_x d P_w. Since m_x d m_w and C’-_1_ < C’_w__ then R’x

max (m_, C__l_)-<max (m_w, C_w-_) and C’x_ =R’x_ +px_<=max(C’-l,r’w_)+pw_.
Case 2. r_ < rw_. From (9) and R’_ < C_ _w, r_ rain (r_, R’_ < min (r_w, R’w)

plyi (C’ ’)r_w. If r_w >R’x, then r’w=R’ im ng that max r + >w_, _-!, w_ pw_ =rw_ +pw_-
R’ <r. Noting that C_x >

_
+pw_ > R w_ => C_. If r_w <R_w then r’_ r_w, while r_ -i C,_1,

and applying (8) we again have max (C-i, r_ )+p_ _-<max (C’_x-i, r’w_)+pw.
Therefore, (7) is satisfied in all cases, proving that $ 9, orders Y’ by ECT follow-

ing Sy and satisfying condition (2) for Y’.
By definition, any S_x, y <x--d n, starting a block hasrx_’ > C-I.’ From (3)

this condition implies that r_x m_x-<m_w-<r_, x < w-<n, and Sf, satisfies the opti-
mality condition of Theorem 5. Therefore, C($’)=C($y, Sg,)<=C(Sy, Sc)=
C(S*ISy). Q.E.D.
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LINEAR TIME AUTOMORPHISM ALGORITHMS FOR TREES,
INTERVAL GRAPHS, AND PLANAR GRAPHS*

CHARLES J. COLBOURN3" AND KELLOGG S. BOOTH:I:

Abstract. An algorithm based upon Edmonds’s procedure for testing isomorphism of trees is
extended to answer various questions concerning automorphisms of a labeled forest. This and linear
pattern matching techniques are used to build efficient algorithms which find the automorphism partition
and a set of generators for the automorphism group, determine the order of the automorphism group,
and compute a coding for forests, interval graphs, outerplanar graphs, and planar graphs.

Key words, automorphism partition, graph automorphism, interval graph, outerplanar graph

1. Preliminaries. Starting from an algorithm for tree isomorphism we show
how to build efficient algorithms which can answer a number of questions
concerning the automorphisms of labeled forests. These algorithms operate in
time which is linear with the size of their input. They can be applied to other
types of graphs whenever those graphs can be conveniently represented by labeled
forests. This is the case for interval graphs and for planar graphs, as will be
demonstrated in later sections. By applying linear pattern matching techniques
and a knowledge of their additional structure we can produce an even faster
algorithm for outerplanar graphs, a special case of planar graphs which has been
examined in the literature.

We assume the usual definitions used in graph theory [3], [11]. Let
G (V,E) and G’= (V’,E’) be two graphs. A bijection O:V--V’ which maps
pairs of adjacent vertices onto pairs of adjacent vertices and pairs of nonadjacent
vertices onto pairs of nonadjacent vertices is an isomorphism of G with G’. An
automorphism of a graph G is an isomorphism of G with itself. The
automorphism group of G is the group whose elements are the automorphisms of
G. A set of generators for the automorphism group of G is any set of
automorphisms whose closure under functional composition and inverse is the
entire automorphism group. Two vertices x and y are similar in G whenever there
exists an automorphism of G which carries x onto y. Similarity is an equivalence
relation on V whose equivalence classes form the automorphism partition of G. A
coding is a function on graphs such that the values assigned to G and G’ are
identical if and only if G and G’ are isomorphic.

In the following sections we will first review the tree isomorphism test and
then extend it to answer other questions about automorphisms of a labeled forest.
Using these results as a foundation we will go on to construct efficient
automorphism algorithms for interval graphs and outerplanar graphs. Finally, we
will sketch how algorithms for planar graphs might be built using these same
ideas.

Weinberg previously presented algorithms for computing the automorphism
partitions of triconnected planar graphs and of trees. His algorithms require
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O(n 2) steps [36], [37]. Corneil, and later James and Riha, have produced
substantially simpler algorithms for the tree problem. Their algorithms also have
an O(n2) time complexity [8], [21]. Most recently Fontet has given an O(n)
algorithm for arbitrary planar graphs which is very similar to the approach taken
here [9]. To our knowledge there are no linear time algorithms in the literature
for finding a set of generators for the automorphism group of a planar graph or
for computing the order of its automorphism group. All of the results on
automorphisms of interval graphs and outerplanar graphs are new. Additional
references to previous work are contained within subsequent sections.

2. Trees. A tree is a connected graph having no cycles. Edmonds presented
an efficient procedure for testing isomorphism of trees which is based on a
canonical numbering of the vertices [6]. This method has been rediscovered a
number of times by different researchers [22], [30], [34]. A description of the
algorithm and a proof that it runs in linear time is given by Aho, Hopcroft, and
Ullman [1, 3.2.]. Their version of the algorithm allows the trees to be labeled but
assumes that the trees are rooted. This is no real drawback because unrooted
trees can be rooted in a unique fashion by finding the center or bicenter of the tree
and using it as a root. This can easily be accomplished in linear time. For our
purposes we will assume that all trees have been rooted.

These techniques can be applied to forests of trees having labels which consist
of integers or strings of integers in a range which is O (n) where n is the number
of vertices in the forest. All of our algorithms will be linear in the size of the
forest plus the sum of the lengths of the labels. The forest algorithms will then
become the building blocks for the algorithms in later sections.

Rank

Label

2 3 4 5 6 7

A a ab ace bac ca cd

Fig. 2.1. An example of a labeled forest. Vertex names (symbols within vertices) are used to

identify vertices and should not be confused with vertex labels or with any of the numbers which will

later be assigned to vertices. Rank information for the bucket sorted labels is displayed below the

forest. These ranks will be used to generate working labels for the i-numbering which follows.

We briefly sketch our version of Edmonds’s procedure for testing
isomorphism of two labeled forests. All of the labels are first bucket sorted and
assigned an integer rank within the sorted list. Then each vertex in the forest
receives an integer i-number according to the following scheme. Beginning at the
vertices of maximum depth in the forest a working label is assigned which consists
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of the rank of the original label followed by the/.-numbers, in increasing order, of
all the children. The working labels of all of the vertices at the current depth are
then sorted and the /-number of each vertex becomes the rank of its working label
within the sorted list of working labels. This process proceeds upwards until the
roots of all of the trees have received an /-number. Using a bucket sort it is
possible to perform all of these operations so that the total work is linear in the
size of the forest plus the sum of the lengths of the original labels [1].

Fig. 2.2. The i-numbering for the forest in Fig. 2.1. Shown to the right of each vertex are its

i-number (above) and its working label (below). A working label consists of the rank of the original
vertex label followed by the i-numbers (in increasing order) of the children. Note that because the

i-numbers of the roots are identical the two trees must be isomorphic.

A complete isomorphism test consists of performing the /-numbering on two
labeled forests in parallel, checking at each level that the sets of working labels are
the same in both forests. If a mismatch occurs at any level the forests cannot be
isomorphic and the algorithm terminates announcing non-isomorphism. Otherwise
the algorithm succeeds in finding an isomorphism when the sets of /-numbers
assigned to the roots are identical in the two forests.

We can use a similar procedure to get other information concerning the
automorphisms of a forest. Only a little more work is necessary to find the
automorphism partition. Suppose that the forest has been /-numbered. The
vertices are partitioned into equivalence classes by their /-numbers together with
their depths. This is usually not the automorphism partition but the
automorphism partition is always a refinement of this partition and can be
determined from a second pass over the forest, this time top down.

LEMMA 2.1. Let G be an i-numbered labeled forest. Two vertices x and y
are similar if and only if they have the same depth and i-number and their parents
(ifpresent) are similar.

Proof. Only If" Let x and y be two similar vertices in G. If x =y then the
conditions hold trivially. So assume that x #y. Any automorphism must
preserve depths and ancestors within a forest. Thus x and y are at the same depth
and either have similar parents or no parents at all. It remains only to show that
their/-numbers are the same.

From the correctness of the isomorphism algorithm which generates the
/-numbers it follows that two vertices at the same depth have the same/-number if
and only if the subtrees rooted at those vertices are isomorphic. Since x is similar
to y their subtrees are isomorphic and hence their/-numbers are indeed identical.

If" Again we assume that x Cy but that both are at the same depth, have
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similar parents, and the same /-numbers. If x and y are at depth 0 they are roots
in the forest and by the observation cited before their trees are isomorphic and
hence they must be similar vertices. Otherwise x and y are at a positive depth and
both have parents which are similar within the forest. We show that there is an
automorphism carrying x onto y and thus complete the proof.

Any automorphism mapping the parent of x to the parent of y must map x to
some sibling of y. Such an automorphism exists (the parents are similar) so we
can choose some sibling of y. Call this sibling z. Clearly x and z are similar.
Using the only-if part of this lemma x, y, and z all have the same /-number and
thus the subtrees rooted at y and z must be isomorphic. We produce the desired
mapping by composing the automorphism which carries x to z with the
automorphism which interchanges the two siblings y and z. This mapping is an
automorphism of G and it carries x onto y. I--I

We now explain how to compute the automorphism partition of a labeled
forest. After rooting each tree at its center or bicenter we assign /-numbers as
before. A second set of integer j-numbers is then assigned in a top down fashion.
At each level beginning with the roots, vertices are assigned working labels which
consist of the /-number of the vertex followed by the j-number of the parent.
These working labels are then sorted on each level and the j-number for the vertex
is the rank of the working label within the sorted list of working labels. From the
lemma it follows that the j-numbers plus depth information partition the vertices
into similarity classes.

The blocks of the automorphism partition for the forest

{a,c,d,w,y,z} {b,x} {e.u} h,k,m,n,p,r,t} {g,l,o,s} li,q} {],v}

Fig 2.3. The forest from Fig. 2.1. Shown to the right of each vertex are its j-number (above)
and its working label (below). A working label consists of the i-number of the vertex followed by the

j-number of its parent. The working label for a root is its i-number. The seven blocks of the

automorphism partition are shown below the forest. These are found by making all vertices which have

the same depth and.j-number equivalent.

This j-numbering algorithm is easily implemented to run in linear time. It is
a straightforward extension of Edmonds’s algorithm. We have now shown that the
automorphism partition of a labeled forest can be found in linear time. So far our
work duplicates results of Fontet who also realized that Edmonds’s approach
could be used to compute the automorphism partition of a tree [9]. We go
further, however, and produce a set of generators for the automorphism group and
also determine the order of the automorphism group.
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Let us first consider the problem of computing the automorphism group of a
forest. We cannot hope to achieve an algorithm whose running time is linear in
the size of the forest. The size of the output alone prohibits this. The star K 1,n,
for example, has n! automorphisms. Even computing a set of generators for such
a group is costly. Weinberg has shown how to compute a set of generators in
O(n 2) time and space. The time bound cannot be improved because all sets of
generators could contain ft(n) automorphisms and each generator has f(n)
ordered pairs.

Since there is no way to circumvent this problem we can instead agree to a
compact representation for the automorphisms. If we represent an automorphism
05 by its set of nonfixed points then 4 becomes the set

{(x, (x)) x (x) 1,

and we can achieve an O (n) algorithm which produces a set of generators for the
automorphism group of a labeled forest.

LEMMA 2.2. The compact representation of a set of generators for a labeled
forest can be computed in linear time.

Proof. First compute the automorphism partition of the forest. From each
similarity class of roots choose a single representative r. For each of the other
roots r’ which are similar to r output the compact representation of the
automorphism which maps the tree rooted at r onto the tree rooted at r’, all other
vertices within the forest remaining fixed. This can be accomplished by walking
the two trees in parallel. Discard all of the trees rooted at the various r’ keeping
only the tree rooted at r.

After all of the similarity classes of roots have been processed delete the roots
from the remaining forest and repeat this process level-by-level until the forest is
empty. The time and space used is O (n) because each vertex appears at most
once in the range of an automorphism. A detailed proof that these mappings are
actually automorphisms and that they generate the entire group is given in the first
author’s masters thesis [7].

The final automorphism problem is handled in a like manner. Suppose that
we want to determine the order of the automorphism group. Mathon [24] has
shown that in general this problem is polynomially equivalent to testing graph
isomorphism, but his reduction involves a factor of n 2 increase in running time.
We will show that for forests (and hence trees) the order of the automorphism
group can be computed in linear time.

Given a j-numbered forest the order of the automorphism group is found by a
third walk of the forest, this time bottom up as in the original /-numbering. This
pass generates k-numbers which indicate the order of the automorphism group for
the subtree rooted at each vertex.

LEMMA 2.3. Let G be a rooted j-numbered forest in which xo is a vertex and
x l, x2 Xp are its children. If the p children are partitioned into q classes
according to their j-numbers and ct is the size of class then the number of
automorphisms for the subtree rooted at xo is given by

k0=
q

where ks
O<s <p

is the number of automorphisms for the subtree rooted at Xs, for
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Proof Any automorphism of the subtree rooted at x0 must carry each child
of x0 to a similar child of x0. For each of the q classes there are exactly ct! ways
of permuting the ct children in that class. In addition the subtree rooted at each
Xs has ks automorphisms. All of the choices are independent so the total number
of possibilities is the product of these numbers. Ul

An algorithm to compute the order of the automorphism group of a forest is
now easy. Working from the bottom up each vertex receives its k-number by
counting the number of children within each similarity class (using the j-numbers)
and then multiplying together the appropriate factorials and the k-numbers of the
children. If an imaginary root is added acting as a parent for all of the real roots
in the forest then its k-number is precisely the order of the automorphism group
for the forest.

The entire calculation is linear with the exception of the factorial
computation. If factorial is not a primitive operation in the model of computation
a table of factorials for the integers from zero to n can be precomputed and stored
in a table of size O(n). The cost of building the table is O(n) if a uniform cost
measure is used. Under the more realistic logarithmic cost criterion, in which the
number of bits involved in each operation is counted, the cost becomes
O (n 2 log n) since n! requires O(n log n bits [1].

This last observation effectively kills any hope of a linear algorithm since a
tree whose automorphism group has anywhere near n! elements will require
output whose representation is too large to print in linear time. Our point here is
that the number of "data" operations need only be linear in the size of trees being
considered; we ignore the fact that pointers and indices require O(log n) bits for a
graph on n vertices and that arithmetic operations on large numbers will require
more than unit cost. Even for problems of practical size n! is large and multiple
precision arithmetic will have to be used, although if only an order of magnitude
result is required we could use a floating-point calculation (or its equivalent, a
fixed-point approximation of the logarithm). Asymptotically this may be an
unrealistic assumption but we ignore this point and maintain the fiction that
arbitrary integers can be held in a single register, adopt the uniform cost criterion,
but keep in mind the warning made by a referee that "[this] assumptionmif
abusedmleads to all sorts of unexpected consequences."

Fig 2.4. The k-numbers for the forest in Fig. 2.1. An imaginary root vertex has been added to

the forest. Its k-number is the order of the automorphism group, in this example 4608.
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Being able to compute the order of the automorphism group enables us to
answer additional questions about isomorphisms. In particular the number of
isomorphisms between two forests is easy to compute. Mathon has noted that any
two graphs either are nonisomorphic or else their number of isomorphisms
between them is the same as the number of automorphisms of one of the graphs
[24]. Our algorithm is easily adapted to this purpose. We omit the details here.

We recall in passing that Edmonds’s algorithm is already known to provide
an efficient method for coding trees. The modification for forests is trivial.
Starting with a sorted list of the /-numbers for the roots we recursively substitute
the working label, in parentheses, for each vertex’s /-number (also substituting
original labels for ranks) until we have a single string consisting of the original
labels suitably parenthesized to indicate the structure of the forest. This is a
canonical representation. The code for each tree in our example forest is the
string

(bac (ace ()()())(cd (a (ab )(ab ))(a (ab )(ab ))(ca ))),

and the code for the entire forest is the tree code repeated twice.
In summary we can state the following result about the automorphisms of a

labeled forest. As a special case these same results apply to trees.
THEOREM 2.4. It is possible to test isomorphism, to find the automorphism

partition or a set of generators for the automorphism group, and to count the
number of automorphisms or isomorphisms for labeled forests in time and space
which is linear in the size of the forests plus the sum of the lengths of the labels.

We will use these results in the following sections where we represent more
general graphs by labeled forests. The labels will always be integers or strings of
integers chosen from a range which is linear in the size of the original graphs so
the results of this section will apply. We will thus be able to obtain linear
automorphism algorithms for a class of graphs larger than just forests.

3. Interval graphs. An interval graph is a graph G (V,E) in which there is a
one-to-one correspondence between the vertices V and some family of intervals on
the real line. The correspondence must have the property that two vertices are
adjacent in G if and only if their two corresponding intervals have a non-empty
intersection. We will briefly review some facts about interval graphs here.
Further background and additional references are given by Booth and Lueker [5],
[23]. They have shown how to reduce the problem of testing interval graph
isomorphism to the problem of testing isomorphism between special labeled trees.
Here we explain how to extend those methods to obtain linear algorithms for
computing the automorphism partition, a set of generators for the automorphism
group, and the order of the automorphism group.

The basis of their isomorphism algorithm is a procedure for representing an
interval graph by a PQ-tree. The leaves of the PQ-tree are the dominant
(maximal) cliques of the interval graph. Internal nodes are either P-nodes which,
like nodes in normal trees, have an unordered set of children, or else they are
Q-nodes which have three or more children whose left-to-right order is rigid up to
a complete reversal. Figure 3.1 provides an example of an interval graph and a
PQ-tree which represents it.

Throughout the remainder of this section we will assume that G is an interval
graph. To avoid confusion we will depart somewhat from our previous notation
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Fig. 3.1. A set of intervals (above) and the PQ-tree (below) which represents the associated

interval graph. Each of the seven leaves in the tree is a dominant clique from the interval graph.
P-nodes are drawn as circles and Q-nodes are drawn as rectangles.

and refer to the vertices of a PQ-tree as nodes so as to distinguish them from the
vertices of G. We will further assume that all PQ-trees are drawn in the normal
fashion with their roots at the top and their leaves at the bottom and that the
leaves have a specific left-to-right order in this presentation. Every automorphism
of a PQ-tree will thus correspond to an implicit re-drawing of the tree in which
similar nodes occupy similar positions.

It has been shown [23] that the PQ-tree for an interval graph is unique up to
isomorphism. An even stronger result can be proven which will enable us to solve
the automorphism problems.

[,EMMA 3.1. Every automorphism of the PQ-tree for an interval graph G
induces a distinct automorphism on G.

Proof Consider a particular embedding of the PQ-tree as discussed above.
The leaves taken in left-to-right order form the frontier of the PQ-tree. Any
automorphism of the PQ-tree will produce a different frontier and hence a
different ordering of the dominant cliques.

Suppose that we have a particular frontier and that each clique is labeled with
the sequence of degrees for its vertices, the degrees being specified in increasing
order. We claim that the interval graph can be reconstructed from this
information. The key observation is the fact, proven elsewhere [23], that the set of
cliques to which each individual vertex belongs is always a consecutive set of
leaves along the frontier. This is a basic pr.operty of the PQ-tree for an interval
graph and forms the foundation for all of the PQ-tree algorithms.

Figure 3.2 contains a Pidgin Algol procedure which reconstructs an interval
graph from the frontier of its PQ-tree. The reconstruction proceeds as follows.
Starting with the leftmost clique a set of consecutively numbered vertices
(beginning with one) is created for each degree of a vertex in the clique, the
degrees being processing in increasing order. Edges are added between all created
vertices to form a clique.
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procedure RECONSTRUCT( {Ci }, k):
begin

n *-0;
E --- Zf;A
for *- until k do

begin
for jA do

Ci Ci -{degree (j )};
while Ci do

begin
n -n+l;
degree (n *- rain Ci );
Ci *- Ci -[degree (n )};
edges (n -0;
for jA do

begin
E *-E U {{j,n
edges (j" - edges (j" + 1;
edges (n *- edges (n )+

end;
A -A U{n};
for jA do

if edges (j") degree (j’) then A -A {j
end

end
end

Fig. 3.2. A Pidgin Algol procedure [1] which reconstructs an interval graph from its PQ-tree.
The first input is the sequence of degree sets for the cliques along the frontier of the PQ-tree. The

second input is the number of cliques. The procedure produces the set of edges E for the graph and the
number of vertices n. The vertices which are missing edges at any step are "active" and are placed in

the set A. They continue to have edges added as new vertices are created until finally their number of
edges is equal to their degree, at which point they become "inactive" and are removedfrom A.

At a general step, having reached a new clique, the set of degrees is first
modified by removing an instance of each degree for which there is a previously
created vertex with the same original degree but which still has fewer edges than
indicated by its degree. The requirement that vertices appear in consecutive
cliques guarantees that there is no loss of generality in this step because all
vertices which still have missing edges must be in this new clique. The process
then proceeds as before, continuing the creation of consecutively numbered
vertices in increasing order of degree and adding edges among all new vertices and
also between all new vertices and all old vertices which are still missing edges.

An easy induction on the number of cliques verifies that the graph which is
constructed is isomorphic to the original interval graph from which the PQ-tree
was built. Every automorphism of the tree thus induces a permutation of the
vertices which is an automorphism of the interval graph. Each of these interval
graph automorphisms is distinct.

To be convinced of this, observe that every automorphism of the PQ-tree has
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a distinct frontier. If we consider two distinct automorphisms of the PQ-tree, at
least one clique must be in a different position within the frontier. No two
dominant cliques have identical sets of vertices. Thus the clique which differs in
the two PQ-tree automorphism must have a vertex which is treated differently by
the reconstruction procedure. It then follows that the two interval graph
automorphisms differ on that vertex, implying that they are in fact distinct
automorphisms. [21

Fig. 3.3. The interval graph produced by the reconstruction procedure of Fig. 3.2 using the

.frontier of the PQ-tree from Fig. 3.1. The procedure has been run for two iterations (i 1, 2) of the

outermost for-loop. At this point in the execution n=5, A ={3,4}, and the degrees for vertices

through 5 are respectively 3, 4, 8, 13, and 3. If the algorithm is run to completion it will construct a

graph having fourteen vertices. It is easy to check that this is an interval graph for which the intervals

in Fig. 3.1 form an intersection model which represents the graph [5].

Having discovered that every automorphism of the PQ-tree leads naturally to
a different automorphism of G we might ask whether the converse is true. Does
every automorphism of G induce a different automorphism of the PQ-tree? The
answer is no. The reason can be traced to the way in which the interval graph was
reconstructed from the tree. At various stages vertices were created to correspond
to degrees of vertices within cliques. It can easily turn out that the same degree is
used for more than one vertex being created for a particular clique. In the
algorithm of Fig. 3.2 this follows from the fact that the selection of the minimum
of Q is nondeterministic since Q is in general a multiset of degrees. The
reconstruction algorithm does not distinguish these vertices. They are similar but
distinct, so some automorphism should interchange them. It is these additional
automorphisms which we must characterize.

We need a bit more information concerning the PQ-tree for this task. Every
vertex in G has a characteristic node in the PQ-tree. This is the unique node
(there always is one) which roots the subtree whose leaves are exactly the cliques
to which the vertex belongs [5], [23]. Strictly speaking the term "characteristic
node" is a bit imprecise because some vertices have characteristic nodes which are
actually only part of a Q-node. The rigid left-to-right order of a Q-node’s children
means that only some o’f them (always a consecutive subset) have leaves which
contain the vertex in question. Nevertheless we will use the term "characteristic
node" to mean the leaf, P-node, or portion of a Q-node which contains those
cliques. Figure 3.4 illustrates the characteristic nodes for the interval graph shown
earlier.
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Fig. 3.4. The characteristic nodes for the interval graph in Fig. 3.1. Note that intervals g and h

have characteristic nodes which are portions of the Q-node. The characteristic node for g is the two

leftmost children of the Q-node whereas the characteristic node for h is the two rightmost children.

LEMMA 3.2. Every automorphism of G is completely determined by an
automorphism of the PQ-tree for G together with a permutation of the vertices
which preserves characteristic nodes.

Proof Consider an automorphism of the interval graph G. It can be
decomposed into two automorphisms, one on the PQ-tree and one which preserves
characteristic nodes, in the following manner.

The automorphism induces an automorphism on the PQ-tree. This in turn
induces an automorphism of G, which is not necessarily the same as the originial
automorphism because because the reconstruction has lost some information
distinguishing vertices belonging to the same set of cliques. Vertices which are not
distinguished by the reconstruction procedure are precisely those vertices which
have identical characteristic nodes. They are always similar. Moreover, they may
be arbitrarily permuted within the cliques with no change to the reconstruction.
Thus the particular automorphism can be obtained from the automorphism
induced by the reconstruction by a reordering of each set of vertices having the
same characteristic node.

It follows immediately from these remarks that the additional shuffling of
these vertices accounts for all possible automorphisms of G.

Fig. 3.5. The i-numbering for the PQ-tree of Fig. 3.1. Internal nodes have working labels which

begin with a P or a Q to differentiate the two types of nodes. The remainder of a P-node’s working
label consists of the i-numbers, in increasing order, of the children. The i-numbers in the working label

of a Q-node are in left-to-right order of the children and thus not always in increasing order.
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We are now ready to state the algorithm for computing the automorphism
partition of an interval graph. We first label each leaf with the degrees of its
vertices in increasing order. The /-numbering then proceeds as before followed by
j-numbering. Two vertices are similar if and only if their characteristic nodes are
similar in the PQ-tree. The j-numbers and depth information give this
information.

IEMMA 3.3. The automorphism partition of an interval graph can be found
in linear time.

Proof Booth and Leuker prove that the PQ-tree of an interval graph can be
constructed in linear time and that the characteristic nodes can be found for each
vertex within the same time bound [5], [23]. The rest of the calculation is linear
since it is a variation on the computation of the automorphism partition of a
labeled tree.

Working labels for P-nodes consist of the letter P followed by the /-numbers
of the children in increasing order. Working labels for Q-nodes consist of the
letter Q followed by the /-numbers of the children in left-to-right or right-to-left
order, whichever gives the lexicographically smaller label. The j-numbering is
identical to the earlier calculation for trees.

Vertices of the interval graph are partitioned by assigning each one a label
which consists of the similarity class for the characteristic node. If the
characteristic node is a P-node this is trivial. If it is a Q-node the label must
distinguish the portion of the Q-node (a consecutive set of children) comprising the
characteristic node. This is accomplished by numbering the children from
left-to-right (or right-to-left, depending upon how the working label was generated
during the /-numbering) and appending the index of the left-most and right-most
children to the label for the vertex. A final bucket sort accomplishes the
partitioning into similarity classes.

2

{ )"

The blocks of the automorphism partition of the interval graph

la,el Ibl Icl Id} If, il Ig,h} Ij,k,m,nl I#1

Fig. 3.6. The j-numbering for the PQ-tree of Fig. 3.1. The eight blocks of the automorphism
partition for the original interval graph are shown below the PQ-tree.

Finding a set of generators for the automorphism group is an easy
generalization of the automorphism algorithm for a forest. There are two minor
variations to the basic forest algorithm which must be made. The first is that a set
of generators must be added which permute each family of vertices having the
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same characteristic node. A bucket sort produces the families and the compact
representation for a set of generators is then easily produced. This can be done
before the /-numbering so we will not worry about this contribution to the
complexity since it is obviously linear.

The second variation is that as the generators a.re produced there can arise a
situation which does .not occur in the normal alg)rithm. Some Q-nodes can have
their children reversed left-to-right and still have the resulting subtree isomorphic
to the original subtree.. When this happens it is necessary to output the compact
representation of an automorphism which performs this reversal, This is easy to
do by walking the tree but we need to verify that the algorithm is still linear. The
earlier argument that each vertex is in the range of an automorphism at most once
no longer holds. But careful analysis shows that each time a Q-node is reversible
we are guaranteed that one half of its children will disappear at the next level
because they must be similar to the other half of the children. If there are an odd
number of children the middle child does not have to participate in the reversal
because it maps to itself. This is enough to ensure linearity because each vertex is
now in the range at most twice.

i-.,
{)’ ()’ {}’ {)’

Fig. 3.7. The k-numbering of the PQ-tree of Figure 3.1. The order of the automorphism group

of the interval graph is the k-number of the root. In this example there are 32 distinct automorphisms.

Counting the number of automorphisms for an interval graph is equally
straightforward. A k-numbering of the PQ-tree determines the order of its
automorphism group and the remaining automorphisms can be counted by
multiplying by the total number of permutations which preserve characteristic
nodes. This is simply the product of the factorials of all families of vertices
having a common characteristic node and is again a linear time computation,
modulo the entire discussion of 2 regarding the computation of factorial. In
practice it is simpler to include this in the k-numbering. The k-number of each
node is multiplied by the factorial of the number of vertices for which it is a
characteristic node. Q-nodes will have a slightly more complicated k-number
because they can correspond to more than a single characteristic node in which
case the product of the factorials is used. This modified k-numbering is illustrated
in Fig. 3.7.

These PQ-tree algorithms can be extended to handle labeled interval graphs in
an obvious manner. Instead of each clique receiving a label which consists only of
degrees we first bucket sort all of the vertices’ labels and assign ranks which are
then added to the degree information labeling the cliques. The remainder of the
algorithm is the same except that two vertices are similar if and only if they have
the same label and similar characteristic nodes. We have proven the following.
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THEOREM 3.4. It is possible to test isomorphism, to find the automorphism
partition or a set of generators for the automorphism group, and to count the
number of automorphisms or isomorphisms for labeled interval graphs in time and
space which is linear in the size of the interval graphs plus the sum of the lengths
of the labels.

4. Outerp|anar graphs. An outerplanar graph is a graph having a planar
embedding in which all of the vertices lie on the exterior face [11]. These graphs
are obviously planar so we know (jumping ahead to 5) that they have linear time
automorphism algorithms. But algorithms to handle the general case are fairly
complicated and any implementation is likely to be quite intricate. However,
outerplanar graphs are a greatly restricted subset of the planar graphs and we can
take advantage of their additional structure to produce algorithms which are
simpler than the corresponding algorithms for labeled planar graphs.

Our outerplanar algorithms have the same linear asymptotic running time as
do the planar algorithms but the constants of proportionality are much lower
compared with the more general algorithms. In this respect we offer quite
practical solutions to the isomorphism and automorphism problems for
outerplanar graphs. These new algorithms, like much of the previous work on
outerplanar graphs, are based on a result of Tang [32]. The following lemma is
also given by Harary [11, Problem 11.26].

LEMMA 4.1. If G is a graph in which there are at most two vertex-disjoint
paths of length greater than one between each pair of vertices then

(1) G is planar,
(2) e < 2n-2, and
(3) if G is biconnected and n >5 then G has a unique Hamilton cycle.

It is easy to see that outerplanar graphs satisfy the hypotheses of the lemma.
Any two vertex-disjoint paths must lie on different portions of the exterior face
and thus there are at most two such paths joining any pair of vertices. We can
state the following result.

COROLLARY 4.2. Every biconnected outerplanar graph having at least three
vertices possesses a unique Hamilton cycle.

Proof. For five or more vertices Tang’s lemma guarantees that there is a
unique Hamilton cycle. The remaining cases are verified exhaustively. The only
biconnected outerplanar graphs having at least three but no more than four
vertices are the graphs K3, K2,2, and K4-x. Each of these has a unique Hamilton
cycle as shown in Fig. 4.1. I--1

Fig. 4.1. The three biconnected outerplanar graphs on three or four vertices with their unique
Hamilton cycles. Edges within the cycles are indicated by the directed arrows.
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For an arbitrary outerplanar graph standard depth-first search algorithms will
produce the biconnected components in linear time [1], [33]. Using the unique
Hamilton cycles we will show that each of these biconnected components can be
placed into a canonical form from which information about the automorphisms
can be easily extracted. These in turn can be used to build a canonical tree
representation for each of the connected components so that the resulting forest is
a canonical representation for the entire graph. From this forest, automorphism
information can be easily obtained using algorithms similar to those developed in

2 and 3. We thus examine the problem of placing the biconnected components
into canonical form, putting off until later the task of piecing this information
back together again for the whole graph.

Given a biconnected outerplanar graph the unique Hamilton cycle can be
found in linear time by successively removing vertices of degree two. Beyer,
Jones, and Mitchell use this approach to test isomorphism of maximal outerplanar
graphs [2]. They rely upon the fact that the sequence of vertex degrees
encountered along the Hamilton cycle, the Hamilton degree sequence, completely
characterizes the graph. Unfortunately this characterization does not extend to
the more general case of biconnected outerplanar graphs. Figure 4.2 illustrates
this situation, showing two nonisomorphic biconnected outerplanar graphs which
have the same Hamilton degree sequence.

Fig. 4.2. Two non-iomorphic biconnected outerplanar graphs having the same Hamilton degree

sequence 2322323223.

Syslo [31] gave a similar example in his description of a linear time coding
algorithm (and hence a linear time isomorphism test) for biconnected outerplanar
graphs. He again used the unique Hamilton cycle, but he proposed a more
elaborate scheme which uses additional information concerning the structure of the
graph. After identifying the unique Hamilton cycle and numbering the vertices
accordingly his algorithm performs a series of reduction and labeling steps to
finally obtain a string representation which is then minimized and used as a
canonical representation for the graph.

We think that our approach is somewhat simpler and leads more directly to
efficient automorphism algorithms. We observe that although the Hamilton
degree sequence is not sufficient to completely determine a biconnected
outerplanar graph we certainly can reconstruct the graph if we have a list of the
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adjacencies for each vertex along the cycle. The problem of course is to represent
the adjacencies in a manner which is independent of the exact starting position
chosen for the cycle since otherwise there might be as many as n different
representations.

To this end we represent the adjacencies at each vertex by a list which
consists of the distances along the Hamilton cycle between the vertex and each of
its neighbors. We further stipulate that these distances be in increasing order.
Notice that the lists depend upon the orientation chosen for the Hamilton cycle
but not upon its starting point. Figure 4.3 shows the adjacency lists for the two
graphs of Fig. 4.2. Each vertex is assigned two lists, the first for a clockwise
traversal of the Hamilton cycle and the second for a counter-clockwise traversal.

19 19

19 19

19 19

19 _) 19

19

19

19

19

19

19

19

Fig. 4.3. Clockwise (on the left) and counter-clockwise (on the right) Hamilton adjacency lists

for the two graphs of Fig. 4.2. The fact that the two sequences are different implies that the top graph
is not isomorphic with the bottom graph.

In general we will let S be the sequence obtained by following the Hamilton
cycle in one direction, concatenating adjacency lists, and we will let R be the
sequence obtained by concatenating in the opposite direction, using the reversed
adjacency lists. These are the Hamilton adjacency sequences for the graph.
Isomorphism of biconnected outerplanar graphs can be characterized directly in
terms of these sequences.

LEMMA 4.3. Let G and G2 be biconnected outerplanar graphs and suppose
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that S and S2 are the Hamilton adjacency sequences for their unique Hamilton
cycles and that R1 and R2 are the Hamilton adjacency sequences for the reversed
Hamilton cycles. Then G is isomorphic to G 2 if and only if S1 is either a cyclic
shift of $2 or a cyclic shift ofR 2.

Proof. Clearly two isomorphic graph.s must have Hamilton adjacency
sequences which a-re either cyclic shifts or reversals of each other. But as we have
already remarked, given the Hamilton adjacency sequence of a graph, the graph
can be reconstructei:l up to isomorphism.

The unique Hamilton cycle in a biconnected outerplanar graph can be found
in linear time by successiv61y removing vertices of degree two, being careful to
keep track of vertices which must be adjacent in the cycle [2], [27], [31]. The
sequences S l, $2, R1, and R2 can be constructed at the same time by numbering
the vertices along the cycle and bucket sorting the distances for each adjacency,
building the lists for each of the vertices by adding the smallest distances first.

Restating the last lemma as a pattern matching problem we see that two
graphs are isomorphic if and only if S1 is a substring of S2S25R2R2 This
condition can be tested using any one of many algorithms for linear time pattern
matching [1, Chapter 9]. Noting that all of the objects are linear in the size of the
graphs (the strings S and R each have length 2e) and that the graphs themselves
are linear in n (by Lemrna 4.1) we have proven the following result.

COROLIcARY 4.4. Two biconnected outerplanar graphs can be tested for
isomorphism in 0 (n steps.

Syslo’s coding algorithm achieves the same asymptotic running time but we
claim that our algorithm is easier to implement and that it will have a smaller
multiplicative constant. But what is more important, our algorithm is easily
extended to solve the automorphism problems discussed in earlier sections. All
that is required is a little more information from the pattern matching algorithms.
Let Pi be the position within S in which the adjacency list for vertex begins and
let qi be the position in R in which the reversed adjacency list for vertex begins.

ILEMMA 4.5. Let G. be a biconnected outerplanar graph, let S be its Hamilton
adjacency sequence, and let R be its reversed Hamilton adjacency sequence. Two
vertices and j are similar if and only if the substring of length 2e which begins in
position Pi of SS is identical with the substring of length 2e which begins either in
position pj of SS or in position qj of RR.

One way to compute the similarity classes is to find the position tree for the
string SS$RR using Weiner’s algorithm [1], [37]. Two vertices are in the same
similarity class whenever they have a common ancestor at depth 2e in the position
tree. The standard algorithm for finding position trees requires time proportional
both to the length of the input string and to the alphabet size. Since our strings
have symbols ranging from to n this would imply an ft(n 2) running time.

But this is more machinery than we need bring to bear on this problem. Any
automorphism must map a Hamilton cycle onto a Hamilton cycle. Thus for
biconnected outerplanar graphs the only possible automorphisms are cyclic shifts
and reversals of the Hamilton cycle. It is sufficient to compute just the similarity
class of vertex 1; the class for vertex j is found by adding j-1 (modulo n) to all of
the vertices in the first class if the automorphism corresponds to shifting the
Hamilton cycle; if the automorphism corresponds to reversing the Hamilton cycle
the vertices in each class must be "reversed" in the obvious manner.

It follows that the automorphism group is always a subgroup of a dihedral
group, the 2n permutations which cyclically shift and/or reverse a cycle of length
n. is The number of automorphisms for a biconnected outerplanar graph is the
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number of distinct cyclic shifts and reversals which map the Hamilton cycle onto
itself. We can find the order of the group by counting the number of times that S
occurs as a substring in SS’$RR’ where S’ and R’ are the respective strings S and
R with their final symbols removed to avoid counting the identity and reversal
automorphisms twice.

Guy [10] gave similar counting results for automorphisms of maximal
outerplanar graphs, showing that there were at most six automorphisms. This is a
very special case because the more general biconnected outerplanar graphs can
realize the full dihedral group, as evidenced by the n-cycle which is biconnected,
outerplanar, and has 2n automorphisms.

For the automorphism groups of biconnected outerplanar graphs a set of
generators consists of a single cyclic shift of the minimum distance and (if
appropriate) a reversal of the cycle. Again, these two automorphisms are easily
found using linear time pattern matching.

LEMMA 4.6. There exist linear time algorithms to compute the
automorphism partition, to determine the order of the automorphism group, and
to find a set of generators for the automorphism group of a biconnected
outerplanar graph.

We turn our attention next to the problem originally solved by Syslo, that of
producing a coding for biconnected outerplanar graphs in linear time. The
Hamilton adjacency sequence is almost a canonical form for a biconnected
outerplanar graph. If we encode the graph by finding the starting vertex and
direction for the Hamilton cycle which produces the lexicographically smallest
adjacency sequence we will produce a coding. It is easy to modify the Knuth-
Morris-Pratt pattern matching algorithm to have it find the lexicographically
smallest cyclic shift of a string in linear time and space; there are other
algorithms, the best known to us is due to Shiloach [4], [28], [29]. This yields a
linear time coding algorithm for biconnected outerplanar graphs.

We conclude this section with a sketch of the automorphism algorithms for
general outerplanar graphs. The biconnected components can be used to build a
tree (a variant of the block cut-vertex tree) for each connected component. These
trees form a forest representing the entire graph.

Fig. 4.4. A general outerplanar graph having two connected components and fourteen
biconnected components.
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Fig. 4.5, The block cut-vertex forest for the outerplanar graph of Fig. 4.4. Each node within the

forest is either a block of the graph or a cut vertex of the graph. Blocks (biconnected components) are

indicated by dotted lines,

Biconnected components are labeled with their Hamilton adjacency sequence
which has been shifted so it begins with the unique cut vertex which is the parent
in the tree. The Hamilton adjacency sequence is reversed if necessary to give the
smallest possible lexicographic value. The exception to this rule is a biconnected
component which has no parent in its tree (there is at most one in each tree).
These are represented by the shift or reversal of the sequence which gives a
lexicographically least value after the/-numbers for the children have been inserted
into the Hamilton adjacency sequence.

An isomorphism test is a straightforward modification of the earlier labeled
tree isomorphism algorithm. At each level in the forest, beginning at the bottom,
the labels are bucket sorted and assigned ranks. A check is made that the multiset
of labels is identical for the two forests. The /-numbers are then passed up the

Fig. 4.6. The i-numbering for the block cut-vertex forest of Fig. 4.5. The code for this forest is

a canonical representation of the original graph. The working label of a block is its Hamilton adjacency

sequence. For non-root blocks, the sequence begins with the unique cut vertex which is the parent of the
block," a root block is labeled with its lexicographically least sequence. In nonleaf blocks the adjacency
list of a cut vertex is preceded by the i-number of the cut vertex, contained within parentheses. Working
labels for cut vertices consist of the i-numbers of the children in increasing order.
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tree, inserted appropriately into the parents’ labels (being careful to distinguish
ranks from distances) and the next level is bucket sorted. This continues until the
roots are the only unprocessed nodes. At the top level the labels with rank
information inserted are each placed into a canonical form (minimum
lexicographic order) and then bucket sorted. Two outerplanar graphs are
isomorphic if and only if their forests generate the same multiset of labels for the
roots.

Algorithms for computing the automorphism partition, counting the number
of automorphisms, and producing a set of generators for the automorphism group
are easy to build using the forests and the automorphism algorithms from 2.
Labeled outerplanar graphs are handled by incorporating the ranks of the bucket
sorted labels into the Hamilton adjacency sequences in an obvious manner. The
modifications are quite similar to those used for interval graphs. We can state the
following result.

THEOREM 4.7. It is possible to test isomorphism, to find the automorphism
partition or a set of generators for the automorphism group, and to count the
number of automorphisms or isomorphisms for labeled outerplanar graphs in time
and space which is linear in the size of the outerplanar graphs plus the sum of the
lengths of the labels.

5. Planar graphs. In this section we will briefly sketch the techniques which
might be used to build linear time automorphism algorithms for general planar
graphs. The algorithms we propose are admittedly quite complicated. We have
not implemented them; to do so will require that many details be worked out
which we have not fully thought out. Nevertheless, we maintain that the basic
ideas sketched here form a convincing argument that the automorphism problems
for the general case of planar graphs can also be solved in linear time.

Our methods build upon those developed by Hopcroft, Tarjan, and Wong
[16], [20] which were used to produce linear time algorithms for testing
isomorphism of planar graphs. Fontet [9] has also used their results as the basis
of a linear algorithm for finding the automorphism partition of a planar graph.
His method is quite similar to ours, but he bases his construction on the
Hopcroft-Tarjan algorithm whereas we favor the Hopcroft-Wong solution. We
indicate algorithms for solving all of the automorphism problems.

To review, here is a short survey of the development of planar graph
isomorphism algorithms. In 1970 Hopcroft [13] demonstrated that the states of a
finite automaton could be minimized in O(n logn) time. The application of this
technique to planar graph isomorphism was pursued in a series of papers by
Hopcroft and Tarjan [14]-[17]. They reduced the isomorphism problem for planar
graphs to the problem for triconnected planar graphs by using a tree
representation in which each leaf corresponds to a maximal triconnected subgraph.
The connected, biconnected, and triconnected components are all found in linear
time [18], [33]. The problem was further reduced to isomorphism of triconnected
planar embeddings using Whitney’s theorem that a triconnected planar graph has
a unique embedding [19], [38].

Hopcroft and Tarjan were only able to show that planar graphs can be tested
for isomorphism in O(n log n) time [17] but Hopcroft and Wong were able to
obtain linear algorithms using the planar embeddings [20], [39]. The Hopcroft-
Tar.jan algorithm produces the automorphism partition of the triconnected
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embedding as part of the isomorphism test. Fontet [9] later improved the time
bound for Hopcroft and Tarjan’s method to O(n) by establishing some interesting
properties of planar embeddings. He was the first to show that the automorphism
partition of a planar graph can be found in linear time.

We take a .different approach than Fontet and base our automorphism
algorithms on the Hopcroft-Wong algorithm. Necessarily we will only be able to
sketch our procedure. A more complete description and a proof of correctness
would require a more thorough analysis of the Hopcroft-Wong algorithm than has
yet appeared in the literature. Our algorithms will use the linear time forest
automorphism algorithms along with linear pattern matching.

The overall algorithm follows Hopcroft and Wong. The connected,
biconnected, and triconnected components are found and used to construct a
forest, similar to the forest used for outerplanar graphs, which is then/-numbered,
j-numbered, and k-numbered. The difficult part is the way in which the
triconnected planar embeddings are handled.

Hopcroft and Wong’s algorithm successively reduces the planar embeddings
to smaller and smaller embeddings by applying two operations which remove loops
or multiple edges and vertices of low degree. The information from these
reductions is kept so that the graph can be reconstructed. A second critical step is
the application of a circle isomorphism procedure which determines whether two
labeled cycles are isomorphic. The overall algorithm eventually tests the entire
graph by winding back through the reductions, propagating information obtained
at lower levels in the algorithm.

Wong was able to show that every triconnected planar embedding must either
have an applicable reduction or else it must be one of three simple graphs" a
labeled vertex, a labeled cycle, or a Platonic solid [39]. This guarantees thai the
test is linear since all of these cases, with the exception of the labeled cycles,
involve only graphs of bounded size.

We propose using linear pattern matching to place all of the circles into a
canonical form by finding their lexicographically smallest shift and using that shift
to represent the cycle. Isomorphism and automorphism questions for circles are
then easily answered as discussed in 4. The result is a canonical /-numbering of
the tree which represents the planar graph. After j-numbering and k-numbering
we can easily find all of the other automorphism information for the graph. We
state without proof our main result concerning planar graphs.

PROPOSITION 5.1. It is possible to test isomorphism, to find the
automorphism partition or a set of generators for the automorphism group, and to
count the number of automorphisms or isomorphisms for labeled planar graphs in
time and space which is linear in the size of the planar graphs plus the sum of the
lengths of the labels.

This section has been only a sketch of the methods we propose. The details
are similar to those given in previous sections but are significantly more
complicated due to the extra complexity of finding triconnected components and
other complexities inherent in the Hopcroft-Wong algorithm. We claim that our
version of circle isomorphism may be an improvement over the original version
and that our algorithms in principle can be used to solve all of the automorphism
problems, in contrast with Fontet’s solution which finds only the automorphism
partition. A verification of these claims awaits further work to clarify the many
details omitted here.
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6. Concluding remarks. We have shown that four classes of graphs having
linear time isomorphism tests have linear time algorithms to compute the
automorphism partition, to count the number of automorphisms, to produce a set
of generators for the automorphism group, and also to determine codings for the
graphs. The algorithms for outerplanar graphs, particularly for the biconnected
case, are very easy to implement and should be much faster than the algorithms
for the general planar case.

We conclude with a few remarks suggesting possible areas for future
investigation. Polya [26] showed that the automorphism group of a tree can
always be expressed as the direct or wreath products of symmetric groups.
Weinberg, Harary, and Tutte [12], [36] showed that triconnected planar graph
have automorphism groups which are linear in size. Biconnected outerplanar
graphs have automorphism groups which are always subgroups of a dihedral group
and maximal outerplanar graphs have at most six automorphisms [10].

These examples suggest that there is a relationship between the "complexity"
of the automorphism group and the "complexity" of testing for isomorphism. In
particular we conjecture that for classes of graphs in which the isomorphism
problem is equivalent to the general graph isomorphism problem it will turn out
that in some vague sense almost every group will be the automorphism group of
some graph within the class. A precise statement of this proposition awaits
further research.
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THE TOTAL CORRECTNESS OF PARALLEL PROGRAMS*

LAWRENCE FLONS- AND NORIHISA SUZUKI:I:

Abstract. We describe a formal theory of the total correctness of parallel programs, including such
heretofore theoretically incomplete properties as safety from deadlock and starvation under fair-scheduling.
We present a sound and complete set of proof rules for the total correctness of parallel programs expressed in
nondeterministic form.

The proof of soundness and completeness is novel in that we show that the weakest pre-conditions for the
correctness criteria are actually fixed-points (least or greatest) of continuous functions over the complete
lattice of total predicates. We have obtained proof rule schemata which can universally be applied to least or
greatest fixed-points of continuous functions. Therefore, a system of proof rules is a priori sound and
complete once it is shown that certain weakest pre-conditions are extremum fixed-points. The relationship
between true parallelism and nondeterminism is also discussed.

Key words, parallel programs, nondeterministic programs, verification, correctness, semantics, fixed-
points, completeness of axiomatic proof rules, deadlock, starvation

I. Introduction. Parallel programming is becoming more common in computer
applications and systems implementation as a result of the rapidly growing develop-
ment of asynchronous multiprocessor computers. These computers are finding their
way into more and more applications wherein a very high degree of reliability is
essential. As software is one target of this reliability, and in view of the increasingly
common presence of parallel constructs in programming languages, it is important to
study the formal semantics of parallel computation and develop methods for reasoning
about parallel program correctness.

Several earlier attempts, both formal and informal, have been made in this area.
Many rely on specific synchronization primitives, for example, semaphores [12],
conditional critical regions [3-1, monitors [16], [17] and path expressions [10]. All deal
primarily with weak correctness properties. Recently more formal results have
appeared, notably [18], [19], [22]. The last approach is the one most widely known, and
it includes a complete axiomatization of weak correctness.

Dijkstra [7] introduced predicate transformers to deal with both weak and strong
correctness of nondeterministic sequential programs. Later it was realized that there
are other notions of strong correctness for parallel programs distinct from termination,
and that predicate transformers are useful for describing them formally. Van
Lamsweerde and Sintzott [20] and Flon and Suzuki [9], [11] used predicate trans-
formers to describe various aspects of the total correctness of parallel programs, such as
blocking and deadlock. No one has previously produced an axiomatization of total
correctness.

In the following we present a sound and complete axiomatization of total correct-
ness. The axioms are based upon the notions defined in [11]. For the first time we can
deal formally with the important strong correctness issues of blocking, deadlock, and
starvation.

Section 2 indicates that parallel programs with conditional critical regions as
the synchronization mechanism can be simply transformed into nondeterministic

* Received by the editors November 14, 1978, and in final form March 17, 1980. A version of this paper
was presented at the Nineteenth Annual IEEE Conference on the Foundations of Computer Science, Ann
Arbor, Michigan, October 1978.
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programs. In 3 we introduce a formal model of computation and define correctness
criteria, such as deadlock and starvation, in terms of this model.

In 4 an axiomatization for proving these correctness criteria is introduced, and in
5 we review the analysis of the predicate transformers wp(while B do S, R) and

wIp(while B do S, R) as the least and greatest fixed-points of the same continuous
function over the complete lattice of total predicates. We suspect here that the weakest
pre-conditions associated with the correctness criteria for our parallel programs may
also be fixed-points. Therefore, we invent sound and complete proof rule schemas for
the least and greatest fixed-points of certain recursive functions. The close relationship
between weak correctness proof rules and fixed-points has also been observed by Park
[23], de Bakker and Scott [1], Hitchcock and Park [15] and Clarke [5]. Some properties
of monotonic functions and continuous functions are also reviewed. A result of 5 is the
discovery of a new least fixed-point proof rule which is valid for noncontinuous
properties (Harel and Pratt [14] gave a rule which requires continuity).

In 6 we show that the weakest pre-conditions of our correctness properties
actually are least or greatest fixed-points of particular recursive functions. Thus,
soundness and completeness of the axiomatization of 4 follows as a direct
consequence of the results of 5. Section 7 contains a formal treatment of fairness in a
system of parallel programs. As it turns out, inevitability under our definition of fairness
is monotonic but noncontinuous, since that property is the least fixed-point, or the
greatest fixed-point of a continuous function. The new least fixed-point proof rule
discovered in 5 is thus useful. The result is consistent with an observation made by
Emerson and Clarke [8], based upon the results by Chandra [4] that inevitability under
fair scheduling is not expressible in first-order arithmetic. This is because alternation of
the greatest fixed-point and the least fixed-point requires the negation of universal
quantification over functions, which introduces quantifiers over functions. Section 8
discusses an implication of our completeness results with respect to the work in [22] and
9 describes the practical application of our proof method. Section 10 contains a brief

example.
Notation. Logical connectives and arithmetic operators have their usual meanings

unless otherwise specified. Following are some special notational conventions used in
this paper.

(Vie 1 n )Bi
(=li 1 n)Bi

kJi{ai}

[-]i{ai}
x.r(x)
,x.r(x)

implication
substitution of all the free occurrences of x by e in Q
finite conjunction, B1 ^ Ba A Bn
finite disjunction, B1 v B2 v’’’ Bn
partial ordering
the least upper bound of the set X
the join of the sequence {ao, al,.. "} where ao

_
a _""

the greatest lower bound of the set X
the meet of the sequence {a0, a 1,’" "} where

_
a
_

ao
the least fixed-point of x r(x), where z(x) is monotonic
the greatest fixed-point of x r(x), where r(x) is monotonic

2. Nondeterministic programs. The key to our approach is the recognition that
parallel programs (executing on conventional digital computers where mutual exclusion
of access to a single memory cell is the rule) have equivalent nondeterministic
sequential forms. For example, the two-process program

(2.1) cobegin x := x + 1//x := x + 1 coend
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has precisely the same effect on x (on a machine lacking an increment instruction) as the
following nondeterministic program"

(2.2) Pl := P2 := 0;

do

Px 0"-> tl := X; p :=

px lx := t+l;px := 211
P2=O t := x;p := 1[[

P2= 1->x := t2+ 1;p := 2

od,

where do-od is Dijkstra’s construct for expressing nondeterminism. The t. represent
unique temporaries, and the pj program counters.

However, the use of do-od to represent the nondeterministic equivalent of a
parallel program is not sufficient, since a blocked parallel program (one in which no
process is executable) will result in termination of its do-od representation since
(’qi 1 n)-qBi will hold. In order to make the semantics of parallel and nondeter-
ministic programs equivalent, we define the construct REP,

(2.3) rep B SIIB--, S2[[... [[Bn S. per.

REP behaves similarly to do-od except that
a) If (li 1 n)--qBi, REP is said to be blocked. Computation ceases, but in a

manner distinct from termination.
b) The command exit is introduced to provide for termination if so desired. Exit is

defined by wp(exit, R) R and wlp(exit, R) R.
c) All of the commands $i must be deterministic.
Let be the assertion language, which is a superset of the programming language

expressions. We denote the language of nondeterministic programs by REP[]. The
syntax of REP[] can be formally defined by the following derivative of BNF, where
{k} represents the repetition of k, possibly zero times:

(program) := (initialization)(nondeterministic part)

(initialization)::= (deterministic part)

(nondeterministic part) := rep (guarded command){ll(guarded command)} per

(guarded command) ::= (Boolean expression) (deterministic part)

(deterministic part) := exit[ (simple statement).

We give numbers to the guarded commands of a rep-per statement, starting with 1 for
the first command. The semantics of REP[] is defined rigorously in 3.

The transformation from a parallel program to its nondeterministic form is clearly
effective, although it will in general be governed by the precise semantics of the source
language and that of the object code for the target machine. A sketch of the algorithm is
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given in [11]. The translation of (2.1) becomes:

pl := p2 := 0;

rep

Pl 04 tl := X;pl := ill
Pl lx := tl+l;pl := 211
P2 0 t2 := x;p2 := l[I

p2 1 - x := t2 + 1; p2 := 211
p 2 ^ P2 2 - exit

per.

Under the transformation, programs written with conditional critical regions have
very close nondeterministic counterparts. Programs written with other synchronization
primitives can still be transformed, but in general that requires somewhat more changes
to the original.

3. Defining the correctness properties of parallel programs. In this section we
introduce a model of computation and define various criteria for the correctness of
nondeterministic programs that do not necessarily terminate. The definitions are
expressed in terms of the set of sequences of states, where each sequence represents a
possible execution path of the nondeterministic program. We shall also describe the
obvious relationship between the correctness of a parallel program and that of its
nondeterministic counterpart.

Model of computation. We define the semantics of rep-per by introducing an
interpretive model in a way similar to Cook [6]. The difference is that we are interested
in nondeterministic and often nonterminating computations.

As before, we denote the language of assertions and expressions of the program by. REP[] is the programming language whose semantics we define.
An interpretive model[] for the language REP[] consists of an interpretation

5, a set of states, a computation history, and computation functions Hist and Comp. An
interpretation 5 for the language is (D, P, F), where D is a nonempty domain, P is
the set of relations on D interpreting the predicate symbols of , and F is the set of
operations on D interpreting the function symbols of .

A state of [5] is a total map s: ({variables of }-D) t_J {blocked, f}. We use the
notation P(s) to denote the substitution

plyl yZs(yl)[s(y2)"’" [yns(yn)

where y 1, y2,. , yn are all the free variables of P, that is, P with its free variables
simultaneously replaced by their values in state s. Then we say a formula P of 5f is true
in 5 under state s, if P(s) is true in 5.

The computation history associated with program A is a set of sequences of pairs
(i, s) where is the number of a guarded command, and s is the state reached after
executing the ith command in the immediately preceding state. The computation
history represents all possible executions of A when started in a given initial state.
Therefore, all sequences which are members of the computation history must satisfy a
causality relation: if a sequence is of the form (. .(i, SI><j, $2>’" "> then when Bj(S1) is
true (the guard of the fth command in state s l) the execution of S. results in s: when
started in Sl.
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LastState and LastCommand are functions defined on execution sequences. If is a
finite execution sequence of the form (...(i, s)), then LastState(t)=s and
LastCommand(t) i. Both are undefined for infinite sequences.

The function Comp(S, s) assigns to a deterministic statement S and a state s the
resulting state when the computation terminates. If the computation does not terminate,
Comp(S, s) f.

The function Hist(A, t), for a rep-per statement A and a computation history t,
yields the set of possible execution sequences determined byA when started in any state
in {LastState(u) u t}.

Hist is defined as"

Hist(rep B,- $1]1B2 $211""" [[B S per, t)

{seq Iseq ^ (LastState(seq) f v LastState(seq) blocked
V SLastCommand(seq) exit)}

U {seq---(0, blocked)[seq t ^ (Vi 1 n)Bi(LastState(seq))= False}

U Hist(rep BI- Sill""" I[Bn Sn per,

{seq (i, Comp(Si, LastState(seq))) seq

^ Bi(LastState(seq))= True}).

We now give rigorous definitions of the predicate transformers wp and wlp.
DEFINITIONS.
Wp(A, ) is true in state s under interpretation , iff Comp(A, s) is defined and O

is true in state Comp(A, s) under .
Wlp(A, O) is true in state s under , iff either Comp(A, s) is undefined or

Comp(A, s) is defined and O is true in state Comp(A, s) under .
For example, suppose that the following program is executed’

X:=0.

rep

(1) x 0 x := 1

(2) x 0- while True do skip

(3) x=a--,x :=0}1

(4) x= lx := 2

Then part of the derivation of its computation history is given as follows"
{((0, x =0))}

{( (0, x 0)(1, x 1) ), (0, x 0)(2, ft) )}

{( (0, x 0)( 1, x 1)(3, x 0) ),

((0, x 0)(1, x 1)(4, x 2)), ((0, x 0)(2, f))}

{((0, x 0)(1, x 1)(3, x 0)(1, x 1)), ((0, x 0)(1, x 1)(3, x 0)(2, f)),

(0, x 0)(1, x 1)(4, x 2)(0, blocked)), ((0, x 0)(2, ft))}

In terms of our model of computation we define the following correctness
properties for the REP construct"
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1) Invariance. We say that a predicate R is invariant in the computation started in
state s if and only if R is true in every state of every sequence in Hist(REP, {(0, s)}),
unless the state is blocked or

2) Potentiality. We say that the program has the potential to establish a predicate R
in the computation started in state s if and only if there exists a finite sequence r such
that r is an initial section of some sequence in Hist(REP, {(0, s)}) and R holds in state
LastState(r).

3) Inevitability. We say that the program will inevitably establish R in the
computation started in state s if and only if for every sequence in Hist(REP, {(0, s)}),
there is an initial section r of such that R holds in state LastState(r).

4) Blocking. We say that the program is blockingC’ree in the computation started in
state s if and only if for all finite sequences in Hist(REP, {(0, s)}), LastState(t)
blocked.

5) Deadlock. We say that the program is deadlock free for command/" in the
computation started in state s if and only if for all initial sections r of all sequences
in Hist(REP, {(0, s)}), there is a sequence q such that r.--q is an initial section of
some sequence in Hist(REP, {(0, s)}), and ’-LastCommand(q)=exit or B; is true in state
LastState(q). Informally, we require that at all times there be some continuation of the
computation that leads either to completion or to a state where B; is true.

6) Starvation. We say that the program is starvation free for command ] in the
computation started in state s if and only if for all initial sections r of all sequences in
Hist(REP, {(0, s)}), there exists a sequence q such that r q is an initial section of and
,LastCommand(q) exit or B; is true in state LastState(q). Informally, we require that at all
times whatever continuation is chosen will eventually lead either to completion or to a
state where Bi is true. Note that if the program is starvation free for command
then it is deadlock free for command/’, and if it is deadlock free for some f then it is
blocking free.

It should be clear how these six criteria can express the parallel program notions of
weak correctness, deadlock and starvation. In particular, a parallel program is weakly
correct in the sense of Floyd (i.e., a post-condition R is true at termination) if and only if
its nondeterministic equivalent has the predicate P::),R invariant where R is the
post-condition and P is the disjunction of the guards of all exit statements. The parallel
program is termination correct if and only if P :ff R is invariant and P ^O is inevitable,
where Q is the disjunction of the other guards. The parallel program is blocking free
if and only if the nondeterministic program is blocking free. Process Pi is deadlock
free if and only if the guard of some command derived from the main loop of the process
is deadlock free, and similarly for starvation free if fair scheduling is not assumed.
(Fairness is discussed in 7.)

4. Axiomatization. The following are rules of inference for reasoning about the
correctness properties described in the previous section. Wlp and wp are the predicate
transformers for sequential programs defined in [7], and we assume the existence of
complete proof rules for them (see, for example, [14]; in the notation of dynamic logic
[13], for a deterministic program $, wlp(S, R) is the same as (S)R and wp(S, R) is the
same as [SIR). Even though wlp and wp appear in the assumptions of the proof rules,
they never appear in the assertions placed in programs, but rather only in proofs. Wip,
wpp, wep, wbp, wdpi, and wspi are weakest pre-condition predicate transformers for the
corresponding correctness properties. For example, wpp(REP, t?) is true in state s
(under interpretation 5) if and only if the potential to establish R exists when the
computation is started in s.
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1. Invariance

(’k 1 n)[I ^ Bk wlp(Sk, I)], I R
l wip (REP, R)

2. Potentiality

-O(O), O(m + 1) ^R :ff (::lk 1 n)[Bg ^ wp(S, Q(m))]
O(m)= wpp(REP, R)

3. Inevitability

-qO(O), O(m + 1) ^ -nR (zli 1 n)Bi ^ (Vk 1 n)[Bk wp(Sk, O(m))]
O(m wep(REP, R

4. Blocking free
(Vk 1 n)[I ^ Bk wp(Sk, I)], I ff (:qk 1 n)B

I wbp(REP)

5. Deadlock free
(Vk 1. n)[I ^ Bg wp(Sk, I)], I wpp(REP, Bi) v O

I: wdpi(REP)

6. Starvation free
(’q’k 1.. n)[I ^ Bg wp(S, I)], I wep(REP, Bi) v O

Iz wspi(REP

where Q is the disjunction of all the guards of exit commands.

5. The fixed-point approach to obtaining sound and complete proof rules. We
must of necessity justify the axiomatization just presented and prove it to be sound and
complete. Soundness and completeness proofs usually require a model of computation
and an interpretation for predicate transformers in that model. An axiom system is said
to be sound if all theorems are true in the model. The system is relatively complete if all
true formulas are provable.

It has been observed by Basu and Yeh [2], Wadsworth (in [24]) and Clarke [5] that
weakest pre-conditions and weakest liberal pre-conditions for loops are actually the
least and greatest fixed-p,oints of continuous functions over predicates. Once this fact is
shown using a model of computation, soundness and completeness proofs can be
accomplished by simple formal reasoning [5].

We shall extend these results by proving several metatheorems relating axiomatic
proof rules to predicate transformers. In particular, if the predicate transformer is
shown, in the computational model, to be either the least or greatest fixed-point of some
recursive function (subject to certain constraints), then there is an applicable sound and
complete proof rule schema for that predicate transformer. The theorems enable us to
argue the soundness and completeness of our axiomatization independently of a model.
(The model is needed only to show that predicate transformers are extremum fixed-
points.) We first examine briefly the fixed-point properties of the weak and strong
correctness of regular sequential programs without procedure calls.
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5.1. Lattice of total predicates. The domain of all total predicates forms a
complete lattice defined by the partial ordering

p_q iff (Vx)(pq),

where x is the list of all free variables occurring in p and q. For this lattice False is the
least element and True is the greatest element. It is also known that monotonic
functions over a complete lattice have both a least and a greatest fixed-point [25].

Let us consider the function

-r(q, R) (-rib ^ R) v (B ^ pt(S, q)),

where S is a program composed of assignment, composition and conditionals. Pt is a
predicate transformer defined by

pt(x := e, q)

pt(S1; $2, q) pt(S1, pt(S2, q)),

pt(if C then $1 else $2, q) (C ^ pt(S, q)) v (C ^ pt(S2, q))

It is easy to see that pt(S, q) is continuous and so is z(q, R); therefore, z has both a least
and a greatest fixed-point. The following theorem describes the relations between
fixed-points and predicate transformers for loops.

THEOREM (Bash and Yeh, Wadsworth, Clarke). The greatest fixed-point of z(q, R)
with respect to q is the weakest liberal pre-condition and the least fixed-point of z(q, R)
with respect to q is the weakest pre-condition of the program "while B do S" for the post-
condition R.

DEFINITIONS.
A function f is monotonic iff x

_
y :zf(x) f(y).

A function f is continuous from below iff for any directed set D, f(k3D)=
l{f(x)[x D}.
A function f is continuous from above iff for any directed set D,f(F-ID)=

{f(x)] x D}.
A function f is continuous iff it is either continuous from below or continuous from

above.
Examples.
wp($, p), where $ is a deterministic program, is continuous from below with

respect to p.
wlp(S, p), where S is a deterministic program, is continuous from above with

respect to p.
The set theoretical characterization of the least fixed-point of a function z(x)

continuous from below is

[_Ai{7"i (False)},

i.e., the limit reachable from the least element of the lattice by repeated applications of
-. Symmetrically the greatest fixed-point of a function z(x) continuous from above is

i{zi(True)}.
Another characterization is due to Tarski (in [25]) and applies to monotonic functions.
The least fixed-point is

{x (x)
_

x},
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and the greatest fixed-point is

{x Ix =-- r(x)}.
We review some of the properties of monotonic and continuous functions and their

least and greatest fixed-points.
a) If h (x) is continuous, then h (x) is monotonic.
b) If g(x, y) is continuous from below [above] with respect to x and y, then

txx.g(x, y) [ux.g(x, y)] is continuous from below [above] with respect to y.
c) If g(x, y) is continuous from below [above] with respect to x and y, then

ux.g(x, y) [tzx.g(x, y)] is monotonic (not necessarily continuous) with respect to y.
d) If g(x, y) is monotonic with respect to xand y, then tzx.g(x, y) and ux.g(x, y) are

both monotonic with respect to y.
Proofof d). Because of Tarski’s theorem txx.g(x, y) exists and is {k Ig(k, y) k}.

For r, s such that r
_

s, let r’= lzx.g(x, r) and s’= Izx.g(x, s). Then g(s’, r) g(s’, s) s’.
Therefore, s’ {k g(k, r)

_
k}. Thus, r’ {klg(k, r)

_
k} s’, or r’

_
s’. The mono-

tonicity of ux.g(x, y) can be shown similarly.

$.2. Proof rule schemas. We now state three metatheorems about proof rules of
the form

PW,

where W is a predicate transformer found to be either the least or the greatest
fixed-point of a function r(x).

We will show that proof rules described by the metatheorems are sound and
relatively complete for proving formulas of the above form. We must first extend
Cook’s notion of relative completeness [6], since in some cases these fixed-points
cannot be expressed in a first-order language. In Theorem 2 we will need arithmetic, and
in Theorem 3 we will need a second-order language.

We say that a deductive system for formulas of the form

P:ffpre (S, O)

(where P and O are logical formulas, S is a program, and pre (S, O) is a predicate
transformer) is (relatively) complete if, when P:ffpre ($, O) is true in the model and all
true logical formulas are given as axioms, P =), pre (S, O) is provable in the system.

THEOREM 1. (Greatest fixed-point proof rule for monotonic functions.)
pre (S, R) is the predicate transformer which is equivalent to the greatest fixed-point of
’(x), a monotonic function, and

(1) the assertion language can express the greatest fixed-point of
(2) there is a sound and relatively complete proof system (with modus ponens) to

prove formulas of the form P r(O),
then

Pz(P)
P :ff pre (S, R

is a sound and relatively complete proofrule. (This is a generalization of a result of Clarke
[5].)

Proof. (Soundness.) Since P => -(P), P must be a member of the set {x Ix --- z(x)} andtherefore P
_

II{x Ix z(x)}. From the definition pre (S, R)= ux.r(x); hence

P t]{x Ix =- ,(x)}.

Therefore, the rule is sound.



236 LAWRENCE ,FLON AND NORIHISA SUZUKI

(Relative completeness.) Suppose for some J

Y ::> pre (S, R).

From assumption (1) we can choose P to be the formula equivalent to ux.-(x), that is,

P {x Ix
_

(x)}.

Then, since J :ff P and both J rnd P are logical formulas, -J :ff P from assumption (2).
Since P is a fixed-point of z, P :ff z(P), and from assumption (2)I-P z(P). We have
[--J ::), P and [-P ::), z(P); therefore, from the premise of our rule and modus ponens
-J zff pre (S, R ). 71

THEOREM 2. (Least fixed-point proof rule for continuous functions.) If pre (S, R)
is the predicate transformer which is equivalent to the least fixed-point of z(x), where " is
continuous from below, and

(1) the assertion language includes arithmetic and them is a formula in the assertion
language of the form P(i) such that P(i) =- z (False),

(2) them is a sound and relatively complete proof system (with modus ponens) to
prove formulas of the form Q z(Q2),
then

](n + 1) (](n)), -](0)
J(n)pre(S,R)

is a sound and complete proof rule. (This is a generalization of a result from [14].)
Proof. (Soundness.) From the premise of the rule,

J(0) ::), False and

J(i) zz T (False) for all > O.

The latter is easily shown by induction and using the monotonicity of -’
J(i + 1)=-(J(i)) (from the premise),

-(J(i))=-(-i(False)) (monotonicity of ’).

Therefore, J(i + 1) :ff -i+l(False).
Thus,

J(n :ff Lli{"i (False)},

and the rule is sound.
(Relative completeness.) Suppose P :=), pre S, R). From the expressibility assump-

tion ,/. (False) can be expressed by a formula J(i). Then

I-J(0) False and

From assumption (2),

J(n+l)z(J(n)).

[-J(n + l)::=7-(J(n)).

By the least fixed-point proof rule and generalization, I-(=ln >-O)J(n) pre (S, R). But
J(i) forms a chain, J(0):ffJ(1),... ,J(i)J(i+l),..., and - is continuous, so
(::In >= O)J(n) is greater than or equal to a fixed-point of r. Therefore, pre (S, R)
(3n >-_ O)J(n ), and P: (Zin >-_ O)J(n ). From assumption (2), t--P:z), (::ln >-_ O)J(n ). Thus,
-P pre (S, R ).
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We note here that the sound and complete proof rules for regular programs of 14]
are instances of Theorems 1 and 2.

Theorem 2 is only applicable to functions which are continuous from below.
Actually, all the properties we have dealt with in 3 can be expressed by continuous
functions and no further proof schemas are necessary. However, we will later have to
deal with the least fixed-point of monotonic but noncontinuous functions for which we
do not have a proof rule schema. Hence the following theorem:

THEOREM 3. (Least fixed-point proof rule for monotonic functions.) If pre (S, R)
is the predicate transformer which is equivalent to the least fixed-point of a monotonic
]’unction r(f), and

(1) the assertion language is second order and can express the least fixed-point of
(2) there is a sound and relatively complete proof system (with modus ponens) to

prove formulas of the form P r(Q),
then

((J(x))J(x))(PJ(x))
Ppre(S,R)

is a sound and complete proof rule, where J is a fresh predicate variable and x is the list of
all free variables modifiable by

Proof. (Soundness.) Assume that the premise of the rule is true in the model, that is,
(’(J(x))J(x))(PJ(x)). Then for any member q of the set {q ’(q) - q}, P :::)> q.
Therefore,

P{ql’(q) - q} or Pq.-(q)

is true, hencePpre (S, R).
(Completeness.) Suppose Ppre(S,R). Since pre(S,R)=-iq.(q), P

{q r(q)
_

q}. Therefore ([J)(’r(J(x)) zz J(x))z (p zz J(x)). Since we assume that the
above formula is provable, (’(J(x)J(x))(PJ(x)). Therefore, [-P
pre (S, R).

6. Fixed-point characterization of the correctness of parallel programs. As was
described in the previous section, in order to obtain sound and complete proof rules, our
task will be to show that the weakest pre-conditions for our correctness properties are
actually extremum fixed-points of continuous functions. We will present only the proofs
for invariance (a greatest fixed-point) and potentiality (a least fixed-point). These
proofs are highly representative of the others.

1) Invariance. We claim that wip (REP, R), the weakest pre-condition that assures
that R holds at every state in the computation history which is neither blocked nor , is
the greatest fixed-point of the following formula ,(p):

(6.1) t(p) R ^ (Vi 6 1... n)[Bi :z> wlp(S,, p)].

Proof. (Weakest.) Suppose I is a pre-condition guaranteeing the invariance of R.
Then we claim that

Iup.t(p).

As a lemma we claim that if s is a state such that t" (True)(s) is true (under ), then for
any sequence r of Hist (REP, {(0, s)}), R is true in the first m states of r. The claim is true
when m= 1, since tl(True)=R. Suppose the lemma is true for tk(True). Since
k+(True)= R ^ (i 1 n)[B wlp(S, k(True))], if execution is started in a state

satisfying k+a(True), R will be true initially and k (True) will be true in the next state.
Thus R will hold in the first k + 1 states, which completes the proof of the lemma.
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Now for any i, I :=), i (True), and because of the completeness of the lattice I :ff
7-1i{/(True)}. Since wlp is continuous from above, (p) is continuous from above and
[---]i{b (True)} is the greatest fixed-point.

(Pre-condition.) Next we show that every fixed-point of (6.1) is a valid pre-
condition for invariance. Since a fixed-point g satisfies

g t(g) R ^ (Vie 1. n)[B wlp(Si, g)],

R is initially true. After the execution of any one command g is again true; hence R is
true in every state. Thus, g is a pre-condition for invariance.

2) Potentiality. We claim that wpp(REP, R), the weakest pre-condition that
assures that REP has the potential to establish R, is the least fixed-point of the following
formula r(p):

(6.2) 7r(p) R v (::li 1 n)[Bi ^ wp(Si, p)].

Proof. (Weakest.) Let P be any pre-condition that guarantees the potentiality of R.
Then there is an execution sequence such that R is true at some intermediate state of the
sequence. That is, for any initial values of the program variables, there is an integer n
such that

where

po:ff R

and for all k (0 < k -<_ n)

pk =:>R v (::li 1 n)[Bi v wp(Si, p/-l)].

That is, p is a pre-condition assuring the possibility of establishing R within k steps of
execution. Then

po ::> or(False), since r(False) R, and

p z:), r(p-l) for 0 < k =< n.

Define the chain zr by

rr0 r(False) and

r+ r(r).

Then it is easily shown by induction that

pkzffTr for all0=<kn;

that is,

P or,.

Since ro_ r_ , , the least upper ound exists and is the least fixed-point
of . Hence, P{}, which is the same as P (3i 0).

(Pre-condition.) From the fixed-point induction rule [25],

False P, q P (q) P
gq.(p) WP

where WP is the weakest pre-condition. Since False WP is a tautology, we have only
to prove (q) WP assuming q WP. If (q) is true, then either R is true now or there



TOTAL CORRECTNESS OF PARALLEL PROGRAMS 239

is a way to establish q in one step. From the assumption that q guarantees the
potentiality of R, r(q) guarantees the potentiality of R. Therefore, 7r(q)::), WP.

3) Inevitability. We say that R is inevitable if and only if no execution sequence can
avoid establishing it. We claim that the weakest pre-condition that guarantees the
inevitability of R, wep(R), is the least fixed-point of the formula

(6.3) r/(p) R v (::li 1 It)Be/x (Vi 1 rt)[Bi wp(Si, p)].

The proof is similar to that of potentiality.
4) Blocking. We claim that the greatest fixed-point of the formula

(6.4) fl(p) (::li 1 n)Bi/x (/i 1... n)[Bi wp(Si, p)]

is the weakest pre-condition wbp(REP) that assures safety from blocking. The proof is
similar to that of invariance.

5) Deadlock. We say that command f is safe from deadlock if and only if B is
always potentially establishable. The weakest pre-condition for deadlock freeness is
the greatest fixed-point of

(6.5) 6(p) (wpp(Bi) v Q) ^ (Vi 1... n)[Bi wp(Si, p)],

where Q is the disjunction of all the guards of exit commands. The proof is similar to
that of invariance.

6) Starvation. We say that command j is starvation free if and only if B is always
inevitable. The weakest pre-condition for starvation freeness is the greatest fixed-point
of

(6.6) o-(p) (wep(R) v Q) A (Vi 1 n)[Bi :: wp(Si, p)].

where Q is the disjunction of all the guards of exit commands. The proof is similar to

that of invariance.
From the results of this section and Theorems 1 and 2, we are able to conclude that

the proof rules given in 4 are sound and relatively complete.

7. Fairness. The model of parallel computation used up to this point, i.e., pure
nondeterminism, does not take into account any notion of scheduling. The properties of
weak correctness, blocking, and deadlock are not affected by scheduling, but inevi-
tability and hence starvation are. What we have actually defined so far is inevitability
under true nondeterminism: a worst case scheduler. Therefore, if we can prove absence
of starvation using the proof system of 4, we can guarantee that the program is
starvation free under any scheduler, as long as that scheduler has the minimal property
of guaranteeing progress to some executable process. However, that assumption is
often too strong for realistic systems.

Consider the parallel program

cobegin

repeat x := x + 1 end //
repeat y := y + 1 end

coend.

If separate processors serve each process, it is a reasonable assumption that x and y will
both become arbitrarily large. Under true nondeterminism the possibility exists that
one of the processes is serviced continually while the other is ignored.
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In this section we will consider the problem of fair scheduling in a two-process
system, and obtain new weakest pre-conditions for inevitability and absence of star-
vation. The results are easily extendable to the multi-process case.

We take the definition of fair scheduling to be that every process continuously in an
"enabled" state for an unboundedly long time must eventually execute. This is a weak
definition of fairness, but one which we feel to be the appropriate choice. This definition
ensures the unbounded growth of both x and y in the above program. However in the
following program, it does not"

cobegin

repeat B := not B; x := x +1 end {/

repeat when B do y := y + 1 end

coend.

This is due to the fact that the second process is not continuously enabled for an
unbounded time. Our definition corresponds, however, to an execution model in which
each process executes on an independent processor, and in such a model it is indeed
possible for the second program to starve its second process.

The binding of process to processor is likely to become increasingly valid with the
increasing importance of microprocessors. Some would argue, however, that "fairness"
is a stronger notion than this, and that the second example should not allow starvation of
either process. We feel that to commit the execution model to this would inevitably
result in overspecification, in the sense that the scheduler would frequently make
decisions that are unnecessary. Thus, we feel that such scheduling criteria should be
built into the program itself, or perhaps into some superimposed execution model, but
not into the underlying model we are describing here.

To model our notion of fairness with nondeterminism we need to introduce, in
addition to program counters, variables that represent process numbers. After de-
composing each process into indivisible actions, we associate the corresponding process
number with each command derived from the process. The nondeterministic version of
the parallel program

cobegin

$11; $12;" ;Sin //
S21 S22; S2m

coend,

where the Sii are taken to be the indivisible actions of each process, becomes

rep

Bll-->1Sl[I

Bin -’>1 si ll
B=x -*2

B2m "->2 S2m
per,
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where the Bii include tests on the program counters, and the SIj are the Sij concatenated
with the necessary program counter updates. In the following we only consider the
two-process case, but extension to the n-process case is straightforward.

In defining "fair inevitability" (i.e., inevitability under the processor-per-process
execution model), we rely on the following basic assumption" whereas under pure
nonde[erminism a predicate R will be inevitable only if a state is reached in which the
only executable commands must establish R, in the fair model all that is required is to
reach a state such that some command remains continually enabled and needs only a
single execution to guarantee establishing R. Of course reaching this state may itself
require the fair execution model.

Consider the function

q(q, R)= wep(R v (k 1 n)[wip2(Bak ^ wp(Slk, q))]

v (k 1 m)[wip(Bzk ^ wp(Szk, q))]),

where wipe(p) is the weakest pre-condition for the invariance of p across process 1 only,
and Wipz(p) for process 2 only. In other words

wipm(R)= t,q.((Vk)[R ^B,,k wlp(Smk, q)]).

q (wep(R), R) expresses the "one-shot" fair-inevitability for the process m described
above. It says that R is fair-inevitable exactly when either it is inevitable under pure
nondeterminism, or a state will inevitably be reached such that the truth of

B2tc A wp(S2, wep(R))

is kept invariant by process 1, or the truth of

Bak ^ wp(Sx,, wep(R))

is kept invariant by process 2, for some k. The "one-shot" fairness predicate must be
iterated for cases where the fairness principle must be involved more than once before
the desired outcome. Thus, R is fair-inevitable if and only if either

1) R is established under one-shot fair-inevitability, or
2) (1) is true now or a state will be reached in which process 1 is continuously

enabled and is guaranteed to establish (1) upon execution, or process 2 is
continuously enabled and is guaranteed to establish (1) upon execution, or

3) same as (2) reading (2) for (1), or

We tiaerefore conjecture that the weakest pre-condition for fair-inevitability, wfep(R),
is given by

wfep(R txq.q(q, R ).

(A proof appears in the Appendix.)
Note that wfep(R) is not necessarily continuous, since it is the least fixed-point of

the greatest fixed-point of a continuous function (refer to property (c) of 5.1). Thus, we
cannot use Theorem 2 to generate a proof rule for wfep(R). However, q is monotonic
and hence we can use Theorem 3 to generate the rule.

We can thus obtain a proof rule for the absence of starvation under fair-scheduling
by simply replacing wep(R) by wfep(R) in formula (6.6).

8. Soundness and completeness. The soundness and completeness of the axiom
system of 4 is a direct consequence of Theorems 1 and 2, and 6.

As a corollary to the soundness and completeness results we can make a claim
about the requirements for ghost variables in weak correctness proofs. Owicki [21] has
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shown that history sequences and location counters as ghost variables, with general
arithmetic operations on them, are sufficient to prove weak correctness.

COROLLARY. A proofof the weak correctness of a parallel program with conditional
critical regions requires neither history sequences nor an arithmetic domain ]:or ghost
variables if we ease its requirements to allow assertions to refer to location counters of
other processes.

Proof. Let P be the disjunction of the guards of the exit commands. Then in order to
prove the weak correctness of a given post-condition R, we need only prove the
invariance of P ::), R. Thus we conclude that finite-valued location counters are all that is
necessary. 71

9. Practical proof methods. In order to carry out the verification of practical
programs, it is usually not convenient to transform a well-structured program into
explicit nondeterministic form. The results we have obtained do not require the explicit
transformation. It is only necessary to identify indivisible program segments in order to
apply the proof rules.

Let us consider the program schema

{pre}

cobegin

A; with r when B do S; C//
D; with r when U do F; G

coend

{post}.

Completeness guarantees that all we have to do is to introduce a location counter for
each process and increment it after each indivisible action of the process, for example:

Pl := P2 :-- 0;

cobegin

A; p := 1; with r when B do S; p := 2; C; p := 3//
D; p2 := 1; with r when U do F; Pe := 2; G; p2 := 3

coend.

Then, to prove weak correctness, we can always invent an invariant J such that

pre ^ Pl 0 wlp(A p := 1, J),

J ^ B ^ p 1 wlp(S; p := 2, J),

J ^ pl 2 wlp(C; p := 3, post),

pre ^ p2 0 =)> wlp (D; p2 := 1, J),

J ^ E ^ P2 1 wlp (F; P2 := 2, J),

J ^ P2 2 wlp(G; P2 := 3, post).

Further comparison to Owicki and Gries’ method [22] is in order. Their method
requires the introduction of sufficient ghost variables and ghost assignments so as to be
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able to prove the independent sequential correctness of each process and the noninter-
ference of one process on the intermediate assertions of another. We have proven that
simple program counters are sufficient (although not necessarily easier to work with).
Proving noninterference in the Owicki and Gries method is analogous to proving
invariance in our method.

Consider the previous example again. Let Q1, R1 and Q2, R2 be interference-free
pre- and post-conditions for the first and second conditional critical regions respec-
tively. Then

(pl=l ::> Q1)^(p2=l=),Qz)^(p1=2=),R1)^(p2=2:R2)
can be our invariant J. Note that the complexity of verification is the same for both
methods once the necessary assertions are stated.

10. Example. Consider the following simple program which operates on three
buffers:

cobegin

withx, ywhenx>O^y<ndox:=x-1;y:=y+lend //
withy, zwheny>O^z<n do y := y -1; z := z + l end //
with z, x when z >0^ x <n do z := z-1; x := x + 1 end

coend.

We will show that the above program is starvation free on the first process with the
pre-condition O=<x,y,z<-n^O<x+y+z<3n. We postulate that O(m)-O=<
x, y,z<-_n ^ 0<x +y+z <3n ^m =x +2z +3y. Then

O(0) False,

O(m+l)^(x<-Ovy>=n)=)’(y>O^z <n vz>0 ^x <n)

^[y>0^z<nzwp(y:=y-1;z:=z+l,O(rn))]

^ [z > 0 ^ x < n ::), wp(z := z 1; x := x + 1, O(m))].

Therefore, from the proof rule 3,

O(m):: wep(REP, x >0 ^ y <n).

Since (=lm >- O)Q(m) is invariant over all the commands, the program is starvation free.

11. Conclusion. We have presented an axiom system that defines the total
correctness of parallel programs expressed in nondeterministic-sequential form. By
arguing about the relationship between weakest pre-conditions and fixed-points, we
formulated three theorems about the soundness and completeness of proof rule
schemas that allowed us to immediately conclude that the axiomatization itself is sound
and complete. We also recognized the fairness problem introduced by the trans-
formation to nondeterminism, and have presented a somewhat modified formalism in
which true parallelism may be correctly modelled. The result is a rigorous formal
definition of the total correctness of parallel programs. A corollary of our work is that
the use of auxiliary variables and computations other than simple location counters is
not necessary in proving the correctness of parallel programs.
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Appendix. Proof of the weakest pre-condition for fair-inevitability. We prove that
the least fixed-point

t.tq.q(q, R), where q(q, R) wep(R v wipl(B2 ^ wp(S2, q)) v wip2(B1A wp(S1, q))),

is the weakest pre-condition for fair-inevitability. Here we are simplifying by assuming
exactly one command per process (hence $1 instead of Slk). However, the proof is
straightforwardly, though tediously, extendable to the general case. The definition of
the fair-inevitability of R is that R will be established under a scheduler which serves
processes at random, except when a process is continuously enabled, in which case that
process may be assumed to eventually execute.

(Pre-condition.) First we will prove that tzq.q(q, R) is a valid pre-condition for
fair-inevitability. Because the fixed-point induction rule [25]

False ff P, qzP]--q(q,R)=)>P
/.q.q (q, R) ffP

is sound even for monotonic but noncontinuous functions q, and False zP is a
tautology, it is sufficient to show that q :z PI- q (q, R) ::P in order to conclude

/.tq.q (q, R):P.

Therefore, we will show that q WP-q(q, R) WP, where WP is the weakest
pre-condition for fair-inevitability of R.

Suppose q (q, R) is true. Then it is inevitable that a state is reached in which either
R, wipl(B2 ^ wp(Sz, q)), or wipz(B ^ wp(S, q)) is true.

Case 1) R is true. Since R implies WP, WP is fair-inevitable.
Case 2) wip(Bz ^ wp(Sz, q)) is true. This means that B2 ^ wp(S2, q) must remain

true as long as process 1 executes. Because the scheduler must service process 2
eventually, it is inevitable that q will be established. Since q WP from the assumption,
WP is fair-inevitable.

Case 3) wip2(B1 ^ wp(S, q)) is true. Argument mirrors Case 2.
Thus, q(q, R) implies WP is fair-inevitable, which in turn implies R is fair-

inevitable. Therefore, q(q, R) WP from the assumption that WP is the weakest
pre-condition for the fair-inevitability of R.

(Weakest.) We now prove that/xq.q (q, R) is the weakest of all valid pre-conditions.
Whenever one process is repeatedly executing while the other is continuously

enabled, the fair scheduler guarantees that the continuously enabled process will
eventually execute. We call this eventuality a yielding.

Our goal is to show that for any pre-condition r, r =:), q is true for all q satisfying
q (q, R) =), q. Since r is a pre-condition, if a computation is started in a state satisfying r,
eventually a state will be reached in which R is true. There may be a number of yieldings
during this computation. Thus we will achieve our goal by induction on the number of
yieldings.

Define the sequence qi by

qo q (False, R) wep (R),

+ (, R).

Let r be any pre-condition that guarantees the inevitability of R under fair-
scheduling. Then R must be established within some number of yieldings, say k. There
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is a sequence of k + 1 logical formulas such that

and for all i, 1 -< <= k,

Pk =r,

Po wep (R ),

pi qg(pi-l, R

that is, pi is a pre-condition assuring the inevitability of R within yieldings. Then,

pi =)’ qi for all i, 0 <= =< k;
that is

r qgk.

Since q0_= qx - - (,/gk the least upper bound exists and is the least fixed-point
of q. Hence rtzq.q(q, R).

Here we are pleased to acknowledge Allen Emerson, who proved a similar result
for a different formulation of the fair-inevitability transformer.

Acknowledgments. We are indebted to Dana Scott for suggesting the notion of
continuity from below and above as the solution to a problem contained in an earlier
draft. Comments from Krzysztof Apt, Edmund Clarke, Allen Emerson, David Harel,
Jim Morris, and Susan Owicki have been very valuable.
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AN ALGORITHM FOR FINDING K MINIMUM SPANNING TREES*

N. KATOH-, T. IBARAKI AND H. MINES

Abstract. This paper presents an algorithm for finding K minimum spanning trees in an undirected
graph. The required time is O(Km + min (n 2, m log log n)) and the space is O(K + m), where n is the number
of vertices and m is the number of edges. The algorithm is based on three subroutines. The first two

subroutines are used to obtain the second minimum spanning tree in O(min (n 2, ma(m, n))) steps, where
a(m, n) is Tarjan’s inverse of Ackermann’s function 12] which is very slowly growing. The third one obtains
the kth minimum spanning tree in O(m) steps when the/th minimum spanning trees for 1, 2, , k
are given.

Key words, kth minimum spanning tree, graph algorithm, computational complexity

1. Introduction. Let G (V, E) be an undirected connected graph with no parallel
edges, where V is a set of n vertices and E is a set of m edges. The weight w(e) is
associated with each edge e E. The minimum spanning tree problem is to find the
spanning tree T1 with the minimum weight, where the weight of a spanning tree T
(viewed as a set of edges) is defined by w(T)=eyW(e). This problem has been
intensively studied by many authors including Kruskal [9], Prim [11], Dijkstra [6], Yao
[14], Cheriton and Tarjan [5]. Especially [5] and [14] require O(m log log n) steps.

The ]th minimum spanning tree T/is defined recursively as follows.
(1) Tx is the minimum spanning tree.
(2) T. ( => 2) is a spanning tree with the minimum weight among those different

from T1, T2,"" ", T.-1.
Algorithms for finding K minimum spanning trees T1, T2,’", TK have been

studied by Burns and Haft [3], Camerini, Frata and Maffioli [4] and Gabow [7].
Gabow’s algorithm requires O(Kma(m, n)+m log n) steps and O(K +m) space,
where a is Tarjan’s inverse of Ackermann’s function [12] and is very slowly growing.
We propose an algorithm with O(Km +min (m log log n, n2)) time and O(K + m)
space. This is slightly faster than Gabow’s algorithm, and the required space is of the
same order. The basic idea for enumeration is similar to but slightly different from
Gabow’s approach. This slight difference and the use of some additional lists make it
possible to reduce the run time.

Section 2 gives the definition and a property of edge exchanges. Sections 3 and 4
give the outline and a detailed description of the entire algorithm. Section 5 analyzes
time and space requirements. Sections 6 and 7 describe subroutines computing edge
exchanges to generate the second and the jth minimum spanning trees, respectively.
Although the algorithm explained in 3 and 4 requires O(Km) space, it is reduced to
o(g + rn) in 8.

2. T-exchanges. Let T be a spanning tree in G. A T-exchange is a pair of edges
[e, f] such that e 6 T, f T, and T- e U f is a spanning tree. The weight of T-exchange
[e,f] is w[e,f]=w(f)-w(e); note that the weight of tree T-eUf is w(T)/w[e,f].

LEMMA 2.1. [7] A spanning tree T has minimum weight if and only if no
T-exchanges have negative weight.
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3. The outline of the algorithm. Our algorithm consists of routines GEN and
GENK like Gabow’s algorithm [7]. GEN computes T. when T1, T2, , T.-1 are given,
using the branch-and-bound type technique described by Lawler [10]. Our GEN is
different from Gabow’s, however, in that a slightly different scheme is used to partition
the solution space, and in that more information is stored in conjunction with solution
space partition. GENK generates all the K minimum spanning trees using GEN as a
subroutine.

The following lemma is a basis for our algorithm.
LEMMA 3.1. [7] Let Tbe a minimum spanning tree satisfying the constraints IN c T

and OUT E T, where INand OUTare given subsets ofE. Then a minimum spanning
tree which is differentfrom Tand satisfies the same constraint is given by T e f, where
[e, f] is a minimum T-exchange satisfying e T-IN and f E T OUT.

Now assume that the first j-1 (j> 1) minimum spanning trees have been
generated. The set of remaining spanning trees is partitioned into j-1 disjoint sets

P{- {Tk k > j I INi c Tk, OUTi c E Tk } i=l,2,...,j-1,

where INi and OUTi(1 <= <j) are set of edges which will be specified later (in a way
slightly different from Gabow’s definition). For 1, 2,. , j- 1, let

Q-I {([e, f], r)[for each f E T, OUTi, e T, IN,

gives the minimum Ti-exchange [e, f] with weight r w[e, f]}.

Note that each QJ- contains [E- T OUTI- O(m) labels therein.
Sets IN, and OUTi defining p-i (1 =< -<_j- 1) are given as follows. Initially, when

j 2 (i.e., only T1 is obtained), IN1 and OUT1 defining P/1-1 and Q-I are given by

IN1 b and OUT1

In general, assume that T. is obtained from Ti. by applying T/.-exchange [e*, f*]. Then
IN, and OUTi are updated as follows:

IN,. IN,., 0UT,. - 0UT,. 1.3 {f*},
IN <’- [Ni, J {f*}, OUT <-- OUTi,.

Other INi and OUTi do not change. These new sets define P{ for 1, 2,.. , j, and
GEN computes the corresponding Q. Recall here that Gabow [7] uses the scheme
INi. INi. l_J {e*}, OUTi. OUTi.; INi IN,., OUT. OUTi. U {e*}. Our definition is
essential to make the subsequent computation possible.

By this definition, the next lemma is obvious.
LEMMA 3.2. Let j be 2 <= j <- K.
(1) For any 1, 2,. , f 1, Ti is a minimum spanning tree satisfying INi Ti and

OUT cE- Ti, and no other Tk (k 1, 2,..., i- 1, i+ 1,...,j- 1) satisfies this con-
straint.

(2) Any spanning tree T satisfies IN, T and OUTi E- Tfor exactly one with
l<=i<_j-1.

When T1, T2,..., T_ are known, Lemma 3.2(2) implies that T is given as a
minimum spanning tree in U- - -i=1 P, (note that Pi excludes T, T2,’’’, T._I). By
Lemma 3.1 and Lemma 3.2(2), a minimum spanning tree in p{-1 is given by Ti e’U f’,
where ([e’, f’], r’) is a label in Q{-1 with the smallest r. Thus, if we let ([e*, f*], r*) be a
label in U’- Q-Ii= with the smallest w (Ti) + r, T. is given by

T. Ti,- e * l,.J f*.
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Using these i*, e* and f*, new sets P and Q are defined and the computation proceeds
as explained above.

Now we describe how to compute Q (1 =< =< ) in GEN. While computing T1, Q is
obtained in O(min(n2, ma(m,n))) steps by a special subroutine COMPQ1 or
COMPQ2 depending upon whether n2<ma(m,n) or not. These subroutines are
explained in 6. When T. Ti.- e*C f* is obtained in GEN, Q, is computed by

i* Oi* -{([e* f*], r*)}.

Q (i i*, j) are simply obtained by ]-1Qi Qi Finally Q] is obtained by calling
subroutine COMPQ3 explained in 7. Obviously IQ{I O(m) for all i. The key point is

]-1that QII. and Q} are both obtained in O(m) steps from Qi* Based on these Q{,
minimum trees in P{ can also be obtained in O(m) steps (note that only P{. and P are
considered since minimum spanning trees in p{-1 and P{ do not change for : i*, ]).
GEN is repeated for ] 2, 3, , K, and the entire procedure is organized as GENK.

Finally, we briefly explain the actual data structures of some of the above
mentioned lists. Each set p{-1 is represented in our algorithm by a tuple

p-i (t’, [e’, f’], Ai, IN,, OUTi, i),

where ([e’,f’], r’) is a label in Q-I with the smallest r, and t’=
w(T)+r’(=w(Ti-e’Uf’)). Ai is the adjacency list of T’Ai={Ai(u)[u V} and
Ai(u)={vledge (u, v) T}. The length of p-X is O(m) since [Ail= O(n) and [IN, I+
lOUT.I= O(m). In our implementation, more information is associated with Ai(u);
actually it consists of the following tuples"

Ai(u) {(v, w(u, v), INFLAG)I(u, v) e T},

where INFLAG 0 implies (u, v) IN and INFLAG 1 implies (u, v)e INi. We also
prepare an adjacency list of G" A {A(u)lu V}, Ac;(u) {(v, w(u, v))[(u, v) e E}.

4. Algorithm tor finding K minimum spanning trees. This section describes
algorithms GENK and GEN in an ALGOL-like language.

Procedure GENK(G V, E), K); begin
comment K => 2;
Find the adjacency list A for a minimum weight spanning tree T1 and its weight

tx; output (A1);
if n 2 < ma(m, n) then call COMPQ1 to obtain Q
else call COMPQ2 to obtain Q;
Find a minimum weight exchange ([e’, f’], r’) in Q;
Let P be (tl + r’, [e’, f’], A1, &, b, 1);
For j 2 until K do call GEN(P- Q-lli 1 - 1).
end GENK

Procedure GEN(P-1, O-1[i 1, 2,.’., j-1); begin
Find P: (t*, [e*, f*],Ai.,INi., OUTi., i*) with the smallest weight t’ among

e-I (t’, [e’, f’], Ai, INi, OUTi, i), i= 1, 2,..., f- 1;
if t*= oo then stop (all spanning trees have been output and G has only j-1

spanning trees);
else begin

A]-ai* with edge e* replaced by f* (A] is the adjacency list of T]);
output (A]);

O* <- O:1 -{([e*, f*], t*-ti,)};
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Call COMPQ3(A, INi. (_J f*, OUTi., f*, O-l to obtain O;
O - O- for i*, j;
it Q. b then P. - (t. + r’, [e’, f’], A., INi., OUT. (.J it., i*), where

([e’,/o], r’) is a label in Q. with the minimum r and ti. (the weight of
Ti.) can be computed by ti. t*- w[e*,/*]

else P, -(oo, 4, 4, 4, 4, i*);
(t*+ri Qb then Pi - [e", f"], Ai, INi. t_J f* OUTi., j), where

([e", ff], r") is a label in Q with the minimum r
else P (, 4,, 4,, b, 4’, i*);
p p-i for : i*, j;

end
return
end GEN

5. The correctness and the time bound of the algorithm.
LEMMA 5.1. For each j 2, 3,..., K, GEN correctly computes T., Q and P

(i 1, 2,...,j) in O(m) steps.
Proof. Since the correctness follows from the result of [7] and the discussion given

so far, we consider the time requirement only. Line 1 of GEN finds P:- with the
minimum among p-l, 1, 2, f- 1. This is done in O(log (j- 1)) < O(log K)
O(m) steps (since the number of spanning trees -<_2m) if an appropriate sorting
technique is used (e.g., heap sort [8]) for the set {p-l]i 1, 2,..., j-1}. Line 2
requires constant steps. Line 3 is done in O(n) (<=O(m)) steps by IAi.[ O(n). Line 4
requires O(m) steps since IQ{;-11 O(m). Line 5 calls COMPQ3 and it requires O(m),
steps as will be shown in 7. Lines 6 and 9 require constant steps because these are
accomplished simply by keeping the previous data. Lines 7 and 8 are done in O(m)
steps by [Q.[= O(m) and [Q[= O(m). (Adjustment of data structure of {Pli=
1, 2, .,/’} (e.g., using heap) is also done in O(log f) -< O(m) steps, as is well known.)
Thus, all computation in GEN is done in O(m) steps. 71

THEOREM 5.2. GENK correctly generates the K minimum spanning trees from T1 to
Tt( in O(Km + min (n 2, m log log n)) time.

Proof. The correctness of GENK follows from the previous discussion. The time
requirement is analyzed here. Line 1 requires O(min (n 2, m log log n)) steps (e.g., [5],
[14]). Line 2 requires O(min (n 2, ma(m, n))) steps as shown in 6. Line 3 requires
O(m) steps by ]Q]- O(m). Line 4 requires constant time. Line 5 calls GEN K-1
times, and requires O(Km) steps in total by Lemma 5.1. Thus, the total time is as shown
above, l-]

A straightforward implementation of GENK requires O(Km) space mainly to
store Q-I and p-i for 1, 2,. ., f- 1. This will be reduced to O(K + m) in 8.

6. Subroutines COMPQ1 and COMPQ2. This section briefly explains the two
subroutines COMPQ1 and COMPQ2, computing Q in O(n) steps and in
O(ma(m, n)) steps respectively. These are based on the next lemma.

LEMMA 6.1. For a given edge E T, let e be the maximum weight edge f) on
the unique cycle formed by addingf to T. Then [e, f] is the smallest Tl-exchange with the
given ]: E T.

Proof. The proof immediately follows since the weight of edge exchange w[e, ’] is
given by w() w (e).
Q is therefore computed by finding [e, ] and r w[e, ] of Lemma 6.1 for every

edge f (u, v) E- T1. COMPQ1 is first outlined. It is a slight augmentation of Prim’s
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algorithm [11] which computes T1 in O(n 2) time; we assume the reader’s familiarity
with Prim’s algorithm. Consider a computation stage when an edge (x, v) is added to
the current fragment (subtree which is going to comprise T1), where x is a vertex in the
fragment and v is not in the fragment. For each vertex u in the fragment, let (h, k) be the

maximum weight edge in u -- x (which has already been computed and stored). Then a
T1

maximum weight edge in u--, v for f (u, v) is obtained by taking the edge with the
Ta

larger weight between (x, v) and (h, k). (This property easily follows from Lemma 6.1
and is omitted.) Thus computation of such maximum weight edges for all (u, v), such
that u’s are vertices in the fragment is done in O(n) time. Since this can be repeated
n 1 times until T1 is constructed by Prim’s algorithm, computing at the same time the
maximum weight edge for every f (u, v)e E, the total time to compute Q is O(/’/2).

THEOREM 6.1. COMPQ1 computes QI in O(?/2) time.
COMPQ2 is a straightforward adaptation of Tarjan’s algorithm [13] for verifying

in O(ma(m, n)) time that a tree T in an undirected graph is a minimum spanning tree.
His algorithm involves the computation of the maximum weight edge along the path
u --* v, for each edge f (u, v) T. By Lemma 6.1 this portion of his algorithm can be

T

directly used as COMPQ2 for computing Q1.

THEOREM 6.2. COMPQ2 computes QI in O(ma(m, n)) time.

7. Subroutine COMPQ3. This section describes subroutine
COMPQ3(A.,IN/, OUT.,f*, Q7) for obtaining O in O(m) steps when T.--
Ti.-e*k_Jf* is given, where [e*, f*] is the minimum T/.-exchange in [,.jj-l/=l oiJ-1 (see
3). COMPQ3 is based on the following lemma.
LEMMA 7.1. For T. and the edge f*= (u*, v*) T. defined above, let Ti(u* and

T.(v*) be two trees obtained from T. by deleting f*, where u* V.(u*) and v* V.(v*).
Here V.(x) is the set of vertices in the connected component Ti(x ). Letf (u, v) be an edge
in E- Ti OUT.

(1) If u, v V.(u*) or u, v V.(v*), the label ([e, f], r) stored in Q{21 is also in Q.
is determined by(2) If u V.(u*) and v e V.(v*), then ([e, f], r) stored in Qj

w(e)=max[max{w(g)[gC_tgi, gisonu* * }T(u tt

max {w(h)lhIN.,hisonv* * v}]Ti(v,

r w(f)- w(e).
Proof.
(1) Assume u, v e T.(u*) without loss of generality (see Fig. 1). Since T/-f*

T/.- e* (i.e., T.(u*) T/.(u*)), then u v u v, and is not an edge on u v. Thus,
T T. T-by Lemma 6.1 the label ([e, f], r) stored in O. is also in

(2) Since uv is equal to uu*v* v and (u*, v*)(=f*)INi (see Fig.
Ti Ti(u*)

2), the edge e defining ([e,f], r) O is the maximum weight edgeI, on either
u u* or v* v by Lemma 6.1.
T(u*) T(v*)

To compute ([e, f], r) 6 Oi efficiently by Lemma 7.1, COMPQ3 preprocesses trees
.(u*) and (v*) by calling subroutines EDGEFIND(A}, u*,I) and
EDGEFIND(A,v*,I), where A is the adjacency list of .(u*)U.(v*).
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Tj(u*)

FIG. 1. Illustration of Ti-exchange in the proof of case (1) ofLemma 7.1.

//
//

e*

\\

rj(v)

Tj(u ’)

FIG. 2. Illustration of Ti-exchange in the proof of case (2) of Lemma 7.1.
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EDGEFIND(A,u*,IN.) finds the maximum weight edge MAXEDGEu,(U)

T.(u*)-IN. on u* u for each vertex u T/(u*). Its weight is stored in W,,(u).
ri(u*)

(Subscript u* is added to indicate MAXEDGE and W obtained by
EDGEFIND(A}, u*, INi).) EDGEFIND(A}, v*, IN.) is similar. After this,
([MAXEDGEw,(Z),f], w(f)-Ww,(Z)) is added to O for each edge
E- Ti-OUT with u e V.(u*) and v e V.(v*), where Ww,(Z)=max {W,,(u), W,(v)}.

For each f= (u, v) e E T. OUT. with u, v e V.(u*) or u, v e V.(v*), ([e, [], r) in
O;- is directly stored in

Procedure COMPQ3(A, IN., OUT, f* (u*, v*), O{-2 ); begin
1 Q. & A}(u*) A(u*)-{v*}; A(v*) Ai(v*)-{u*}; A}(u) Ai(u) for u #- u*,

v* (A} {A}(u)lu V} is the adjacency list of T.(u*)U T(v*));
2 for u V do
3 if u V.(u*) then N(u)-1 else N(u)-O (N(u) is a flag showing whether

u V.(u*) or u V.(v*));
4 lot u 6 V do Wu.(U) W.(u) -oe; MAXEDGE,.(u)MAXEDGEo.(u)
5 Call EDGEFIND(A., u*, INi) to obtain MAXEDGE,.(u) and W,.(u) for u

V(u*);
6 Call EDGEFIND(A, v*, IN.) to obtain MAXEDGE.(v) and W.(v) for v

V(v*);
7 for f (u, v) E T. OUT/do
8 i[ N(u) N(v) then add label ([e, f], r) in 021 to O
9 else add label ([MAXEDGEw.(Z), f], w(f)- Ww.(Z)) to O, where z e {u, v}

satisfies Ww.(Z) max (W,.(u), W.(v)) (if Ww.(Z) oe, do not add the
label since MAXEDGEw.(Z) does not exist);

return
end COMPQ3

* IN)" beginProcedure EDGEFIND(Aj, p
Call DFS(A}, &, p*, IN);
return
end EDGEFIND

Procedure DFS(A }, x, y, IN); begin
1 for z e A (y) x (= A (y) if x &) and (y, z #_ IN do
2 if W(y) < w (y, z) then begin

MAXEDGE(z) (y, z); W(z) w(y, z);
end

3 else begin
MAXEDGE(z)MAXEDGE(y); W(z) W(y);

end
4 Call DFS(A, y, z, IN);

return
end DFS
THEOREM 7.2. COMPQ3(Aj, IN., OUTi, f*, Q{2 correctly computes Q in O(m)

steps.
Proof. It is obvious that A-{A;(u)[u V} obtained from A at line 1, is the

adjacency list of T.(u*) LI T.(v*). Thus, EDGEFIND(A, u*, IN.) and
EDGEFIND(A, v*,INi) correctly compute MAXEDGE,,(u), W,,(u) for all u
V.(u*) and MAXEDGEo,(v), W,,(v) for all v e V.(v*). Thus, lines 7-9 correctly
compute O} by Lemma 7.1. Next, we analyze the time requirement. Line 1 requires



254 N. KATOH, T. IBARAKI AND H. MINE

O(n) steps since IA;I-- O(n). Lines 2 and 3 are done in O(n) steps by computing V.(u*)
and V. (v*) using A., and associating flag N(u) to u V by using A. Line 4 is also done
in O(n)steps. Lines 5 and 6 require O(n)steps, by V.(u*)l O(n), V.(v*)[ O(n)and
[Ai[ O(n ). To execute lines 7-9 in constant time for each (u, v) E Ti OUTi,
note that

E T,. OUT {fl([e, f], r) O;-1 }_f, [_j e*

holds. Furthermore, N(u) N(v) holds for e* (u, v). Thus, adding label ([e, f], r) in
O{;-1 to O} of line 8 is done in constant time if f( e*) of line 7 is directly taken from
O;- (i.e., constant time is required to search ([e,f], r) in O;- of line 8). Line 8,
obviously, requires constant time. Thus, lines 7-9 require O(m) steps in total by

8. Space reduction. The required space for GENK is reduced to O(K + m) in this
section, although GENK, explained in 4, requires O(Km) space to store P- and- (i 1, 2,. ., j- 1) (space required for other data is obviously O(m)).

First, in order to reduce the space requirement of p-i from O(Km) to O(K + m)
we modify the data structure representing P-I in almost the same way as done by
Gabow [7]. Namely, the data structure of p-i is the same as the one discussed in 3
(P-I requires O(m) space). P-I (i > 1) are modified to

p-a (t’, [e’, f’], [e*(i), f*(i)], i*(i), b(i), s(i), i), i=2,3,... ,j-1

(thus, P- (i 2, 3," , j- 1) require O(j) <= O(K) space), where t’, [e’, f’] are defined
in 3, and Ti is obtained from Ti.i) by Ti.,)-exehange [e*(i), f*(i)]. The derivation of
T2, T3, from T is represented by a rooted tree; T. is a father of T (or T is a son of
T.) if T/is derived from T/. by a T.-exchange, and Ti and Tk are brothers if their fathers
coincide. Ti is placed to the left of its brother Tk if < k. b(i) and s(i) in p-i denote the
brother Tbi) immediately to the left of T (b(i) 0 if T is the leftmost brother) and the
rightmost son Tsi. Obviously, T1 is the root of this tree. Based on the new lists, Ti,
INi and OUTi can be constructed in O(m) time by following the path from Ti up to root

T1. This technique is almost the same as Gabow’s, and hence the details are omitted.
The rest of the computation is then applied to the reconstructed p-l.

In order to reduce the space requirement of Q- (i 1, 2,. , j- 1) to O(K) we
execute the following cleanup step from time to time. Note that each T/-exchange
([e, f], r) e O{-a induces a spanning tree Ti e U f with weight w(Ti) + r. However, only

i-1 i-K- (/’- 1) smallest spanning trees induced from i=a O are necessary to compute
T., T.+I,. ’, Ts:, as justified below. Therefore, the cleanup step removes all ([e,)c], r)’s

j-1 i-1from Lli=a Oi except those with K-(j- 1) smallest w(T)+ r’s. The cleanup step is
done in O(K’) steps, where K’= It2 i-a -a

i= O I, by finding the K- (f- 1)th smallest
element in O(K’) steps by the fast algorithm [2], and then removing all ([e, [], r)’s with
larger (w(Ti)+ r)’s.

The cleanup step is justified as follows. Suppose that a Ti-exchange [e, ]’] cor-
i’--Iresponding to f E- Ti- OUTi is removed from O by a cleanup step. Later, a T

may be obtained from Ti by T e* LI ]’*, and O is computed from O-a by COMPQ3.
Note that O- is obtained from O’- and therefore O does not contain the minimum
T/-exchange [e’, )c] corresponding to the removed ’. At this point, it is necessary to show
that such [e’, ]’] in O can be ignored for the rest of the computation. However, this is
obvious because w Ti e U f) <= w T e’ U f) can be easily proved and hence T/- e’ U f
is not a member of the K minimum spanning trees.
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Now execute the cleanup step whenever K’> 2K is satisfied. Then K’= O(K)
always holds. Since K’ increases at most by rn at every iteration, the cleanup step is
necessary at every [K/m] iterations, where Ix] denotes the smallest integer not
smaller than x. Hence, the cleanup step is executed O(K). O(m/K)= O(m) times
before the entire computation is completed. Therefore, O(Km) steps are required for
the cleanup computation, but the time bound of the entire algorithm does not change.

Consequently, we have the next theorem.
THEOREM 8.1. GENK requires O(Km +min (n 2, m log log n)) time and O(K + m)

space.

Acknowledgment. The authors would like to thank Professor H. N. Gabow of
Colorado University for his helpful comments, especially for pointing out that Q can
be obtained in O(ma(m, n)) time (in addition to mentioning Tarjan’s result [13], he also
proposed a new way of accomplishing this time bound, which is not included here).
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SCHEDULING UNIT-TIME TASKS WITH ARBITRARY RELEASE
TIMES AND DEADLINES*
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Abstract. The basic problem considered is that of scheduling n unit-time tasks, with arbitrary release
times and deadlines, so as to minimize the maximum task completion time. Previous work has shown that this
problem can be solved rather easily when all release times are integers. We are concerned with the general
case in which noninteger release times are allowed, a generalization that considerably increases the difficulty
of the problem even for only a single processor. Our results are for the one-processor case, where we provide
an O(n log n) algorithm based on the concept of "forbidden regions".

Key words, scheduling, release time, deadline, computational complexity

1. Introduction. The scheduling problems we will be considering in this paper are
all special cases of the following general scheduling problem. We are given n tasks,
T1, T2,’ , Tn, each requiring one unit of execution time. Each task T/has associated
with it an arbitrary release time ri >- 0 and a deadline di >= ri + 1. In addition, there may
be a partial order < imposed on the tasks. We wish to schedule the given tasks
nonpreemptively on rn identical processors so that

(i) Each task Ti is started no earlier than its release time ri and is completed no
later than its deadline di.

(ii) Whenever Ti < rb r does not start before T/has been completed.
(iii) The maximum completion time (or makespan) is minimized.
Previous results on related problems include the following. If the tasks are allowed

to have unequal lengths, a simple transformation from the 3-PARTITION problem [4]
shows that the problem is NP-complete in the strong sense [4], even for one processor
and integer release times and deadlines. If the partial order is allowed to be arbitrary,
then the problem with unit-time tasks and a variable number of processors is NP-
complete [10], even if all release times are 0 and there is only a single overall task
deadline. On the other hand, good algorithms are known for the following special cases:
If no partial order is imposed and the release times are all integers, then the "earliest
deadline scheduling rule" [5], [7] can be used to solve the problem in O(n log n) time
for any number of processors. Indeed, this method can be used for one processor even
with an arbitrary partial order, since (as we observe in 2) the presence of a partial
order is essentially irrelevant to the one-processor case. For two processors, integer
release times and an arbitrary partial order, an O(n 3 log n) algorithm is given in [3].

As observed in [3], these problems seem to be considerably more difficult when the
release times are not required to be integers (i.e., are not multiples of the common task
length), even when there is only a single processor. In this paper we shall consider the
version in which arbitrary release times are allowed, concentrating on the one-
processor case. The first polynomial time algorithm for this problem was obtained
recently by $imons [8], and it has time complexity O(n 2 log n). An alternative
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algorithm with the same time complexity has since been obtained by Carlier [2]. Using
the new concept of "forbidden regions", we shall describe an algorithm which, when
suitably modified to use appropriate data structures, runs in time O(n log n) and space
o(n).

The paper is divided into five sections. In 2 we make some simple preliminary
observations, including a "normalization" lemma and a lemma showing that partial
orders are essentially irrelevant when there is only one processor. 3 gives an O(n 2)
algorithm for the one processor problem based on "forbidden regions", and 4
improves the algorithm to O(n log n) through the careful use of appropriate data
structures and several new ideas. Finally, 5 concludes the paper by mentioning several
problems that remain open, particularly with regard to the multi-processor case.

2. Preliminary observations. We shall represent a schedule (or a partial schedule)
by giving a starting time si for each task Ti. Sometimes we will use f s + 1 to denote
the finishing time for T. A schedule is feasible if it satisfies the release times and
deadlines (i.e., r-< s
implies f s.), and executes at most m tasks at a time (i.e., for any time t, there are at
most m tasks Ti for which belongs to the execution interval [s, f)).

A task T is ready at time if r =< t. We shall say that a schedule is normal if, for any
two tasks T and T., si < s. implies that either d =< dj or r. > &. In other words, a normal
schedule has the property that, whenever one or more tasks begin execution at some
time t, those tasks have the earliest deadlines among all remaining tasks that are ready at
t. The following lemma can be proved by straightforward interchange arguments.

LEMMA 1. For any m >= 1, if there are no partial order constraints, then the existence

of a feasible m-processor schedule implies the existence of a schedule that both
minimizes maximum completion time and is normal.

Lemma 1 tells us that in the absence of a partial order we can restrict our attention
to normal schedules. The next lemma will show how, for rn 1, we can restrict ourselves.
to normal schedules even in the presence of a partial order.

Given a partial order < on the tasks, we say the release times and deadlines are
consistent with the partial order if Ti < Tj implies rg + 1 _-< ri and di -< d. 1. We can make
release times and deadlines consistent with the partial order by processing the tasks
once in topological order [6] assigning rimax ({r.}U{r + 1: T < T.}) and once in
reverse topological order assigning di min ({d} U {di 1: Ti < T.}). This requires time
linear in the size of the partial order and does not alter the feasibility of any schedule.
Furthermore, in the one-processor case it allows us subsequently to ignore the partial
order constraints.

LEMMA 2. If the release times and deadlines are consistent with a partial order, then
any normal one-processor schedule that satisfies the release times and deadlines must also
obey the partial order.

Proof. Consider any normal one-processor schedule, and suppose that Ti < T/but
that s. < fi (which, since there is only one processor, implies si < si). By the consistency
assumption we have r < r/ and di < di. However, these, together with s/<f, cause a
violation of the assumption that the schedule is normal, a contradiction from which the
result follows.

Lemma 2 means that a partial order is essentially irrelevant when scheduling on
one processor. Henceforth we shall assume that no partial order is imposed, and we will
consider only normal schedules.

3. One-processor scheduling using forbidden regions. Our one-processor sched-
uling algorithms depend upon discovering "forbidden regions". Aforbidden region is an
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interval of time (open both on the left and right) during which no task can start if the
schedule is to be feasible.

The following algorithm forms a basic building block of our main algorithm.
Suppose we are given k unit-time tasks, all of which must be scheduled to finish by some
time d, and a finite collection of forbidden regions F.. Ignoring the individual release
times and deadlines of the tasks, we would like to find the latest time by which the first
such task must start if all of them are to be completed by time d (without starting any of
them in a forbidden region).

We do this using the following naive algorithm: Order the tasks arbitrarily as
T1, T2, , Tk and schedule them from the back of the schedule in order of decreasing
index. When scheduling task Ti, start it at the latest time less than or equal to si+l 1 (or
d 1, if k) which does not fall in a forbidden region. We call this the Backscheduling
Algorithm.

LEMMA 3. The starting times sl foundfor T1 by the BackschedulingAlgorithm is such
that, if all the given tasks were to start at times strictly greater than s 1, with none of them
starting in one of the given forbidden regions, then at least one of them would not be
completed by time d.

Proof. Consider the schedule found by the Backscheduling Algorithm. Let h0 sl,

let h 1, h2, , hi be the starting times of the idle periods (if any) in the schedule and let

hi+l d. See Fig. 1.

FORBIDDEN REGIONS"

F F2 F

SCHEDULE:

ho hi h2 h3

FIG. 1. Scheduling by the Backscheduling Algorithm to avoid forbidden regions.

Notice that whenever (q, t2) is an idle period, it must be the case that (tl 1, t2-1]
is part of some forbidden region, for otherwise the Backscheduling Algorithm would
have scheduled some task to overlap or finish during (tl, t2]. Now consider any interval
(hi, hi+l], 0-<_ <- j. By the preceding observation, no task can possibly be scheduled to
finish after hi but before (or at) the starting time of the first task in the interval.
Furthermore, by definition of the {hi}, the tasks that are finished in the interval are
scheduled with no idle periods separating them and with the rightmost one finishing at
time h+l. It follows that the Backscheduling Algorithm finishes the maximum possible
number of tasks in each interval (hi, hg+l]. Since there is no idle time in the schedule
during [ho, hl], any other schedule that started all the tasks later than time sl and
finished them all by time d would have to exceed this maximum number of tasks in some
interval (hi, hi+l], 1 --< <_--j, a contradiction. U

We shall use the Backscheduling Algorithm as follows. Consider any task ready
time rg and any task deadline dj >= di. Suppose that we have already found a collection of
forbidden regions in the interval [r, di] and that we then apply the Backscheduling
Algorithm, with d di and with the forbidden regions we have already found, to the set
of all tasks Tk satisfying ri <= rk <- dk <= di. Let s be the latest possible start time found by
the Backscheduling Algorithm in this case. There are two possibilities which are of
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interest. First, if s < ri, then we know that there can be no feasible schedule, since all
these tasks must be completed by time d, none of them can be started before ri, but at
least one must be started by time s < ri if all are to be completed by d. Second, if
r -<_ s < r + 1, then we know that (s 1, r) can be declared to be a forbidden region,
since any task started in that region would not belong to our set (its release time is less
than r) and it would force the first task of our set to be started later than s, thus
preventing these tasks from being completed by d.

Our first algorithm for the one-processor problem essentially applies the Back-
scheduling Algorithm to all such pairs of release times and deadlines, in such a manner
as to find forbidden regions from right to left. We do this by processing the release times
in order from largest to smallest. To process a release time ri, we determine for each
deadline dj >-d the number of tasks which cannot start before r and which must be
completed by d.. We then use the Backscheduling Algorithm with d d. to determine
the latest time at which the earliest such task can start. This time is called the critical time

c. for deadline d. (with respect to r). Letting c denote the minimum of all these critical
times with respect to r, we then declare failure if c <ri or declare (c-1, r) to be
a Iorbidden region if r _-< c < r + 1. Notice that by processing release times from largest
to smallest, all forbidden regions to the right of r will have been found by the time that ri
is processed. In order to make the entire process more efficient, we do not completely
recompute the critical time for a deadline when a new release time is processed, but
instead we update the old value.

Once we have found forbidden regions in this way, we schedule the full set of tasks
forward from time 0 using the "earliest deadline scheduling rule". This proceeds by
initially setting to the least nonnegative time not in a forbidden region and then
assigning start time to a task with lowest deadline among those ready at t. At each
subsequent step, we first update to the least time which is greater than or equal to the
finishing time of the last scheduled task, greater than or equal to the earliest ready time
of an unscheduled task, and which does not fall in a forbidden region, and we then assign
start time to a task with lowest deadline among those ready (but not pl"eviously
scheduled) at t. The entire algorithm is specified below.

AIGORIT4M A. Index the tasks (arbitrarily) so that rl <-_ r2 <- <= rn.
Part I. (Forbidden Region Declaration). Initially no forbidden regions have been

declared. For each task T,., in order of decreasing index, perform the following two
steps:

Step 1. For each task T. with d. _>-di, update its critical time c. as follows:
la. If c. is undefined, set c. - d. 1; otherwise set ci - cj 1.
lb. While c. F for some declared forbidden region F, set i inf (F).

Step 2. If 1 or ri-1 < r, set c min {ci:ci is defined} and proceed as follows:
2a. If c < ri, declare failure and halt.
2b. If r _-< c < r + 1, declare (c 1, r) to be a forbidden region.

Part II. (Schedule Generation). Initially no tasks are scheduled and 0. Repeat
the following three steps until all tasks have been scheduled.

Step 1. If no unscheduled task is ready at time t, set min {r T has not yet been
scheduled}.

Step 2. While F for some forbidden region F, set sup (F).
Step 3. Select an unscheduled task T/that has the least deadline among all such

tasks that are ready at t. Set s. and set - + 1.
Fig. 2 illustrates the application of this algorithm to the tasks described by Table 1.
TI-IEOIEM 1. In any easible schedule, no task starts at a time that Algorithm A

declares to be forbidden. IIAlgorithmA declaresfailure, then there is no]’easible schedule.
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8

10

RELEASE TIMES

FIG. 2a. Table o[ critical times.

(- ,o)

0 7 8 9

FIG. 2b. Forbidden regions.

B,! C,!
0 2 5 4 5

!’ !’ F////A ’! ’1
F U W Z X A
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FIG. 2c. Schedule generated ]:or Algorithm A [or tasks in Table I.

TABLE 1.
A set of tasks to schedule. Capital letters represent tasks, with

release time first and deadline second.

A: 0,121/2 B’ 1/2,10 C’-,5 D: 1,6
E: 31/2,7] F: 41/2,6] G: 4,61/2 U: 5,8
W: 81/2, 111/2 X: 832-, 111/2 Z’ 9, 101/2
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Proof. The proof is by a straightforward induction on the number of forbidden
regions, using Lemma 3, and is omitted. !3

THEOREM 2. IfAlgorithm A does not declarefailure, then itfinds a feasible schedule.
Proof. Suppose we have a counterexample to the theorem, and let T. be the first

(earliest scheduled) task that fails to meet its deadline. Without loss of generality, we
may assume that all idle times in [0, s] belong to forbidden regions. (Otherwise, let
t’= sup {t: is an idle time in [0, s.] that does not belong to a forbidden region}, and let r
denote the smallest release time among tasks started at time t’ or later. Then, by the
earliest deadline scheduling rule, r => t’ and there are no nonforbidden idle times in
Jr, s]. Furthermore, all tasks completed before t’ must have release times less than r- 1,
so they played no role in determining the forbidden regions after r. Thus we can obtain a
new counterexample with the desired property by deleting all tasks completed before r
and then subtracting r from the release times and deadlines of all remaining tasks.) We
now consider two cases"

Case 1. Some task scheduled before T/has a deadline later than d.. Let T/be such a
task with maximum starting time, and let r denote the smallest release time among the
tasks that start in (si, s]. By the earliest deadline scheduling rule, we know that r must
exceed s. Index the tasks that start in (s, s], in order of increasing starting times, as T,
T, .., T, (note that T, T.), and consider the result of applying the Backscheduling
Algorithm to these tasks with the given indexing and with d d..

We claim that the Backscheduling Algorithm will assign each of these tasks a
starting time that is strictly less than its starting time in the original schedule. This is
clearly true for T, T, since the Backscheduling Algorithm assigns it a starting time
less than or equal to d.- 1 (depending on whether or not d.- 1 falls in a forbidden
region). Inductively, suppose for some l> 1 that the claim holds for T},.. , T, and
consider how the Backscheduling Algorithm schedules T_t. If in the original schedule
T started immediately at the time T-I finished, the fact that T is started earlier by
the Backscheduling Algorithm trivially implies that TI-1 must also be started earlier.
On the other hand, if in the original schedule T was separated from T’I-1 by a block of
idle time [a, b), the fact that all idle times in the block belong to forbidden regions (by
our choice of counterexample) implies that the Backscheduling Algorithm must have
assigned T’I a starting time strictly before a, and hence before the old finishing time of
T’t-1. Once again it follows that the Backscheduling Algorithm must start T_I earlier
than in the original schedule, and the claim follows by induction.

The import of the claim is that the critical time c. (and hence the minimum critical
time c) found by Algorithm A when processing release time r must have been strictly
less than the starting time assigned to T by Algorithm A. Furthermore, since T
started in that schedule at the first time not in a forbidden region in the interval [fi, sj], it
must be the case that c _-< cj < fi. If c < r, then Algorithm A would have declared failure,
a contradiction. If c >_-r, then we have

Si <r<=c < fi Si "1- 1 <r+ 1,

which implies that Algorithm A would have declared a forbidden region (c-1, r)
containing si, contradicting the fact that Algorithm A never starts a task in a forbidden
region. It follows that Case 1 cannot occur.

Case 2. All tasks scheduled before T. have deadlines less than or equal to d.. Let r
be the smallest release time among the tasks started in [0, si], and let T], T[,.. , T, be
the collection of all such tasks, indexed in order of increasing starting times (again note
that T, T.). As in the previous case, if the Backscheduling Algorithm is applied to
these tasks with the given indexing and with d d., it will assign each such task a starting
time strictly less than its starting time in the original schedule. Since T started in the
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original schedule at the earliest time not in a forbidden region, it follows that the
minimum critical time c found by Algorithm A when processing release time r must be
less than 0. Therefore, since r->0, Algorithm A would have declared failure, a
contradiction to Case 2.

Since both Cases 1 and 2 result in contradictions, and since they include all
possibilities, it follows that the assumed counterexample cannot exist, and Theorem 2 is
proved, l-1

THZORZM 3. If Algorithm A finds a schedule, that schedule has minimum make-
span among all feasible schedules.

Proof. Suppose we have a counterexample, and let Ti be the first (earliest
scheduled) task to be completed after the minimum makespan d*. As in the previous
proof, we may assume that all idle times in [0, si] belong to forbidden regions. Let
T, T&,. , T, denote the tasks that start in the interval [0, si], indexed in order of
increasing starting times. The same reasoning as in the previous proof shows that, if the
Backscheduling Algorithm were applied to these tasks with the given indexing and with
d d*, it would assign each of the tasks a starting time that is strictly less than its
original starting time. Indeed, since in the original schedule T started at the earliest
time not in a forbidden region, the Backscheduling Algorithm will assign T a starting
time that is strictly less than 0. But, by Lemma 3, this says that no feasible schedule can
possibly complete this many tasks by time d*, contradicting the fact that d* is the
(achievable) minimum makespan for the assumed counterexample. The theorem
follows.

Thus Algorithm A will find a feasible schedule with minimum makespan whenever
there is a feasible schedule, and otherwise will correctly declare that no feasible
schedule exists..

In implementing Algorithm A, we note that, although the forbidden regions found
in Part I may overlap, each region has left and right endpoints no greater than the
corresponding endpoints for the region declared just previous to it. Thus we can
maintain the forbidden regions in a stack, combining overlapping regions as they occur.
For each deadline dj we maintain a pointer into the stack which indicates the latest
forbidden region that precedes the critical time cj. It is then easy to see that there is an
overall time bound of O(n 2) on each of steps 1 and 2, and hence on Part I. Part II
requires at most O(n log n) additional time, for a total of O(n 2) time. In the next section
we shall see how to reduce this bound of O(n) to O(n log n) by modifying the
algorithm to make more sophisticated use of data structures.

4. Improving the algorithm to O(n log n). Examination of Algorithm A reveals
three places where l)(n 2) time might be used, all of them in Part I. In the process of
updating critical times ci with respect to a new task T/, each of steps l a and lb can
contribute fl(n) time, giving a total of l)(n 2) time. Each computation of c min {c. :ci is
defined} in step 2 can also contribute fl(n) time, again for a total of fl(n 2) time.

The key to obtaining a speed-up from fl(n 2) to O(n log n) involves a basic shift in
the way we deal with critical times. Instead of keeping track of each ci individually, so
that the current value of any cj can be found in constant time (the approach of
Algorithm A), we shall keep track of a smaller amount of information, which will be
sufficient for determining the current value of any c. in time O(log n). This will permit us
to use more efficient procedures for organizing and updating the data structures neded
for computing the ci values.

We first observe that each critical time can be decomposed into two components.
After some task Ti is processed, each critical time c. is smaller than the corresponding
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deadline d. by an amount that depends on both the number of tasks seen so far that have
deadlines d. or less and the locations of previously declared forbidden regions. We can
keep track of these factors through the task load ni and the offset o. The task load n. is
essentially the contribution to ci from step la of Algorithm A; that is, n. is the number of
tasks T with k => for which d -< d.. (Note that a critical time ci is "defined" if and only
if n. > 0.) The offset oi is the contribution to c. of step lb; that is, the total distance ci has
been moved to keep it from being in a forbidden region. Thus we can compute G from
these two components by the formula c. d -(hi + o).

The task loads can be maintained easily within an overall time bound of
O(n log n), primarily because whenever we add 1 to n. we must also add 1 to every n
such that d => di. We store the task loads in a task load tree, which is a binary search tree
1, p. 115] having a vertex corresponding to each deadline di. In addition, we associate a
numerical value with each vertex in such a way that the task load corresponding to any d.
is obtained by summing the values along the path from the root to the vertex for d (e.g.,
see 1, p. 141 ]). By the choice of an appropriate underlying data structure we can insure
that no such path has length exceeding O(log n), and hence the time for determining the
value of any n. will be O(log n). Similarly, the cost of updating the tree when a new task
is processed (which can involve changes to (n) G values) will be only O(log n), for an
overall updating cost of O(n log n), as claimed.

Maintaining the offsets is somewhat more complicated. In fact, we will not keep
track of the offsets themselves, but rather certain related quantities which we will call
pseudo-offsets. These are defined as follows:

Suppose that F is the set of forbidden regions declared before the start of
processing for task T. For any deadline d. and nonnegative integer n, let hi(n) denote
the earliest starting time that would be assigned if the Backscheduling Algorithm of 3
were applied to n tasks with deadline d. and with the forbidden regions in F. (If n 0,
we let b(n)= d). For each n, let

o(n)=di-bi(n)-n,
(n) Observe that o is well defined andand define the pseudo-offsetoi by o lim._ o
’(n +1) ’(n).finite, since as soon as bi(n)< rg we must have o o

Notice that, unlike the offset oi, the pseudo-offset o does not depend on the
current value of the task load n.. This is the property that will allow us to maintain the
pseudo-offsets efficiently. We postpone for the moment the discussion of how pseudo-
offsets can be used in place of offsets for finding the same forbidden regions. Instead we
first fill in the details of how the pseudo-offsets can be maintained (first-time readers
may wish to skip over these details for now).

Pseudo-offsets are all initially 0 and change only when a new forbidden region
(a, b) is declared. In this case the pseudo-offset for a given deadline d. > b changes if and
only if there exists a nonnegative integer n such that di-o -n (a, b). If this occurs,
the increase in the pseudo-offset is exactly di o. n a. Thus the change depends only
on the fractional offset q (d- o) [mod 1], i.e., the fractional part of d.- o.

To keep track of the pseudo-offsets, we use two data structures: a fractional offset
tree and a pseudo-offset forest. The former is just a binary search tree with a vertex for
each distinct fractional offset value. The latter is a standard union-find data structure
(see 1]) with a vertex for each deadline d. and with deadlines having the same fractional
offset value belonging to the same tree in the forest. Each vertex in the fractional offset
tree will contain a pointer to the root of the union-find tree for that fractional offset
value. Each vertex in the pseudo-offset forest will contain a numerical value such that
the sum of the values along the path from a vertex to the corresponding root is exactly
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the pseudo-offset for the deadline represented by that vertex. Initially both data
structures are empty.

When a new forbidden region (a, b) is created, we update these data structures as
follows: First, if there is any deadline d. > a + 1 not represented in the data structures,
we add it with pseudo-offset o 0 and fractional offset value qj d.[mod 1], merging as
necessary. Second, we determine the set Q(a, b) of offsets affected by (a, b) which is
given by

.’qi(a[modl],b[modl])} ifa[modl]<b[modl],
Q(a,b)=

{qi q.(O,b[modl])U(a[modl],l)]- otherwise.

If Q(a, b) is empty, no pseudo-offset is affected by (a, b) and the two data structures can
remain unchanged. If Q(a, b) is nonempty, then all the corresponding entries in the
fractional offset tree are replaced by a single entry with value a[mod 1], and all trees in
the pseudo-offset forest that correspond to the fractional offset value a[mod 1] are
merged together. Finally, the auxiliary values in the pseudo-offset forest are changed to
reflect the corresponding changes in the pseudo-offsets of the members of Q(a, b). The
appropriate amount of this change is q. a [mod 1] if a [mod 1] < q., or 1 + q a [mod 1]
if a [mod 1 > qi.

With appropriate data structures for the fractional offset tree and the pseudo-offset
forest (again, see [1] and also [9]), the overall time bound for maintaining this
information will be O(n log n). Each deadline is added to this structure once at a cost of
O(log n). The construction of each set O(a, b) requires time O((lO(a, b)l + 1). log n),
and this will be O(n log n) overall since the sum over all O(a, b) of IO(a, b)l is bounded
by 2n. (Once two deadlines are merged because they have the same fractional offset
value, they stay merged henceforth.) The time for merging two trees in the pseudo-
offset forest is O(1) per merge and hence O(n) overall. Moreover, this can be done so
that no tree ever has depth exceeding O(log n), so any particular pseudo-offset can be
computed in time O(log n), as required. Finally, the changes in pseudo-offsets caused
by a set O(a, b) can be incorporated in time O(lO(a, b)l) and hence O(n) overall. Thus,
as claimed, the overall time required for maintaining the pseudo-offset data structures is
O(n log n). Specific details of the implementation are left to the reader.

We now wish to argue that we can still identify the same forbidden regions by using
the pseudo-offsets. Recall that the critical time for deadline d. is defined to be
d. o. n.. Define the pseudo-critical time c to be c d. o n., and observe that the
pseudo-critical time for a deadline never exceeds its critical time, though it may be
smaller. In particular, if the pseudo-task load n. min {n" o i.(n) o.} exceeds the task
load n., then c < c. The following lemma shows that we can use pseudo-critical times in
place of critical times in step 2 of Algorithm A and still compute the same forbidden
regions.

LEMMA 4. If, a]ter task Ti is processed, the minimum pseudo-critical time c’=
min {c" n. > 0} satisfies c’ < ri + 1, then the minimum critical time c min {G" n. > 0}
equals c’.

Proo] The proof is by induction on the number of tasks processed. The lemma
clearly holds if no tasks have been processed, since initially there are no forbidden
regions and all critical times and pseudo-critical times equal their corresponding
deadlines by definition. Suppose the lemma holds after processing task Ti+l but not
after processing task Ti (recall that we process tasks in order of decreasing index). Then
after processing task Ti there must be a deadline di such that c < ri + 1 is the minimum
pseudo-critical time, but the minimum critical time c exceeds c. In particular, this
means that the minimum critical time Co after Ti+l is processed must obey co c > c.
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(and hence n. > 0) This means thatWe also must have G > ci, and hence n < n

c ;- (o;. +; >_--(o() ++
>-bi(ni)+ 1.

Since n > 0, we must have o(n) > o(n 1) by definition. Therefore bi(n; 1) 1
must be in a forbidden region and bi(n) must be the left endpoint of a forbidden region,
by the operation of the Backscheduling Algorithm. Thus, if is the left endpoint of the
leftmost forbidden region while Ti is being processed, we must have

> bi(n’ci= i)+1>-/+1.

But, by the way forbidden regions are defined in step 2 of Algorithm A, we must have
l_->c0-1. Hence ci--Co, a contradiction. Thus the lemma does indeed hold after
processing Ti, and, by induction holds after processing any task.

As a consequence of Lemma 4, we know that if critical times are replaced by
pseudo-critical times in step 2 of Algorithm A, the same forbidden regions will be
declared. Hence, by replacing steps l a and lb by the computation of task loads and
pseudo-offsets, we will not affect the critical regions and we will reduce two of the

)potential sources of (n computation steps to O(n log n). The remaining potential
difficulty is in the calculation of c’= min {c" n > 0} in step 2. If we had to look at all
the c} each time we calculated c’, this could now conceivably take time l’(rt 2 log n).
Fortunately, we do not need to do this.. The key observation is contained in the
following lemma.

LEMMA 5. If, after task Ti is processed, we have c <- c’ for some deadlines dk <= di,
then at all times in the future we will have c. <= c’.

Proof. The pseudo-critical time for a given deadline changes only when either (a)
the task load changes or (b) a new forbidden region is defined and changes the
pseudo-offset. Since dk <_--dj, each change in the pseudo-critical time for d due to an
increase in task load must be balanced by an identical change for dj. Thus (b) is all that
we need consider. The only way that a pseudo-critical time c , can be altered by a new
forbidden region (a, b) is if there is some integer n such that c’-n (a, b), in
which case the pseudo-offset increases by c ,-n-a and the new pseudo-critical time
becomes c, (c, n a) n + a. However, since c. c , we must have either c. n -<

a, in which case ci n + a, or else ci n (a, b) and hence c. also becomes n + a. In
either case we have that the new values obey c. --n + a c , as claimed.

Thus, as our algorithm proceeds, certain pseudo-critical times become unnecessary
for our computations of c’= min {c." n >0}. To formalize this idea, let us say that a
deadline di is relevant at a point in the updating process if for no d. with d. _-> di is c; < c I.
A deadline is irrelevant if it is not relevant. Initially all deadlines are relevant, though
some may become irrelevant as the computation proceeds. Note that if we sort the
relevant deadlines into nondecreasing order, their pseudo-critical times must also be in
nondecreasing order. If we maintain a pointer into this list to the first deadline with a
"defined" pseudo-critical time (i.e., with n > 0), then at any time we can determine c’ in
time O(log n) by merely computing the pseudo-critical time for the deadline to which
the pointer points, using the data structures for task loads and pseudo-offsets discussed
earlier. The total time for computing values of c’ will thus be O(n log n). Moreover,
since we keep the relevant deadlines sorted by deadline rather than pseudo-critical
time, we need not do any reordering except to delete newly irrelevant deadlines. This
will allow us to maintain data structures for the relevant deadlines in a way that also
obeys an O(n log n) bound.
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We store the relevant deadlines in a relevant deadline tree, which is a binary search
tree structured to allow deletions in O(log n) time and can itself be initialized in time
O(n log n)--again, see [1]. The pointer to the first relevant deadline with nonzero task
load is initially undefined. In updating we make use of the following lemma, whose
proof is much like that of Lemma 5 and is omitted.

LEMMA 6. A relevant deadline can only become irrelevant as a result of the change
of task loads during the processing of a task T,., and not as the result of a change in
pseudo-offsets during the processing of a forbidden region. I di is the minimum relevant
deadline not less than di when Ti is processed, then the deadlines that become irrelevant are
precisely those relevant deadlines dk < dj whose old pseudo-critical times exceed the new
value of the pseudo-critical time c i.

Thus, after updating the task load tree, we need only identify d. (in time O(log n)),
compute its pseudo-critical time (again in time O(log n)), and then begin comparing this
to the pseudo-critical times for those relevant deadlines dk with dk < dj, in order,
starting with the latest and ending as soon as one is found with c’ <k C.. All those with
c, > c are deleted, at a cost of O(log n) per deletion. Since a deadline can only be
deleted once, the overall cost for comparisons and deletions will then be O(n log n) as
claimed. In addition, during this process the pointer to the first relevant deadline with
nonzero task load can be updated if necessary at an overall cost of O(n). Thus step 2 of
Algorithm A can be replaced by a procedure which accomplishes the same task in a
running time of O(n log n).

This guarantees that the overall algorithm can be made to run in time O(n log n).
We shall call the revised algorithm Algorithm B. It differs from Algorithm A only in
Part I, as Part II already runs in time O(n log n). The revised Part I proceeds as follows:

ALGORITHM B.
Part I. (Forbidden Region Declaration). Initially, there are no forbidden regions,

the relevant deadline tree contains all deadlines, its pointer is undefined, the task
load tree contains all deadlines with their task loads initialized to 0 and the two offset
data structures are empty. For each task T/, in order of decreasing index, we then
perform the following steps:

Step 1.
l a. Modify the task load tree to add 1 to the task load for each deadline

d >-_ di.
lb. Set d’ <- min {d.: d. is relevant and d >-_ di}. While the relevant deadline

d" that immediately precedes d’ in the sorted order of deadlines has a
pseudo-critical time exceeding that for d’, delete d" from the relevant
deadline tree and, if the pointer was undefined or pointed to d", reset
the pointer to point to d’.

Step 2.
If 1 or ri-1 < ri, set c’ min {c" d. is relevant and n. > 0} and proceed as
follows:
2a. If c’< ri, declare failure and halt.
2b. If r; <_- c’ < rg + 1, declare (c’- 1, r) to be a forbidden region and update

the data structures as follows:
Add to the fractional offset tree and the pseudo-offset forest all
deadlines d. >-c’ that are not currently represented, merging if
necessary. Compute Q(c’-1, ri) and replace all corresponding
entries in the fractional offset tree by a single entry with value
c’- 1. Merge all the corresponding sets in the pseudo-offset forest
and update the pseudo-critical times appropriately.
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The reader should be able to verify from the preceding discussion that the
algorithm does indeed compute the same forbidden regions as Algorithm A, but now
does it in an overall time bound of O(n log n). Certain additional efficiencies can be
obtained, for instance by using path compression in the pseudo-offset forest (which is
not required for the O(n log n) bound) and by combining the relevant deadline tree and
the task load tree into a single data structure, but these will not yield any improvement
in the basic O(n log n) bound and so we leave such details to those readers interested in
actually implementing the procedure. We also leave to the reader the straightforward
verification of the fact that none of the data structures used by this algorithm (or
Algorithm A) require more than linear space. Fig. 3 illustrates the application
of Algorithm B to the tasks of Table 1, and can be compared to the analogous Fig. 2 for
Algorithm A.

5. Conclusion. In this paper we have studied the problem of scheduling unit-time
tasks with arbitrary release times and deadlines, and we have showed how the idea of
"forbidden regions" could be used to construct an algorithm which solved the problem
of minimizing makespan on one processor in time O(n log n).

Several interesting open problems remain. Carlier [2] has recently shown that the
general m-processor case can be solved in time O(n rn+llOgn). Can the general
problem be solved in time polynomial in both rn and n, perhaps by a suitable
generalization of the concept of forbidden regions (which we were unable to find)?
What happens if we add precedence constraints to the problem? We have already seen
that this does not affect the one-processor algorithm, but what of the case of two
processors, where a polynomial time algorithm is known for the case when all release
times are integers [3]?

RELEASE TIMES

2 2 2 29 8- 8- 5 4-4- 3-- - - -- 0

5-.- 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 2 2 2

6-- 0 0 0 0 2 3 3

2
6-.- 0 0 0 0 2 2 3 4 4 4

2
7- 0 0 0 0 2 3 4 5 5 5

8 0 0 0 2 5 4 5 6 6 6

10 0 0 0 2 3 4 5 6 7 7

10 .- 2 3 4 5 6 7 8 8

11 -- 2 3 4 5 6 7 8 9 10 10

12 2 3 4 5 6 7 8 9 10

FIG. 3a. Table of task loads.
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FORBIDDEN REGIONS

/-,/1-,-1/,-,+ll,-,,-/l-,,-14,-/- ,-/- -,o

2 2

Fla. 3b. Table 4[factional and pseudo-@ets.

2 2

FIG. 3c. Table o’pseudo-critical times [or relevant deadlines when Algorithm B is applied to tasks in Table 1.

Circled entries are the minimum pseudo-critical times [or deadlines with nonzero task loads. Cross-hatched
regions are ]:or irrelevant deadlines.
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Note added in proof. B. Simons has recently resolved one of our open problems by
showing that the general m-processor case (with no procedure constraints) can be
solved in time O(n 3 log n). [A fast algorithm for multiprocessor scheduling, IEEE 21st
Annual Symposium on Foundations of Computer Science, Long Beach, California,
1980, pp. 50-53.]
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APPROXIMATION ALGORITHMS FOR SEVERAL GRAPH
AUGMENTATION PROBLEMS*

GREG N. FREDERICKSON+ AND JOSEPH JA’JA’

Abstract. Graph augmentation problems on a weighted graph involve determining a minimum-cost set

of edges to add to a graph to satisfy a specified property, such as biconnectivity, bridge-connectivity or strong
connectivity. These augmentation problems are shown to be NP-complete in the restricted case of the graph
being initially connected. Approximation algorithms with favorable time complexity are presented and shown
to have constant worst-case performance ratios.

Key words, approximation algorithm, augmentation, biconnectivity, bridge-connectivity, connectivity,

graph, NP-complete problem, strong connectivity

1. Introduction. A number of graph problems can be viewed as augmentation
problems: Given a complete graph G (V, E), a subgraph Go (V, E’) and a cost
function on E, find a set of edges E"

_
E E’ of minimum cost such that V, E’ I,.J E")

satisfies a specified property. For instance, if E’= and the property is graph
connectivity, then the corresponding problem is that of finding a minimum-cost
spanning tree on V. This problem can of course be solved efficiently [P], [Y], [], [CT].
An analogous problem for directed graphs, in which the property is having vertices in V
be reachable from a given vertex, involves finding a minimum-cost spanning arbores-
cence. This problem can also be solved in an efficient manner [CL], [E], IT1]. Further
examples of augmentation problems are cited in [ET].

We consider three properties studied by Eswaran and Tarjan [ET], strong connec-
tivity for directed graphs, and biconnectivity and bridge-connectivity for undirected
graphs. The latter properties may be viewed as certain desirable features of networks.
Given a network, we wish to augment the network wit.h additional edges so that these
features are achieved. Networks that are biconnected and bridge-connected can survive
single element failures: A biconnected network can survive a node failure, and a

bridge-connected network can survive a communication line failure.
If the edges in the graph all have equal weight, then the various augmentation

problems also have efficient algorithms [ET], [RG]. However, if the edges have unequal
weights, then the augmentation problems are NP-complete [ET]. The problems remain
NP-complete if Go is restricted to be a connected subgraph with edge weights chosen
from the set {1, 2}, as we shall see in 3. In particular, augmenting a directed acyclic
graph to be strongly connected, or augmenting even a tree to be bridge-connected or
biconnected, is NP-complete.

Membership in the NP-complete [C], [K1], [K2], [GJ2] class of problems appears
to indicate that there is no efficient algorithm for solving such a problem exactly. A
reasonable alternative is to design efficient algorithms that yield near-optimal, or

approximate, solutions [J], [GJ1]. In 4, 5 and 6 we present approximation
algorithms for our augmentation problems, and bound their performance in terms of a

worst-case ratio of the cost of a generated augmentation to the cost of an optimal
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augmentation. Our algorithms run in 0(] V[2) time, and have a similar strategy: Use an
algorithm for finding a spanning arborescence to strongly connect a weakly connected
graph. We consider graphs with no special cost restrictions, such as the triangle
inequality, but note that improved bounds can be achieved for certain problems if the
graphs are so restricted [FJ].

2. Definitions. An undirected graph G V, E) consists of a set of vertices V and a
set of (undirected) edges E, where each edge is an unordered pair (u, v) of vertices. A
directed graph G V, A) consists of a set of vertices V and a set of directed edges A. A
directed edge (u, v) is an ordered pair of vertices such that the edge leaves u and enters v.
A graph G is complete if, given its vertex set, its edge set contains all possible edges. A
graph G is weighted if there is a cost function from its edge set into a set with a total
order. A subgraph G’ of graph G is a graph whose vertex and edge sets are subsets of the
vertex and edge sets of G. G’ is a spanning subgraph of G if their vertex sets are equal.

A path from v to v, in an undirected graph G (V, E) is a sequence of edges
(v, v2), (v2, v3),’ ", (v,_, v,). A cycle is a path such that v v, and all vertices v, v2,.., v,_ are distinct. A (strongly) directed path from v to v in a directed graph
G (V, A) is a sequence of edges (/)1, /)2), (/)2, /)3), (/)n-l, /)n). m directed cycle is a
directed path such that Vl v, and all vertices Vl, v2, ", vn-1 are distinct. A weakly
directed path from Vl to vn is a sequence of edges el, e2,’ ’, e,-1, where ei is (vi, re/l) or
(vi/l, vi) for 1 =< < n. A graph is acyclic if it contains no (directed) cycles.

An undirected graph G (V, E) is connected if, for any two vertices u and v, there
is a path from u to v. A bridge is an edge whose removal from E leaves G not connected.
A graph is bridge-connected if its edge set contains no bridges. A cutvertex is a vertex
whose removal from V, along with the removal of edges incident on it from E, leaves G
not connected. A graph is biconnected if it contains no cutvertices. A directed graph
G (V, A) is strongly connected if, for any two vertices u and v, there is a directed path
from u to v. G is weakly connected if, for any two vertices u and v, there is a weakly
directed path from u to v. The connected (bridge-connected, biconnected strongly
connected) components of a graph are its maximal connected (bridge-connected,
biconnected, strongly connected) subgraphs. Biconnected components are also called
blocks.

A tree is an undirected, connected acyclic graph. A leaf in a tree is a vertex with one
edge incident on it. A spanning tree of a graph G is a spanning subgraph that is a tree.
An arborescence is a directed acyclic graph with one vertex, the root, having no entering
edges, and all other vertices having exactly one entering edge. A spanning arborescence
of a directed graph G is a spanning subgraph that is an arborescence. A branching of a

directed graph G is a graph whose weakly connected components are arborescences.

3. NP-completeness results. We state formal definitions of the bridge-connec-
tivity, biconnectivity, and strong connectivity augmentation problems below, and then
proceed to show that restricted version of these problems are NP-complete:

BRIDGE-CONNECTIVITY AUGMENTATION (BRA).
Instance. Complete undirected graph G (V, E), weight function c(e) 7’/ for

e E, subgraph Go (V, E’), with E’
_
E and positive integer B.

Question. Is there a set E"_ E- E’ such that eZ" c(e)<--B and (V, E’ E") is
bridge-connected?

BICONNECTIVITY AUGMENTATION (BIA).
Same as BRA except with biconnected replacing bridge-connected,
STRONG CONNECTIVITY AUGMENTATION (STA).
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Instance. Complete directed graph G (V, A), weight function c(a) Z+ for
a A, subgraph Go (V, A’), with A’ A and positive integer B.

Question. Is there a set A"_A-A’ such that Y,,A,,c(a)<--B and (V,A’t.JA") is
strongly connected?

Eswaran and Tarjan [ET] have shown all three augmentation problems to be
NP-complete. Their reductions are from Hamiltonian circuits, and choose Go to be the
empty subgraph (V, Q). It is possible that the problems could be less difficult if they are
restricted to a connected Go, in particular, a tree. Let the connected bridge-connectivity
augmentation problem (CBRA) be the same as BRA, except that Go must be a
connected subgraph of G. Let the connected biconnectivity augmentation problem
(CBIA) be similarly defined. Let the connected strong-connectivity augmentation
problem (CSTA) be the same as ST.A, except that Go must be weakly connected. We
show that all three restricted problems, CBRA, CBIA and CSTA, are NP-complete.

Eswaran and Tarjan lET] claimed, but did not provide proofs, that CBIA and
CBRA are NP-complete. Tarjan IT2] has provided a proof only for CBIA, using a
transformation from directed Hamiltonian circuits. It appears that his transformation
for CBIA does not carry over to CBRA.

Our transformation for CBRA is from 3-dimensional matching"
3-DIMENSIONAL MATCHING (3DM).
Instance. A set M

___
W xX x Y, where W, X and Y are disjoint sets having the

same number q of elements.
Question. Does M contain a matching, that is, a subset M’

_
M such that IM’I q

and no two elements of M’ agree in any coordinate?
The transformations for CSTA and CBIA are also from 3DM, and are essentially

the same. All three restricted augmentation problems remain NP-complete if edge
weights are either 1 or 2. Handling Go where Go is a tree is no easier, since our
reductions are to a graph that is a tree. Since it is easy to see that all three problems are in
NP, we prove that 3DM is reducible to each of our problems, e.g., 3DM oc CSTA.

THEOREM 1. 3DMec CSTA.
Proof. Let M WxXx Y be an instance of 3DM, with [Ml=p and W=

{wili 1, 2,..., q}, X {xili-- 1,..., q} and Y {y/I/-- 1,..., q}. We define an
instance of CSTA as follows"

V= {r}t_J{wi, Xi, yili 1,..., q}U{aiik, aijkl(Wi, Xj, yk) 6 M},

A {(u, v)lu, v V and u v},

A’= {(r, wi), (r, xi), (yi, r)li 1,..., q} (_J {(aij, wi), (We, gtii,)l(wi, xi, y) M}.

Let c (ciii, a0)= c(xi, aijk)= c(gii, y)= 1, for (Wi, X], Yk) M. Let all other edges in A
have weight 2. Let B p + q.

We claim that M contains a matching M’ iff there is a set A" of cost no more than
B p + q such that (V, A’ (.J A") is strongly connected. Suppose M contains a matching
M’. For each triple (wi, xi, y) in M’, insert the directed edges (xi, aijk) and (a0k, Y) into
A". This will cause w, x. and y to be on a (directed) cycle in A’U A" containing r. Since

IM’I-- q, the total cost will be 2q and all wi xi, and y will be on cycles containing r. For
each triple (wi, xi, y) in M-M’, insert (70k, a0) into A". This will cause each aik and
i]k not already on a cycle in A’U A" to be on a cycle containing wi. Total cost of the
edges introduced in this step will be IMI- IM’[ p q. Hence, the total cost of A" will be
p +q. It is easy to see that every pair of vertices lie on a cycle in A’UA". Hence,
V, A’ 15 A") is strongly connected.
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We now prove the "if" part: Assume that there is a set of A" of cost no greater than
p + q such that (V, A’ t..J A") is strongly connected. There are 2(p + q) leaves in (V, A’).
For V, A’ U A") to be strongly connected, A" must contain at least p / q edges, since an
edge can connect at most two leaves. Since A" is of cost p + q, A" contains exactly p + q
edges, each of cost 1. Hence, each leaf in (V, A’) has exactly one edge of A" incident on
it.

Each leaf xj will have one edge (xi, aiik) from A" incident on it. Hence, (iik, aijk) is
not in A", and thus (Ciik, yk) is in A". No other edge in A" will be incident to y. Hence,
for each xj, the corresponding (wi, xi, Yk) will be in M’. The remaining p q edges in A"
will be of the form (ijk, aiik), and thus contribute nothing to the matching. [q

THEOREM 2. 3DMcx: CBRA.
Proof. Given an instance of 3DM, we define an instance of CBRA exactly as we

defined an instance of CSTA in Theorem 1, except that we interpret the edges as being
undirected, and use E and E’ instead of A and A’.

We claim that M contains a matching M’ iff there is a set E" of cost no more than
B p + q such that (V, E’ LI E") is bridge-connected. As in Theorem 1, for every triple
(wi, xi, Y) in M’, two edges will be inserted into E" and will cause Wi, Xj, and Yk to be a
cycle in (V, E’t_J E") containing r. For every triple (wi, xi, yk) in M-M’, an edge will be
inserted into E", causing aijk and dii to be a cycle containing wi. The cost is again p + q,
and joining cycles gives that each vertex is on a cycle containing r. Hence, (V, E’ E") is
bridge-connected.

Assume there is an E" of cost no more than p +q such that (V, E’UE") is
bridge-connected. As in Theorem 1, we may deduce that there are exactly p + q edges in
E", each of cost 1. We may also infer the elements of M’ as in Theorem 1. 71

While Tarjan [T2] has already provided a proof that CBIA is NP-complete, we
provide our own here, since it fits the same form as the proofs of Theorems 1 and 2. To
ensure biconnectivity instead of bridge-connectivity, we simply introduce double
copies, ? and i, of the crucial vertices r and wi, where cycles intersect.

THEOREM 3. 3DMCBIA.
Proof. Given an instance of 3DM, we define an instance of CBIA as follows"

V {r, } tD {wi, li, Xi, yili 1,’" ", q} [,.J {aiik, ijkl(Wi, xj, yg) M},

E {(u, v)lu, v V and u v},

E’= {(r, ?)} [.J {(wi, i), (li, r), (?, xi), (yi, r)[i 1,. , q}

[-J {(aii, wi), (1i, tiik)l(wi, xi, Y) e M}.

The costs are defined as in Theorem 2.
We claim that M contains a matching M’ iff there is a set E" of cost no more than

B =p /q such that (V, E’U E") is biconnected. The argument is similar to that of
Theorem 2. Suppose there is a matching M’. For each triple (wi, xi, yg) in M’ there is a
cycle containing ?, xi, aijk, Wi, li, lijk, Yk and r. All Wi, 12i, Xj and yg will be on such cycles.
For each triple (wi, xi, Yk) in M-M’, there is a cycle containing aiik, Wi, ff;i and aiik.
Hence, all aij and tii are on cycles containing wi and i. Since any such cycle shares
two vertices with any other cycle that it shares a vertex with, the removal of a single
vertex cannot disconnect V, E’ LI E"). Hence, (V, E’ t_J E") is biconnected. The cost of
E", as in Theorem 2 will be p + q.

The proof of the if part of the claim is identical to that in Theorem 2. lq

4. Strong connectivity augmentation algorithm. We now present an algorithm
that will find a set of directed edges that makes a subgraph strongly connected. Our
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strategy is to add edges to the augmenting set A" in two stages. In the first stage we find a
reverse spanning arborescence, i.e., a directed acyclic spanning subgraph with one
vertex, the root, having no leaving edge, and all other vertices having exactly one
leaving edge. There is a path from every vertex to the root in such a directed spanning
tree. We use an algorithm for finding optimum branchings [E], [CL], [T1] to find the
reverse spanning arborescence.

In the second stage we find a spanning arborescence forcing the root to be the
same as was returned from the first stage. In this directed spanning tree, all vertices have
exactly one entering edge, except the root, which has none. We can force a particular
vertex to be the root by setting costs on all entering edges to be very large. Hence, there
will be a path from the root to every vertex. Combining the two directed spanning trees
will yield a graph in which there is a path from any vertex u to the root and a path from
the root to any vertex v. Thus, the graph will be strongly connected.

We note that our algorithm generates an optimal solution in the case that either a
spanning arborescence or a reverse spanning arborescence is contained in Go. This is
essentially the same observation that [ET] made with respect to one special case that
they observed was efficiently solvable.

ALGORITHM STC.
Input. G (V, A) a complete directed graph with cost function c:A 7/+, and

Go (V, A’) a subgraph of G.
Output. A set of edges A" = A A’ such that V, A’ LI A") is strongly connected.
1. For each edge (u, v) in A, let d(u, v)= 0 if (v, u) A’ and let d(u, v)= c(v, u),

otherwise.
2. Find a minimum weight spanning arborescence T (V, A’) with root r 6 V on

V, A) using d. Set aa {(u, V)l(t), u) E a’}.
3. For each edge (u, v) in A, let d’(u, v)=c(u, v). If (u, v)EA’t_JAa, then set

d’(u, v) 0. For all u, set d’(u, r) c.
4. Find a minimum weight spanning arborescence T’ V, Ab) on (V, A) using d’.
5. Set A" (Aa Ab)-A’.
LEMMA 1. LetG V, A) be a complete directed graph with cost]unction c A /,

and let Go (V, A’) be a subgraph of G. Then algorithm STC finds a set of edges
A" c A -A’ such that (V, A’ t.J A") is strongly connected.

Proof. Let x and y be any two vertices of V. We will prove that x and y are
reachable from each other in the graph (V,A’t_JA"). Step 2 generates a reverse
spanning arborescence with root r; hence, there exist two directed paths from x and y to
r. Since we assign an infinite cost to any edge of the form (u, r) at Step 3, the spanning
arborescence found at Step 4 will have r as its root. It follows that there exist directed
paths from r to x and y, and therefore x and y are reachable from each other in
(V,A’A").

THEOgZM 4. Let G (V, A) be a complete directed graph with cost function
c:A 7+, and Go (V, A’), a subgraph of G. Let C* be the cost of an optimal
augmentation A* that makes Go strongly connected, and let (] be the cost of the edges A"
generated by algorithm STC. Then

<-2.
C*-

Furthermore, there exists a family of examples for which the bound can be approached
arbitrarily closely.

Proof. Step 2 finds an augmentation Aa-A’ of minimum cost such that there is a
path from every vertex in (V, A’ LI Aa) to r. Since (V, A’ t_J A*) is strongly connected,
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there is a path from every vertex in V, A’ LJ A*) to r. Since Aa A’ is of minimum cost,
the cost is no greater than the cost C* of A*. Step 4 finds an augmentation Ab--
(A’LI Aa) that strongly connects V, A’LJ Aa). Since Ab (A’LJ A,) is of minimum cost,
and A* also strongly connects (V, A’ LJ A,), Ab (A’ LJ Aa) is of cost no greater than
A*. Hence, (A, LJ Ab)--A’ is of cost no greater than 2C*.

To see that the bound is approachable, consider the graph in Fig. 1. Let all edges
(u, v) not shown have the cost of the shortest directed path from u to v. Let A’ . The

v21" "v22

v31 !132

FIO. 1.

set Aa generated in Step 2 will contain all edges of cost e or 1, for a total cost of
n 1 + (n + 1)e. The set Ab A, generated in Step 4 will contain edges of costs 1 + e and
2e, for a total cost of (n 1)(1 + e)+ 2e. Hence, 2n -2 +(2n + 2)e. The set A* will
contain the edges of costs 1 + e, 2e and e, for a total cost of n- 1 + (2n + 2)e. Thus,
/C* can be arbitrarily close to 2. [-I

We note that the worst-case example for completely disconnected graphs would
also hold for partially connected graphs. If the edges of cost e are in the edge set A’, then
the same worst-case behavior is still obtained. Also, the edge costs in the example satisfy
the triangle inequality. This suggests that the triangle inequality does not help in the
worst case, when edge costs are not symmetric. If the edge costs are symmetric but the
triangle inequality does not hold, then we have a bridge-connectivity problem, with one
important modification. A directed graph allows for two edges between a pair of
vertices, but an undirected graph (not a multigraph) allows for only one edge.

We also note that our algorithm runs in O([ VI2) time. Finding a minimum-cost
arborescence can be done in time O(I V[2), using an algorithm by Tarjan IT1], and the
rerhaining work of setting up the distance functions is O(IAI). In fact, for
the average time complexity of our algorithm matches that of Tarjan’s.

5. Bridge-connectivity augmentation algorithm. We first consider the problem of
bridge-connecting a graph Go, where Go is connected. In 3, we have shown that this
problem is NP-hard. We make several observations about solution strategies, and then
proceed to a description of our algorithm. First, we note that we may actually consider
bridge-connecting a subgraph that is a tree. If we are given Go with nontrivial
bridge-connected components, we shrink the vertex sets of the bridge-connected
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components into corresponding single vertices, resulting in a tree whose edges are
bridges in Go.

The second observation is that an algorithm should try to connect two leaves
together at a time. If we use a greedy heuristic of joining a leaf to the nearest vertex, the
edge set so identified may be arbitrarily more expensive than the optimal augmenting
set. As an example, consider the graph in Fig. 2. The tree consists of the path from u to
v. Edges that may be used in the augmentation are shown with their costs. All other

FIG. 2.

edges have cost n. The optimal augmentation is {(u, v)}, of cost n- 1. If the shortest
edge from a leaf is always chosen (and the resulting cycle collapsed to a leaf), then all the
augmentation edges will be used, at cost n(n- 1)/2.

Our final observation is that there is an element of directedness to this problem,
which at first glance appears undirected. Consider the tree in Fig. 3, which consists of a
path from u to v. Suppose the optimal augmenting set is {(u, t), (s, v)}. The path used to

FZG. 3.

connect leaves u and v is (u, t), (t, s), (s, v), where (t, s) is already in Go. In fact, if we
think of this augmentation as going from u to v, then we note that by traversing from to
s, we are temporarily going backwards in the tree.

We thus see motivation for directing edges in our tree. We arbitrarily choose a leaf
as a root r in our tree, and direct all edges in the tree toward r. We then use a minimum
weight arborescence algorithm to find a directed tree out of r. The edges in the
arborescence, when added to the directed tree, will form a strongly connected graph.
The corresponding edges will form a bridge-connected graph.

Because we are transforming an undirected problem into a directed problem, we
must be careful in handling an example such as the graph in Fig. 4a. If x is chosen as the
root, then strongly connecting the directed tree in Fig. 4b appears to be expensive.
However, the bridge augmentation would only use (u, v) as opposed to the edge from
{(t, u), (x, u), (w, u)}. We thus develop the following distance function, which coun-
teracts poor choices in directing edges in the tree. Let d(u, v) min{c (x, y)[u and v are
on a path from x to y in T}. We present algorithm DIST for computing d.

ALGORITHM DIST.
Input. Gs (Vs, E), a complete undirected graph with weight function c’: E-

7/+U {oe} and edge-naming function b, and T (V, E’), a spanning tree of G.
Output. Weight function d:Es -, 7/+ U{oo} such that d(u, v)= min{c(x, y)lu and v

are on a path from x to y in T} and b’:E E such that c’(b’(u, v))= d(u, v).
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(a)

(b)

FIG. 4.

1. For each pair of vertices u and v, find a(u, v), the number of edges on the path
between u and v in T, and s(u, v), the vertex adjacent to v on this path. Let
d(u, v)= c’(u, v) and b’(u, v)= b(u, v).

2. Bucketsort the edges (u, v) of Es-E’s into nonincreasing order of a(u, v). For
each edge (u, v) in Es -E’s do the following in its sorted order" If d(u, v) < d(u, s(u, v)),
then set d(u, s(u, v))= d(u, v)and b’(u, s(u, v))= b’(u, v). If d(u, v)< d(s(v, u), v), then
set d(s(v, u), v)= d(u, v) and b’(s(v, u), v)= b’(u, v). [-]

LEMMA 2. Algorithm DIST correctly computes the distance function d and edge-
naming function b’, and runs in 0(1 V]2) time.

Pro@ The algorithm is a realization of the following dynamic programming
optimality requirement:

d(u, v)=min {{c(u, v)}U{d(u, t)]v is adjacent to and on the path from u to t}

U {d(t, v)]u is adjacent to and on the path from v to t}},

for every pair u and v in V.
For a given vertex u and all vertices v, a(u, v) and s(u, v) can be calculated for all v

in O(IV]). Hence, Step 1 requires O([ VI2).
The bucketsort will require O(IEI) time. The updating generated from each edge

(u, v) will require constant time; hence, all edges will require O(IEI) time. Since the
graph is complete [El O(1712).

If Go is not a tree (but is of course connected), we first shrink all vertices in a
bridge-connected component to a single vertex representing that bridge-connected
component. Thus, G is shrunk to a complete graph G (V, E’). The cost c’ of an edge
(u, v) is the minimum of {} tO {c(x, y) l(x, y) e E E’, and x is in the component
represented by u and y is in the component represented by v}. The edge (x, y) so used
is referenced by a backpointer b(u, v) (x, y). If c’(u, v) o, then b(u, v) (u, v).

We now proceed to the specification of algorithm BRC, which bridge-connects a
connected subgraph. We note that our handling of distance d’ in Step 4b allows us to

slide back on edges in the tree, and also forces us to use node r as the root of the
arborescence. Also note that we, of course, eliminate duplicates that might occur from
insertions into E".

ALGORITHM BRC.
Input. G (V, E), a complete undirected graph with weight function c:E

and Go (V, E’), a spanning subgraph of G.
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Output. A set of edges E" c E E’ such that (V, E’ 1.3 E") is bridge-connected.
1. Shrink G to Gs=(Vs, Es) and Go to T=(Vs, E’s) such that each bridge-

connected component in Go is mapped to a different vertex in Vs. Find weight function
c’:Es 7// Ll{oo} and b:Es -->E.

2. Find d:Es 7// and b’: Es -> Es using Algorithm DIST.
3. Choose any leaf in Vs to be r. Let A’ be the set of directed edges generated by

directing each edge in E’toward r. Let T’= (V, A’).
4a. Let A . For each edge (u, v)Es, insert (u, v) and (v, u) into A. Set

d’(u,v)=d’(v,u)=d(u,v).
b. If (u, v) A’, then set d’(u, v)= 0. For all u, set d’(u, r)=

5. Find a minimum weight arborescence T"= (V A") on (V, A), using d’.
6. For each edge (u, v) in A" with d’(u, v)>0, insert the corresponding edge

b(b’(u, v)) into E".
THEOREM 5. Algorithm BRC generates a set E" such that (V, E’ E") is bridge-

connected.
Proof. Step 5 finds a set A", such that (V, A’t.3 A") is strongly connected. Thus

(V Es LI) is bridge-connected (where are the undirected versions of edges in A",
and we allow U to be a multiset union). If not, then there would be a bridge (u, v) with
(u, v) A’ kJ A". There would be no path from v to u in (Vs, A’ t.3 A"), hence a
contradiction to (Vs, A’U A") being strongly connected.

Now replacing 7 with E’ b’(’) will leave the graph bridge-connected, since if
(u, v) creates a cycle in (V,E’s), certainly b’(u, v) will create a cycle containing all
vertices in the cycle created by (u, v). Reconstituting (Vs, E’s t.J E’) into (V, E’t_J E"),
where E" b(E’’)-E’, will leave the resulting graph bridge-connected.

LEMMA 3. LetE* E-E’ be a minimum-costsetofedges such that (V, E’ E*) is
bridge-connected. Then there is an augmentation A’" A -A’, ofcost no more than twice
that of E*, such that Vs, A’t_J A’") is strongly connected.

Proof. Let (u, v) be an edge in E*. Let (x, y) be the corresponding edge when V is
shrunk to Vs. Consider the weakly directed path between x and y in T’. If the edge
directions do not change along the path, direct (x, y) to complete a directed cycle and
insert it into A’". If the edge directions change, then they change at most once, say at
vertex w. Insert (x, y) and (w, x) into A’". By the definition of the distance functions d’, d
and c’, d’(w, x) <= c’(x, y) <-_ c(u, v). Hence, each edge (u, v) in E* accounts for at most
two directed edges in A’", each of cost no more than (u, v). Since every edge in T must
be on a cycle containing exactly one edge in E*, then every directed edge in T’ must be
on a directed cycle in (Vs, A’LI A’"), and hence, this graph is strongly connected. 71

THEOREM 6. Let G (V, E) be a complete undirected graph with cost function
c E 7/+ and Go V, E’) a connected subgraph of G. Let C* be the cost of an optimal
augmentation E* that makes Go bridge-connected, and let be the cost of the edges E"
generated by algorithm BRC. Then

<-2.
C*-

Furthermore, there exists a family ofexamples with all edges ofcost 1 such that the bound
can be approached arbitrarily closely.

Proof. From Lemma 3, we know that there is an augmentation A’" of cost no
greater than 2C*, such that (V, A’t_J A’") is strongly connected. From A’", we may
construct an arborescence for (V, A’) using d’, and with any particular vertex that we
choose to be the root. The cost t will be no greater than the cost of the minimum-cost
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arborescence, which will be no greater than the cost of the induced arborescence, which
will be no greater than 2C*.

To see that the bound is approachable, consider Go (V, E’), which is a binary tree
with n leaves. Let c(u, v)= 1 for all u, v e V, u v. The algorithm will choose a leaf at
random to be the root r, and direct all tree edges toward r. A spanning arborescence
must have a directed edge entering each of the remaining n-1 leaves, so that a

potential solution is the set of edges connecting r with each other leaf, which is of cost
C n 1. An optimal solution will have n/2 edges, each edge connecting two leaves,
for a cost C* n/2. (3

We note that Algorithm BRC has time complexity O(IVI2). Step 2 requires
O(I VI2) time, and Step 5 can be accomplished in O(I VI2) time IT1]. Edge costs may be
contained in an adjacency matrix, and may be manipulated in O(I VI2) time.

If the subgraph Go is not connected, then we modify BRC so that the connected
components are joined in minimum cost fashion. Prim’s algorithm for finding a
minimum spanning tree [P] may be used to accomplish this in O(I VI2) time. Since the
cost of the minimum connection will be no larger than the cost of an optimum
bridge-connection C*, the worst-case bound on this algorithm is t/C*-< 3.

The bound is approachable, as can be seen in the example of Fig. 5. Here, Go
consists of k copies of a connected component containing vertices/-)il, Vi2, Wil, Wi2o All

W

vii v12. v21 v2_.2. Vkl Vk2

FIG. 5.

edge costs are 1. A minimum cost connection may consist of edges {(Wi2, Wi+l,1)]l <
k} of total cost k 1. If Vk2 is chosen as a root, then a minimum cost augmentation would
consist of {(V/l, vi2)ll -< =< k} U {(v/2, Vi+l,1)ll =< < k} of cost 2k 1. Thus, t 3k’- 2.
An optimal augmentation would be {(Vk2, V11)} LI {(Vi2, V/+1,1)11 <-- < k} of cost C* k.

For Go completely disconnected, use the previous example with edges that were
previously given in the k components now having cost e. A spanning tree of cost
(k-1)(l+4e) will yield the same difficult topology, and the algorithm can have

3 k -2 + (k- 1)4e and C* k + (k- 1)4e. As e goes to zero, the bound is 3. If the
cost function satisfies the triangle inequality, then we can do much better with another
algorithm [FJ].

6. Biconnectivity augmentation algorithm. Finding an augmentation that bicon-
nects a graph seems to involve difficulties that are not present in the bridge-connectivity
augmentation problem. In the case of finding an optimal augmentation for unweighted
graphs, the O(I VI + IEI) algorithm for biconnection in Rosenthal and Goldner [RG] is
considerably more involved than the o(Ivl + IE]) algorithm for bridge connection in
Eswaran and Tarjan lET]. We have found a similar increase in complication in the
weighted case in moving from bridge-connectivity to biconnectivity augmentation
approximation algorithms.

The block-cutvertex tree described below is used to handle not only biconnected
components (blocks), but cutvertices as well. In Step 3, when the directed tree is set up,
we must add new vertices "upwind" of the cutvertices. The way in which we handle
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edges that enter and leave the cutvertices and new vertices will ensure that strongly
connecting the graph guarantees not just bridge-connectivity but also biconnectivity in
the original graph.

The structure of this section is much the same as 5: we first present an algorithm
for biconnecting a connected graph. The approach will be quite similar to that presented
in 5, and the reader will notice a similar structure in the algorithm and the proofs.
However, the increased level of complication in the algorithm will find its way into the
proofs of correctness and of bound behavior. We now define the block-cutvertex tree.

Let Go (V, E’) be a connected subgraph of graph G (V, E). Let G (Vi, Ei),
1 -< -< t, be the biconnected components (blocks) of Go, and let Vc be the cutvertices of
Go. The block-cutvertex tree Ts (Vs, E’s) is defined as follows. Let Vb be a set of new
vertices, called block-vertices, representing the blocks of Go. Let V Vc LJ Vb. Let
Ets {(/)i, )/.)l/)i Vb A vi V A vj vi}; that is, each edge connects a block vertex i with
a cutvertex v. such that the cutvertex is in the corresponding block. Hence, cutvertices
and block vertices alternate in the block-cutvertex tree T. The block-cutvertex graph
G (Vs, Es) induced by Go will have E {(vi, vj)lvi, vj

We define cost function c’ on E in terms of cost function c, but being careful about
the way cutvertices are handled. If vi, vi Vc, then set c’(vi, v) c(vi, v). If vi Vb and

v Vc, then set c’(vi, vj)=min{{oo}L.J{c(vk, V)IVk(Vi- Vc)}}. If vi, v Vb, then set
c’(vi, v) min {{oo} L] {c(vk, Vm)lVk (Vi- V) ^ v, (Vi- V)}}. Our cost function c’
has been defined as though we do not include cutvertices in blocks. We can do this since
we have individual vertices in V representing the cutvertices, and hence need not
include them in the block vertices. We allow the possibility of an edge with cost oo, since
all vertices in some block may be cutvertices. Finally, for each edge (u, v) in Es, let
b(u, v) be a pointer to an edge (x, y) in E with c(x, y) c’(u, v) < oo. If c’(u, v) oo, let
b(u,v)=(u,v).

Before presenting the algorithm, we give an example, in Fig. 6, of how the
cutvertices must be handled carefully. In Fig. 6a, we have a block-cutvertex tree. In Fig.

b b
2

1o) (b)

(c)

bl lb2

’c2
/

/

FIG. 6.



APPROXIMATION ALGORITHMS, GRA.PH AUGMENTATION PROBLEMS 281

6b, we give a directed tree without introducing the new vertices of Step 3b. The dotted
edges give a strong connection for the directed tree, but a cutvertex still remains in the
corresponding undirected graph. In Fig. 6c, we show a directed tree with the new
vertices included. If the same augmentation is used, as shown, then this augmentation
does not strongly connect the tree. We cannot use an edge (cl, b4) in the augmentation,
since no such edge is introduced in Step 4a. Hence, an augmentation such as that in Fig.
6d must be used, and this both strongly connects the tree, and also induces a
biconnection in the original graph.

ALGORITHM BIC.
Input. G (V, E), a complete undirected graph with weight function c:E-> 7+,

and Go (V, E’), a spanning subgraph of G.
Output. A set of edges E" = E E’ such that (V, E’ k} E") is biconnected.
1. Shrink Go to its block-cutvertex tree T (V, E’) and G to G (V, E), the

block-cutvertex graph induced by Go. Find weight function c’:E-->Z+kJ{} and

2. Find d:E --> Z+ and b’:E --> E using Algorithm DIST.
3a. Choose any leaf in V to be r. Let A’ be the set of directed edges generated by

directing each edge [a E’s oward r. Set V"s to
b. For each edge (u, v) in A’ such that v Vc, insert new vertex xuv in V’s, and

replace (u, v) in A’ with (u, x,v) and (x,v, v). Let T’s (V’s, A’).
4a. SetA to A’. For each edge (u, v)Es-E’s, do the following. If u Vc or there

is no path from v to u in T’s, then insert (u, v) into A with d’(u, v) d(u, v). Otherwise,
let x be the (new) vertex preceding u in T’s, and insert (x, v) into A with d’(x, v)=
d(u, v) and set b’(x, v) b’(u, v). Perform the above with the roles of u and v reversed.

b. If (u, v) A’, then set d’(u, v) 0. For all u, set d’(u, r) .
5. Find a minimum cost arborescence T (V’s, A") on (V’s, A’) using d’.
6. For each edge (u, v) in A" with d’(u, v)>0, insert the corresponding edge

b(b’(u, v)) into E". I-I
THEOREM 7. Algorithm BIC generates a set E" such that (V, E’t_J E") is bicon-

nected.
Proof. Step 5 finds a set A" such that V’s, A’ LI A") is strongly connected. Let v be

a cutvertex in Go that separates vertices u and w. We shall show that there is a weakly
directed path from w to u in (V’s, A’U A") that does not contain v. Hence, we shall show
that the edges in A", when undirected, will eliminate vertices in V as cutvertices.

Let P be the set of vertices in V’s such that there is a strongly directed path in
from each vertex in P to v. Since V’, A’ U A") is strongly connected, there is a strongly
directed path from v to any other vertex. The first edge in the path cannot be (v, t),
where e P, since no edge (v, t) is added to A in Step 3b such that v Vc and Pv.
Hence, a directed path in (V’, A’U A") from v to any other node x must contain a
directed subpath from s to x, where s P and v is not in the subpath. Thus, there is a
directed subpath not containing v from S to u for some s P. Similarly, there is a
directed subpath from s2 to w for some s2 P. Furthermore, since sl, s2 e P and v has
only one successor in T’, there is a weakly directed path from Sl to s2 in T’ that does not
contain v. Hence, there is a weakly directed path from u to sl to s2 to w in (V’s, A’LI A")
that does not contain v.

As in Theorem 5, we note that replacing (x, y in A" with the corresponding edge
b(b’(x, y)) does not adversely affect biconnectivity. Let b(b’(x, y)) (p, q). If (x, y) is on
a weakly directed path that eliminates v as a cutvertex between u and w, then v cannot
be on the path from x to p in T or on the path from y to q in T.
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LEMMA 4. LetE* c E E’ be a minimum cost set ofedges such that V, E’ U E*) is
biconnected. Then there is an augmentation A’" A A’, of cost no more than twice that
of E*, such that V’s, A’U A’") is strongly connected.

Proof. We describe an algorithm for generating A’" from E*. Start with A’" .
Mark all vertices inaccessible except the root of T’s. While not all vertices are accessible,
do the following: Choose an accessible vertex w Vb such that w is on the path from x
to y in T for some edge (x, y) corresponding to an unexamined edge (u, v) E*. If
w y, insert (w, y) into A’", and if w x, insert (w, x) into A’". Mark all vertices on the
weakly directed path from x to y in T’ accessible.

Since w Vb, edges (w, y) and (w, x) exist in A and have d’ cost no greater than
c(u, v). Also, if w is accessible from the root then introduction of the two directed edges
will make all vertices on the weakly directed path from x to y accessible from the root.

It remains to show that an edge (u, v) from E* and suitable accessible vertex w
always exist. At any point in the execution of the above algorithm the vertices Ve
marked as accessible represent a set of vertices that is biconnected. If E* has not been
completely examined then there must be an edge (x, y) corresponding to an
unexamined edge (u, v) in E* such that the path between x and y in T contains more
vertices in Ve than just one cutvertex. Otherwise, E* cannot neutralize all cutvertices
from Vc. If there is more than one vertex from V on a path between x and y in T, then
there must be a w Vo f3 Ve on this path, since blockvertices and cutvertices alternate in
7; 71

THF.OREM 8. Let G (V, E) be a complete undirected graph with cost function
c E --> 77 + and Go V, E’) a connected subgraph of G. Let C* be the cost of an optimal
augmentation E* that makes Go biconnected, and let be the cost of the edge.s E"
generated by Algorithm BIC. Then

<-2
C-

Furthermore, there exists a ]amily o] examples with all edges o] cost 1 such that the bound
can be approached arbitrarily closely.

Proo] Similar to the proof of Theorem 6. [3
Like Algorithm BRC, Algorithm BIC has the complexity O(I VI2). If the subgraph

Go is not connected, then we first connect the graph, in minimum-cost fashion, and then
run BIC. The worst-case bound is 3, as in the case of bridge-connection.

[CT]

[CL]
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lET]
[FJ]
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THE RATIONAL INDEX: A COMPLEXITY MEASURE FOR
LANGUAGES*
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Abstract. With every language L we associate an increasing function called its rational index. We obtain
this function by comparing L with rational languages of increasing complexity.

We show that the rational indices of two languages related by a rational transduction are polynomially
related. From this, we can define new rational cones of languages in terms of rational indices.

We then focus our attention on the rational index of context-free languages and raise several questions
closely related to the open problems concerning the subcones of the family of context-free languages.

Key words, complexity, context-free language, rational transduction, generator language

Introduction. Let be the family of languages defined by a family s4 of "devices"
(e.g., grammars, automata, Turing machines). Each "device" A has a finite size IAI
(IA[ s N) and defines a language L(A).

The relation between the size of a device A and the length of a shortest word in
L(A) measures in some sense the complexity of the family s. It can be expressed by a
function over the integers,

pa(n) Max {Min {lull u L(A), L(A) and IAI--< n}.

For s4 the family of finite automata (and IA[ the number of states of A in sO) pa is
bounded by a linear function.

For s4 the family of context-free grammars (and [A[ the length of the grammar A
written as a word made of all production rules) p is bounded by hn.n but not by any
linear function.

In order to study the complexity of one language L, we choose to consider the
family of languages of the form L 7IL(A), where A is a finite nondeterministic
automaton such that LflL(A) (g. We introduce the rational index of L as the
function pL: N-> N defined by

o(n)- Max {Min {lu[ u sLL(A),Lf-IL(A) ,A ss4n},

where L_ X* and sO, is the set of all finite nondeterministic automata with input
alphabet X and at most n states.

The order of OL (linear, polynomial, exponential) will be used as a measure of the
complexity of L.

This complexity measure behaves properly through the AFL operations. In
particular, if L is the image of L’ by a rational transduction, then p and p/: are
polynomially related. Thus, we can define rational cones in terms of this complexity.

We focus our attention on context-free languages and raise several questions
closely related to the open problems concerning the cones of nongenerator languages.
We show in particular, that every generator is of exponential order.

* Received by the editors July 20, 1979, and in revised form May 15, 1980. A first version of this paper
was presented at the Conference on Theoretical Computer Science, Waterloo, Ontario, Canada, August,
1977.- Universit6 de Paris VII, L.I.T.P. tour 55; 2, Place Jussieu, 75221 Paris Cedex 05, France.

t Universit6 de Bordeaux I, Math6matiques et Informatique; 351, Cours de la Lib6ration, 33405
Talence Cedex, France.

284



A COMPLEXITY MEASURE FOR LANGUAGES 285

Rational indices have been used by J. M. Steyaert for studying ETOL languages
[10] and by W. Damm to show that a certain hierarchy of languages which extends the
Chomsky hierarchy is strict [4].

1. The rational index of a language. Let us begin with some definitions and
notation.

Let N/ and R/ denote the sets of positive integers and reals respectively.
By function we mean an increasing mapping of N/ into R/. We shall use the

notation borrowed from the lambda-calculus: An.f(n) is the function which maps n to
f(n) for n /. For instance, An.n is the identity function and An.n 2 the square
function. We shall also use small letters f, g, h, to denote functions.

Our functions are ordered as follows:

f_-< g if and only if, for all n, f(n)<-_ g(n).

Hence, by Max (f, g) we mean hn.Max{f(n), g(n)}, which is clearly the least upper
bound of f and g for the order -<.

For a function f, we define the set 12(f) of all functions g such that for someM e [+,
g<-M.f.

The relation g e f(f) is a preorder that we shall denote by g < f. By g < f, we shall
mean that g < f holds but f< g does not.

Remark 1. For any two functions f and g, f < g if and only if there exist M and N
such that f(n) <- M.g(n) for all n ->_ N.

Byf+ g and f.g we shall mean respectively hn.(f(n) + g(n)) and an (f(n).g(n)). The
identity function an.n will be denoted by Id.

We now introduce some notation concerning languages.
Let ag, (X) be the family of nondeterministic finite automata with at most n states

and some input alphabet X. Let Rat, (X) be the family of languages accepted by the
automata in s4, i.e., Rat, (X) {L(A)] A s4n (X)}.

The general automaton will be of the form (X, Q, h, q0, F), where X is the input
alphabet, Q the set of states, qo the initial state, F the set of final states and
h: Q xX P(Q) the nondeterministic transition function.

The function h is canonically extended into h* Q x X* P(Q) by h*(q, e) {q}
and h*(q, au)=U{h*(q’, u)lq’ h(q, a)}, where u X-* and a X.

The length of a word u in X* is denoted by [ul, and for any L
_
X* we denote by

MIN (L) the set of words of L of minimal length. The empty word is denoted by e.
For any two languages K and L such that K f’l L , we define 8,L to be the

common length of all words in MIN (K f’l L).
We are now able to define the rational index Pc Of a nonempty language L c__ X*:

pc ,n.max {tK.c ]K f’l L : and K e Ratn (X)}.

Since Rat,(X)
__
Ratn+x(X) for all n, pc is a function in our sense.

For any class of functions we define () as the union of all the (f) for all f in .
We define a class of languages as follows:

We also define (f) as the set of functions g such that f g (i.e., [ e (g)) and () as
the union of the (f) for f e . We also get

() {L X* lP ()}.

The function p seems to depend on the alphabet X, but this is not the case, provided
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L
_
X*. Let Y be the least alphabet such that L

_
Y*. Then, for all A 4n (X),

L f) L(A) L L(A’),

where A’ s4n (Y) is the automaton obtained from A by deleting every arc labeled by a
symbol not in Y.

Hence, in the rest of the paper we shall always consider "sufficiently large
alphabets" without needing to be very precise on this point.

We now begin to investigate the relation between a language and its rational index.
Remark 2. A language L is infinite if and only if Id
Remark 3. For every function f -(Id) there exists a language L such that f< pL.

This means that there exist arbitrarily complex languages. Let us show this. Let

X={x,y}, L={x"y("+2)f(’+2)]n+}, K=x-2y*.

Note that K Ratn (X) and that 6K,L n 2 + nf(n). Hence, f OL and OL f.
We shall now relate the rational indices of two languages L and L’ with the rational

index of L L’, LL’, L*, r(L), where r is a rational transduction.
LEMMA 1. PLUL, Max (PL, PL’).
We leave the proof to the reader and state
LEMMA 2. p LL’ --<-- PL +
Proof. Let K e Rat,(X) be L(A) for the automaton A (X, (2, A, qo, F). Let

u MIN (K 71LL’). There exist q O, q’ F and u 1, u2 X* such that

and U2 L’,

bl U U2,

q h * (q0, u 1),

q’ / *(q, U2).

Let A (X, Q,/, q0, {q}) and A2 (X, O, A, q, F); since u is minimal (in length) in
K f3 LL’, U is minimal in K1 L and u2 is minimal in K2 [")L’. Hence,

This bound cannot be improved, as shown by the example of L L’= a*b. By taking
K (a qb)* we get 6:,L 6:,/, q + 1 and g:,cc, 2q + 2.

LEMMA 3. pL. N Id. p.
This means that for all n, p.(n)<-n.pc(n).
Proof. Let A be as in the proof of Lemma 2 and u MIN (K L*) with u e. Then

for.some u0, Ul,. , uk e X+, some pl, p2," P/+I in (2,

b UObl U2 Uk,

Px A *(qo, Uo),

P2 A *(ql, b/I),

Pk+l A *(Pk,

Pt+l V.
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Since u is minimal, q0, pl, p2" "pk+l must be distinct. Hence, k +2_-<n. Also,
--< pL(n) for 0, 1,..., k + 1 for the same reason. Hence,

lul (k + 1)pL(n)<-n.p(n).

LEMMA 4. Let R Ratq(X). Then PnR <--hn.p(qn).
Proof. If K Ratn (X) and R Ratq (X) then K R Ratqn (X) (see Eilenberg

[5]). And 6:,nR 6:CR,L, whence the result. [3
A homomorphism of free monoids @:X* - Y* is alphabetic if (X)_ Y U {e}.
LEMMA 5. Let be an alphabetic homomorphism. Then p.() <-_ p.
Proof. Let us recall from Eilenberg [5] that if KRat(X) then -I(K)

Rat, (X).
Then (L)f)K=(L-I(K)). Let uMIN((L)YlK); then u=(v) for

some vMIN(LfI-(K)). Hence, [u[<-_lvl<-8,.-l(:)<-p.(n), if we assume that
K Rat, (X). [3

LEMMA 6. Let be an alphabetic homomorphism. Then, p-l(t) <- hn.(n + 1)p(n);
hence, PO-(L) Id.pL.

Pro@ Let K Rat,(X) and u MIN (O-a(L)(-I K). Then u can be written as

U woalwla2 Wn-lamWm

(wi)= e for =0, 1,..., m,

dig(ai) a e for 1," , m.

Since u is minimal, u’= a’laz a, MIN (Lfq(K)) and m <-p(n) since (K)
Rat,(X). By an application of the pumping lemma, one can see that Iwl<-_n- 1 for
=0, 1,..., m. Hence,

[ul <--(n 1)p(n) + n 1 <-(n + 1)p(n).

Remark 4. Let us show that Lemma 6 cannot be improved.
Let L ={anb m, n +, m <=n}. One shows with the pumping lemma that

pL<--Id. Now let " {a, b, c}* {a, b}* such that q(a)=a, (b)=b, (c)=e and
L’= -a(L). Then hn.n2<p,. To show this, one takes K--- (acq)*b q

Rat2q+l({a, b, c}). Then 3:c,=q+q. Hence, Oc,(n)>-hn.n2/4.
Putting together Lemmas 4, 5 and 6, we get the fundamental theorem:
THEOREM 1. Let L be a language and z a rational transduction. There exists an

integer p such that p,() <-hn.(pn + 1)p(pn).
Proof. Let us recall from Nivat [8] that a rational transduction z" X* - Y* can be

written as r(u)=O(-(u)flR), where R Rat(Z) for some peN+ and some finite
alphabet Z, and , 0 are alphabetic homomorphisms of Z*X* and of Z* Y*
respectively.

From all this and with Lemmas 4, 5 and 6, we get

<= p ee-l(L.) (pn

<= (pn + 1)pt.(pn).

This theorem allows us to define new families of languages.
DEFINITIONS. A class N of functions is extensive if:
(1) Id.f 12(c) for all [ in
(2) hn.f(pn)e f(c) for all f in c and p in 1+.
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We give a "dual" definition: a class c of functions is antiextensive if
(1) hn.(f(n)/n)e r(C) for all f in
(2) hn.f([n/p]) e 7r(C) for all f in c, and p in 1+, where [n/p] denotes the integral

part of n/p.
Examples. The family Pol {hn.nk[k e N+} is extensive and the family Exp

{hn.2n]a e +} is antiextensive.
Let us recall that a cone is a family of languages which is closed by rational

transduction, i.e., such that z(L)e if L e and z is a rational transduction.
Dually, we define an anticone as a family such that r(L) e 5 implies L e , where

r is a rational transduction.
COROLLARY 1. If c is extensive then lI() is a cone (and even a full AFL); if c is

antiextensive then r(c) is an anticone.
We shall make a special use of Pol lI(Pol) the cone of polynomial languages and

of Exp (Exp) the anticone of exponential languages.
After having studied the basic AFL operations, we consider substitutions.
Let L _c X* and or: X P(Y*) be a mapping which associates with every a in X

some language o-(a)_ Y*. Then, or(L) is the language

or(L) (UlU2"’" unlthere exists ala2"’" an in L, such that

ui e r(ai), for 1, 2,. , n}.

If o-(a) e 5f for all a e X where is a family of languages, we call o- an -substitution. A
family of language 5f is substitution closed if for all L e and all -substitutions o’, o’(L)
belongs to

We shall also use the syntactic substitution L L2 ofL2 into L defined as follows for
L --- X* and L2

___
Y* with X Y

L L2 cr(L1),

o-(a) aL2 for a e X.

Equivalently,

LlOLE={alulaEu2 anun[al, a2, an eX, ala2 an

and ui e L2 for 1, 2, , n}.

LEMMA 7. pLoL’ <--_ hn.pL(n )(1 +pL’(n)).
Proof. Let K L(A) for some finite automaton A (X LJ Y, Q, h, q0, F) with at

most n states. For q, q’ e Q, let us define Kq,q, as {u e Y* q’ e h * (q, u)}. It is clear that
each K,,q, belongs to Ratn (Y).

Let u eMIN ((LoL’)K). Then u can be written as u aulazu2 amUm, where
ui eL’ for each and aa2"" am eL. Since u belongs also to K, we get a sequence
pl, p, p).,’ , pro, p’ in Q such that the following conditions hold"

(c)

pleh*(qo, a),

p e g(Pl, Ul),

p2eh*(p’1, a2),

pmeh*(pm-l, am),

p,neh*(pm, Um),

p’F.
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Let K’ be the set of all words x X* which can be written x ala2"" a. for some
aiX, some m N, some ui Y*, some pl, p, p., p’. satisfying (C). It is not
difficult to see that K’ e Rat. (X).

The minimality of u implies that each Ug is in MIN (Kp,,.; f’l L’); hence lugl <=pc,(n).
It implies also that ala2""a. MIN (K’f’IL); hence, rn <-pc(n). We therefore get

[ul--< m(1 + pc,(n)) <=pc(n)(1 + pc,(n)).

A class of functions is multiplicative if for all f, g e then f.g e f().
THEOREM 2. Let be an extensive and multiplicative class offunctions. Then 1()

is a substitution-closed full AFL.
Proof. The family 1() is closed by union, product and star operation by

Lemmas 1, 2 and 3. It is closed by rational transduction by Theorem 1. Hence, is a full
AFL.

Let cr be an ? substitution and L a language in . One can find in a language L
and a rational transduction such that r(L)= r(LoL). But LoL belongs to by
Lemma 7 and so does r(L). Hence, is substitution closed.

COROt.LARY 2. Thefamily Poi ofpolynomial languages is a substitution-closedfull
AFL.

2. Rational indices of context-free languages. Let us first give an upper bound to
the ratibnal index of a context-free language in terms of the size of a grammar which
generates it.

For a context-free grammar G, let IGI1 be the cardinality of its nonterminal
alphabet and IGI2 be the maximum length of the right-hand side of a production in G.
By looking at derivation trees, one establishes easily that the length of a shortest word in
L(G) (if any) is at most [G[1211.

PROPOSITION 1. LetL be the context-free language generated by some grammar G.
Then pc <- An.2" where p IGI1 lOgE(lGlz).

Proof. Let K e Rat, (X*) be given by some finite automaton with set Q of (at most
n) states. In order to define L(G)f3 K, one constructs a context-free grammar G with
nonterminals of the form (q, S, q’) for S nonterminal in G and q, q’e Q, such that
L(G, (q, S, q’))= L(G)(3 K,, (notation of Lemma 7) for all S, q, and q’. It is clear that
It’ll_-< nEIGl and It12 IGI2. Hence the result.

The best we can do is to construct context-free languages such thatp _>- An.2’" (see
Lemma 8 below).

Open problem 1. Does there exist a context-free language L such that
for all p ?

We shall now consider various subfamilies of the family CF of all context-free
languages.

Let us recall the definitions of some classical languages.
Let Z2 {a l, aE}{til, t2}. We define on Z2* the congruence as being the

congruence generated by alti1 a2a2 e. We denote by D&* the Dyck set over Z2; i.e.,
the class of e with respect to this congruence.

We shall consider the language D* D&* f’) {al, til}* and the symmetric language
S2 O&* ’ {a 1, a2}*{al,

We shall also use the language A c__ Z2* defined by the grammar

The least rational cone containing A or D* is the family CF of all context-free
languages. The least cone containing $2 (resp. D*) is the family Lin of linear languages
(resp. the family Oct of one-counter languages).
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The substitution closure of Lin (i.e., the least substitution-closed family of
languages containing Lin) is the full AFL Qrt of quasi-rational languages. The substitu-
tion closure of Oct (resp. of Lin t_J Oct) is the family Ict of iterated counter languages
(resp. the family Gre of Greibach languages. It has been shown in [1], [2] that Gre is
strictly included in the family N Gen of languages which do not generate CF, contradic-
ting a conjecture of Greibach [7]. The name we give to this family comes from our
investigations concerning this family. Let us recall that a context-free language L
generates CF (is a generator) if CF {(L)I is a rational transduction}. We denote by
Gen the set of generators.

Let us recall that N Gen is the maximal proper subcone of CF (see [7]). Note that
Gen is not an anticone. We only have

L CF and z(L) Gen implies L Gen.

But we can have a language L, not in CF, such that z(L) Gen for some rational
transduction, for instance, L {aPu/p is prime and u D&*}.

LEMMA 8. The language A’2 belongs to Exp.
Proof. Let us define the following regular sets

K1 (a2a2)*,

K2=(alKIKI)*,

gi+l=(algil)* for _-> 1.

It is easy to see that Ki is in Rati+l(Z2). Note also that for any g in Kg, ]glal [g[al; i.e.,
g has the same number of al and of al. We shall show that A’2f’IKi is reduced to a
single word fi and that [fi[ 2i+1- 2.

If 1 then A f3K {a22}, hence, fX a272 and [fx[ 22 2 2. Let us assume
the property for and prove it for + 1. Let g be a word in A f’l Ki+x. It can be written as

and

Hence,

g=algtagat’’’ alg,gt, with geKi for ]= 1,...,n.

g alhxh2d, with hi, ha A.

hlh2 glag2" alg,.

Since ]gtlal -Iglllal + 1, the wordg cannot be a left factor of any word in A,
in particular, of hi. Hence, gl hg’ and g’8lalg2" algn h2. Similarly, Ig’al[-
Igldlla + 1, and we get a contradiction unless n 1. So we get hlh2 K. With the same
remarks as before, we get h Ki and h2 Ki and hence, using the induction hypothesis,
hl=h2=fi.

Therefore, there is exactly one possible g in K/ f3 A, namely

g fi+l alfifitl,

and

[fi+l 2 + 2.(2i+1- 2) 2g+2- 2. ]

THEOREM 3. Gen is included in Exp. In words, every generator of the family of
context-free languages is exponential.

Proof. Let L be any generator. Then A r(L) for some rational transduction.
Lemma 8 and Theorem 1 show then that pL An.2n. !-1
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Remark 5. The converse of Theorem 3 is not true. Boasson has constructed a
language which is exponential but is not a generator [3].

We now consider some families of nongenerator languages, and in particular Lin
and Oct.

LEMMA 9. The languages Sz and D* are polynomial.
Proof. The language $2 is generated by the grammar S alSal + a2Sa2 + e. Let

A n(Zz).
The construction recalled in Proposition 1 yields a linear grammar with n z

nonterminals, generating Sz fq L(A). Hence a).s 2n and ps An.2n. Let us now
consider D* {a, aa)*. To simplify the notation, we replace aa by a and a by a.

For each word u in {a, a}*, let us define

It is well known that a word u {a, a}* belongs to D* if and only if B(u)=0 and
B (v)> 0 for all left factors v of u.

For u D* let h(u) be the height of u defined as Max {0(v)I v is a left factor of u}.
Let w(u), the width of u, be the maximum number of left factors v of u having the same
associated integer B (v).

It is not difficult to check that, for all u D*,

[ulh(u).w(u).
Now let K Rat, ({a, a}) and u MIN (D* K).

with

Claim 1. The width of u is bounded by n. Otherwise, u can be written as

bl UlU2 Un+lU

/ (Ul)--"/ (b/2)

and we can find l<-i<<_-n +1 and q Q, q’F (cf. Lemma 7) such that q
A *(qo, ul ui), q , *(q, ui+l ui) and q’ h *(q, Ui+l un+lu’). Hence,
u uiuj+l u,,+lU’ D* fqK and u is not minimal.

Claim 2. The height of u is bounded by n 2. Otherwise, u can be written as

u uoaulau2 auhavh_la v2avlavO,

where Uo, Ux, , Uh, Vh-X, ", voeD’x*, h >-n :.
Then we can find 0 _-< < ] _-< h, q and c in O and q" e F such that

q h*(qo, uoa ua),

q h*(qo, uoa uja),

q’ A *(qo, uoa aUhaVh-1 Via),

q’ A *(qo, uoa aUhaVh-1

Hence, u is not minimal, since

u’= uoa uiaui+la aUhal)h-1 l)jal)ia ado

belongs to D* fqK and is shorter than u. Hence,
Open problem 2. Does po’* > An.n2?



292 LUC BOASSON, BRUNO COURCELI_zE AND MAURICE NIVAT

THEOREM 4. The rational cones Lin and Oct are included in Pol. The full AFL’s
Qrt, let and Gre are included in Poi.

Proof. By Theorem 1 Poi is a rational cone containing $2 (by Lemma 9) and Lin is
the least one containing 6’2. So Lin

___
Pol. The proof is similar for Oct and the other

families by using Theorem 2 and Lemma 9. 71
Let us summarize the relations between this various families of languages into a

diagram.

Lin c Qrt

Oct Ict

Gre
_
Poi C F c N Gen,

Gen Exp C F.

On this diagram, all inclusions are known to be strict except Gre_ Pol.
Conjecture t. The inclusion Gre c Pol is strict.
A possible way to prove this conjecture would be to consider the language

E {a, b, c, d}*-E where E is generated by the grammar

S -> aSbSc + d.

The language E is known to be a generator, and it satisfies the following property"

(,) For all u, v, w {a, b, c, d}* if uvw and uw belong to E, then v e.

We show that E is polynomial. Let u MIN (E fq K) for some K Ratn ({a, b, c, d})
and assume that ul>= 3n. Then, by using the pumping lemma, we can write

/,/ b/1/)U2 withlvl->_n and UlU2K.

By a second application of the pumping lemma, we can write

v=vwv2 withlwl =>l,lvvzl ->_landuvavzuzsK.

The minimality of u implies

UlU2#-E(’]K,

uvv2u2 E f"I K;

hence, uu2 E, UlVlV2/.,/2 E, which contradicts property (,) of E.
We conjecture that E Gre, which would prove that the inclusion Gre= Pol is

strict.
There is yet another question.
Confecture 2. Every context-free language is either in Pol or in Exp.
This is not at all obvious. There could exist a context-free language with rational

index An.2"/.
We conclude this section by examining more closely the quasi-rational languages.

The following proposition shows in particular that Lemma 7 cannot be improved.
The family Qrt of quasi-rational languages is the union of all the Qrt(p) for p => 1,

defined as follows"

Qrt(1) Lin,

Qrt(p + 1)= {(L)/L Lin and r is a Qrt(p)-substitution}.
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PROPOSITION 2. For all p [+ there exists a language in Qrt(p) with a rational
index in fl(An.n 2p) zr(An.n2p).

Proof. Let

and

L {xny"zrtn/n, m >= 1}

L1 {aTb’c’d’ln, m >= 1}.

For => 1, we define
Li+l cri(1) where rg is the substitution such that

o’i(X)- ai+l,

o’i(y)-- bi+lLi,

O’i(Z)--- Ci+l,

o’i(t)=di+,

so that Li Qrt(i) for all i.
An easy modification of Lemma 7 then shows that

P Li+ ’ PL.PLi.

Since pL < An.n 2 by Lemma 9 part 1, we get p, < hn.n 2i for all i. We now show that
hn.nZi< pL, for all i.

In order to show that hn.n 2i <pL,, we shall define a family K(i)n of rational
languages (for i, n _-> 1) such that

belongs to Rat.i. for some constant integer c

and

We start with

K(),Li >= n 2i.

K(a) ")*(c "+a=al(ba )*da,

which belongs to Rat2+3. Clearly, MIN(Llf’)K)) consists of the word
albl(n+l)c’(+ldl of length 2n 2 + 2n + 1. Hence, 6:(,1).1 > n 2 and p hn.n .

Assuming now that K(i-a) is defined by an automaton A(i-). with a(i 1, n) states,
(i)we can build

_
by defining A (i)n as shown in Fig. 1, in such a way that A (i)n has n arcs

labeled by be.
Hence, a(i, n)= a(i- l, n)+ 2n +/4. Since a(1, n)=2n+3, we get a(i,n)=

2i(n + 2)- 1. We have constructed A) in such a way that MIN (LifqK))={f(b},
where

f) ai(g(in))n+ac’/(n+l)di,
g) biai-f(i,,-)di-lbia-f(i,-)d-lbi biai-" f(i,-a)dni-x.

The proof is an induction oh for fixed n. For i= 1, we have g) b and f(
n(n+l)cn(n+l)dl"a b Let us sketch the proof of the inductive step.

(i)Let f be any word in MIN (Li i")ln ). It must begin with ai. Then, biai-1 must
follow, and they are followed by a word u of Ki-). It is easy to see that u must also be in
Li-I. Since f is minimal, u must be in MIN (Li-1 f’)Ki-)" hence, u =f-
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Then di_lbia 2
i-1 must follow. Hence, our word f begins with

aibiai-1 f-1)di-1 bia :z
i-lU

for some u in K(i-1)

As above we get u f-l, followed by d:-lbia 3i- 1," then, f-1) again and di-lbiai-134

and so on until we obtain for f a beginning of the form aig.
(i)Note that g) is a loop in A from state a to itself (see Fig. 1). Hence

f ai(g))’c’+1)qdi,

for some integers p, q >_- 1. Note that these integers are the minimal ones such that f Li.
Since g) has n bi’s we must have p n + 1 and q n, which proves the claim.

We get

hence,

Therefore,

and finally

.f(n/) >

for => 1.

OL,(2i(n + 2)- 1) _-> n :zi,

An.n 2i < PL,. [q

a

a-i
c7 b,

d,

b,,d,_, d_,

FIG. 1. Automaton A(i)
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3. Comparison with other complexity measures. We shall compare the rational
index with two similar complexity measures.

The first one, introduced by Paredaens and Vincke [9], is called a T-measure, and is
defined as follows:

F3r any language L
_
X* let --- be the following (classical) equivalence relation on

X*:

u --- v if and only if for all h X*, uh L, vh L.

For every n +, Letf(n be the index of the restriction of --- toX, i.e., the number of
equivalence classes of words of length n.

If f(n) is bounded by a polynomial (a polynomial of degree r), then L is said to be
in the class P (in the class P). Note that f(n)<-k where k IX[.

This measure is quite different from the rational index. In particular, the language

Kr {aTaz arbar a 11 nl, n2,

is in P-P_. But K belongs to D,(hn.n ) fq ax(hn.n 2) for all r.
On the other hand, for

S={wWlw{a,b}*},
then f(n)= 2. Hence, s is one of the most complex languages with respect to the
T-measure; but it is also in l’(hn.n 2) ’rr(hrt.n2).

So there are languages with a "small" rational index but a "large" T-measure.
Conversely, for any function f: N N such that f(n) >- n for all n, let

L {ab() n }.

This language is in Po and f is its rational index. So there are languages with a "small"
T-measure but a complicated rational index. The connections between rational index
and T-measure seem to be very loose. Nevertheless, let us give one more conjecture.

Confecture 3. Any context-free language in P has a polynomial rational index (i.e.,
is in Pol).

The second complexity measure we mention was introduced by Goodrich,
Ladner and Fischer [6]. For any subset L of X", there is a straight-line program which
computes L by using the union, the concatenation, the empty word and the symbols of
X. As an example, the language L {a, b}" of all words having exactly two a’s can be
computed by the following program.

begin
Ao-{e}
A
A
fori=l ton do

AAa t.JAb;
A Aoa U Alb;
Ao- Aob od

end

At the end of the computation, the program variable Ag holds the set of words of
length n having exactly occurrences of a. The length of this program is said to be
3n+3.

For any language L, let Ln L fqX and C,c(L,,) be the shortest length of a
straight-line program computing L,, and the mapping An. C,c (L) can be considered as a
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complexity measure of L. It is shown that for context-free L, this function is in 12(An.n 2).
There is a "hardest" context-free language with respect to Cuc, namely,

T {ab icJabJdb kackb ia [i, j, k >-_ 1} 6 Qrt(2),

for which

Cuc (Tn) >= c.n 2 for all odd n,

for some constant c.
It seems to us that this complexity will not help very much to differentiate

context-free languages.
Note added at revision. Conjecture 1 has been proved by J. Gabbaro (but with an

example other than E; we do not know whether E belongs to Gre).

Acknowledgments. We thank J. M. Steyaert for helpful comments on earlier
versions of this paper.
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EDGE-DELETION PROBLEMS*

MIHALIS YANNAKAKIS’

Abstract. If 7r is a property on graphs or digraphs, the edge-deletion problem can be stated as follows:
find the minimum number of edges whose deletion results in a subgraph (or subdigraph) satisfying property
Several well-studied graph problems can be formulated as edge-deletion problems.

In this paper we show that the edge-deletion problem is NP-complete for the following properties:
(1) without cycles of specified length l, or of any length =</,
(2) connected and degree-constrained,
(3) outerplanar,
(4) transitive digraph,
(5) line-invertible,
(6) bipartite,
(7) transitively orientable.

For problems (5), (6), (7) we determine the best possible bounds on the node-degrees for which the problems
remain NP-complete.

Key words, edge-deletion, maximum subgraph, graph property, NP-complete

1. Introduction. A graph (digraph) is a pair G (N, E), where N is a finite set
of nodes and E, a set of unordered (ordered) pairs (u, v) of distinct nodes, is a set of
edges.

Two nodes u and v are adjacent if (u, v) E. A set of nodes is independent if no two
of them are adjacent. A graph is complete if every two nodes are adjacent. A path (cycle)
that passes through all the nodes of a graph is called a Hamiltonian path (cycle).

The degree of a node is the number of nodes adjacent to it. A cubic graph is a graph
all of whose nodes have degree 3. A graph G is connected if there is a path between any
two nodes of G; it is biconnected if there are two node-disjoint paths between any two
nodes of it (i.e., two paths that have no other common nodes besides the first and the last
node). The maximal biconnected subgraphs of a connected graph G are called the
blocks of G.

The line-graph L(G) of a graph G has one node corresponding to each edge of G,
and an edge connecting any two nodes corresponding to adjacent edges of G (i.e., two
edges with a common node). A graph H is line-invertible if there exists a graph G such
that H L(G).

A graph is outerplanar if it can be embedded in the plane so that all its nodes lie on
the same face. A digraph is transitive if whenever (x, y) E and (y, z) E with x : z,
then also (x, z) E. A graph is transitively orientable (or a comparability graph) if we can
assign orientation to its edges so that the resulting digraph is transitive. A graph
G (N, E) is called bipartite if N can be partitioned into two sets N1, N2 of independent
nodes. A star on n + 1 nodes, denoted S,, is the bipartite graph (N1 [,.J N2, N1 N2),
with INll- 1, IN2I- n.

For more information regarding the properties defined above, as well as various
characterizations of the graphs possessing them, the reader is referred to [H].

If S
_
N is a subset of nodes.of the graph G (N, E), the subgraph of G induced by

S, denoted (S), is the graph (S, Es) where Es {(u, v) Elu, v S}. If F
_
E is a subset

of edges of G, the graph G-F formed by deleting F is (N, E-F).

* Received by the editors May 22, 1979, and in revised form May 1, 1980.
Bell Laboratories, Murray Hill, NJ 07974. This research was partially funded by the National Science

Foundation under grant MCS76-15255 at Princeton University.
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For rr a property on graphs (or digraphs) we can define the corresponding
edge-deletion problem as follows: given a graph (digraph) G, find a set of edges of
minimum cardinality whose deletion results in a graph (digraph) satisfying rr.

Several known NP-complete problems [C], I-K] (such as the feedback arc set [K],
the simple max-cut problem [GJS]) and polynomial problems (such as the arc-deletion
[K], the maximum matching and the b-matching problems [E], [EJ]) can be formulated
in an obvious way as edge-deletion problems by specifying the property rr appro-
priately.

Much work has been done recently on the node-analogue, the node-deletion
problems [KD], ILl, [LDL], [Y1], which have been shown to be NP-complete for a
fairly large class of properties, one that includes all the properties that we mentioned
above. However, it is a common observation that problems on edges tend to be easier to
solve (or harder to show NP-complete) than their node-analogues. In our case of
deletion problems, this is exemplified by the properties rrl "acyclic graph" (forest)
and 7r2 ="degree constrained". The node-deletion version of these problems was
shown to be NP-complete in [KD]. The edge-deletion version is the arc-deletion and
the b-matching problem respectively.

In this paper we show the edge-deletion problem to be NP-complete for the
following properties:

(1) without cycles of specified length l, or of any length <-l, with _-> 3,
(2) outerplanar,
(3) transitive digraph,
(4) line-invertible,
(5) bipartite (simple max-cut problem),
(6) transitively orientable.

Furthermore, we determine for problems (4), (5), (6) the best possible bounds on the
node-degrees for which the problems remain NP-complete.

In [Y2] we studied the effect of adding a connectivity requirement to rr (i.e.,
requiring the remaining subgraph to be connected) on the complexity of the node-
deletion problem; we showed that for a large class of properties the problem remains
NP-complete, and pointed out a case where the problem becomes polynomial. We show
here that inclusion of a connectivity requirement does not affect the NP-complete status
of the edge-deletion problems that we consider. Moreover, for the property rr2
(="degree-constrained"), inclusion of a connectivity requirement makes the cor-
responding edge-deletion problem NP-complete. (For rrl "acyclic graph" the prob-
lem obviously still remains polynomial.)

In order to prove that a problem L (in its language recognition version) is
NP-complete, it suffices to show [K], [GJ] that

(1) L NP, and
(2) a known NP-complete problem can be reduced in polynomial time to it.
In our proofs we omit the first part, which is straightforward in all cases. For the

second part we make use of the following NP-complete problems: SAT-3, node cover,
Hamiltonian path I-K], NOT-ALL-EQUAL 3SAT I-S].

2. Edge-deletion problems. In all of the proofs (except the "line-invertible" case)
the remaining subgraph after deleting a minimum set of edges turns out to be
connected. This implies that inclusion of the connectivity requirement would not affect
the optimal solution, and thus that the edge-deletion problems with the connectivity
requirement are also NP-complete. For the "line-invertible" case we give a separate
simple proof.
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THEOREM 1. The following edge-deletion problems are NP-complete
(i) "without cycles of specified length l", for any fixed >- 3,
(ii) for even l, the same problem restricted to bipartite graphs,
(iii) "without any cycles of length <= l", restricted to bipartite graphs, for fixed >= 4.
Proof.
(i) The reduction is from the node cover problem. Let G (N, E) be a graph, input

to the node cover problem. If 3, assume that G has no triangles by replacing each
edge of G by a path of length 3. The graph G thus formed has node cover number
c0(G1) e + ce0(G), where e is the number of edges of G: if (u, v) is an edge of G and
U-Wl-W2-V the path that replaced it, then a node cover V1 for G must contain at least
two nodes from this path, and it contains exactly two, if these are either u and w2 or v
and wl. Let V=[Nfq VI]t.J{vN[Va contains 3 nodes from a path that replaced an
edge of G incident to v}. Then VI <-_[Vl-e, and V is clearly a node cover for G.
Conversely, given a node cover V for G, we can add one node from each path that
replaced an edge of G, to form a node cover for Ga.

Now from the graph G (with the previous transformation first applied, if 3 and
G has triangles) construct a graph G’ as follows: add a new node c and edges from c to
all nodes of G and replace every edge of G by a path of length 2. For example, if G is
as in Fig. la and 4, then G’ is shown in Fig. lb.

(a) (b)

FIG.

We claim that there is a set of k edges of G’ whose deletion results in a subgraph
satisfying the desired property if and only if G has a node cover of k nodes.

(if). If V is a node cover for G, then the set of edges A {(c, v)[v V} is a solution
to the edge-deletion problem. (In our example, if V consists of the circled nodes in Fig.
la, then A is shown with heavy lines in Fig. lb.)

(only if). Let A be a solution to the edge-deletion problem. Replace every edge in
A that lies on a path u-v by (c, u) or (c, v), and let A’ be th6 new set of edges. Clearly
IA’] <- IAI. Let V {v](c, v) A’}. Then V must form a node cover for G, since for every
edge (u, v) of G, the edges (c, u), (c, v), together with the u-v path that replaced (u, v),
form a cycle of length in G’. Note that G’-A, with A defined as in the (if) part, is
connected, assuming that G is.

(ii) If is even, the graph G’ constructed in part (i) is bipartite.
(iii) Construct the graph G’ as in part (i) with or l- 1, depending on whether is

even or odd. Note also that with A defined as in the (if) part, G’-A has no cycles of
length <- l. l1

THEOREM 2. The edge-deletion "connected, with maximum degree r" problem is
NP-complete, ]’or every fixed r >= 2.
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Proof. For r 2, this problem contains the Hamiltonian cycle problem as a special
case" A graph G with n nodes has a Hamiltonian cycle iff it contains a connected
subgraph with maximum degree 2 and n edges.

For r > 2, we reduce the Hamiltonian cycle problem to it: given a graph G, for
every node u of G add r- 2 new nodes Ul,. ", ur-2 and edges from them to u, and let
G’ be the new graph.

Let n be the number of nodes of G. We claim that G’ has a connected subgraph Gx
with n (r-1) edges and maximum degree r if and only if G has a Hamiltonian cycle.

(i]). If G has a Hamiltonian cycle C, then G’ has such a subgraph Gx" G1 consists
of the cycle C and all the edges (ui, u).

(only if). Conversely, suppose that the optimal subgraph G1 of G’ contains
s( -< n. (r 2)) new nodes and l( -< n) original nodes. Then the number of edges of G1 is
<-(l.r+s)/2<=(n r+n(r-2)/2=n.(r-1), with equality iff l=n and s=n. (r-2),
that is iff Gx has the form described in the (if) part, in which case G has a Hamiltonian
cycle. [3

THEOREM 3. The edge-deletion "outerplanar" graph problem is NP-complete.
Proof. By reducing the Hamiltonian path problem to it: given a graph G take two

copies of it, G and G2; add two new nodes s, and edges from them to all nodes of G1,
Gz, and to each other. Let G’ be the resulting graph. We claim that G’ has an
outerplanar subgraph H with 4n + 1 edges if and only if G has a Hamiltonian path.

(if). If G has a Hamiltonian path, then G’ contains an outer-planar subgraph H
with 2. (2n + 2)- 3 4n + 1 edges (see Fig. 2), that is a maximal outerplanar graph on
2n + 2 nodes [H, p. 107].

NI

s

N2
FIG. 2

(only if). If the optimal outerplanar subgraph H of G’ has 4n + 1 edges, then it is
maximal outerplanar on 2n + 2 (i.e., all) nodes and therefore biconnected. But then the
boundary of the exterior face is a Hamiltonian cycle of G’, and since the node-sets
N2 of Gx and G2 are connected to each other only through s and t, H must have the form
of Fig. 2 and consequently G must contain a Hamiltonian path.

A similar transformation to that of the previous theorem was used in [LG] to show
the NP-completeness of the edge-deletion planar graph problem.

To prove our next theorem we will use a lemma on the NP-completeness of a
restricted form of the SAT-3 problem (satisfiability with at most 3 literals per clause).

LEMMA 1. The SAT-3 problem is NP-complete even ifeach variable x occurs (as x or
) in 3 clauses and each literal in at most 2 clauses.

A similar result is stated in [GJ, p. 259]. Lemma 1 can be proved by a straight-
forward reduction from SAT-3, and thus we omit its proof.

Let us note here that the requirements of the lemma are in a sense the best possible
(unless P NP), since if each variable appears (positively or negatively) in at most 2
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clauses, then satisfiability can be decided easily in polynomial time. Consider the
following algorithm, where initially S {C1, , Cp}.

1. while S is not empty do
2. if S has some clause with only 1 literal then
3. let C be such a clause and a the single literal of C;
4. else let C be any clause of S and a any literal of C;
5. set a 1 and delete C from S;
6. ii a occurs again in $, say in clause C’, then delete C’ from S;
7. if fi occurs in S, say in clause C", then
8. if C" has at least 2 literals then delete fi from C";
9. else report "S is not satisfiable" and stop;

10. report "S is satisfiable".
The algorithm tries at first to satisfy all I-literal clauses; these can be satisfied in a

unique way (if possible at all) by assigning 1 to their literals. If a contradiction arises
(both a and fi having to receive truth value 1) then S cannot be satisfied (line 9). If
however at some iteration line 4 is executed (all clauses have at least 2 literals) then the
algorithm will terminate with a satisfying truth assignment: in all subsequent iterations
S will have at most one clause with a single literal. In case S has such a clause, assigning 1
to the literal of this clause will produce at most one clause with a single literal, since each
variable appears at most twice.

Lemma 1 appears to be useful in proving the NP-completeness of restricted
problems. For example, from it and Karp’s reduction to the node cover problem from
the SAT-3 problem [K] follows a result of Garey, Johnson and Stockmeyer [GJS], that
the node cover problem is NP-complete on graphs with maximum degree 3. We will use
it in the proof of the next theorem to determine the best possible bound on the
node-degrees for which the problem remains NP-complete.

THEOREM 4. The edge-deletion "line invertible" graph problem on graphs with
maximum degree 4 is NP-complete.

Proof. By reducing it to the SAT-3 problem with the clauses satisfying the
requirements of Lemma 1. We construct a Graph G (V, E) with nodes

V= {Ai, Bill <=i <= n}UIDii] variable Xg occurs in C/}
{Eij lYi occurs in G} U {D, E] 1 =< =< n }

U {GI1 <- j <- p} u {c; IG has only 2 literals}

and edges

Example. If C1 Xl v x2 v .3, C2 .2 v x3, C3 .,1 v x2 v x3, the graph G is as in
Fig. 3.

Let r be the total number of literal occurrences in the clauses. We claim that there is
a set F of r edges whose deletion from G results in a line-invertible subgraph if and
only if the clauses are satisfiable.

(if). Suppose that the clauses are satisfiable and let V1 be the true variables in a
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ESI

cI 2 C

FIG. 3

satisfying truth assignment. Let

F= {(Ai, Di;), (Ei;, Ci)lxi: V1; l <- <-_n, 1<-i<--p}

U {(A, Ei), (D,i, Ci)[xe Vl; l<=i<-n, l<=j<=p}.

In our example the set F corresponding to the truth assignment xl 1, x2 0, x3 1 is
shown with heavy lines. Clearly IF[ r. We will show that G-F is line-invertible using
the following characterization (see, e.g., [H, p. 74]): a graph is line-invertible iff its
edges can be partitioned into complete subgraphs in such a way that no node belongs to
more than 2 subgraphs. We will call such a partition of the edges a legal partition.

In G-F the only nodes with degree greater than 2 are {Diilx occurs twice},
occurs twice}, {A[ the literal (xi or Y) that occurs twice is true}. Partition their incident
edges as follows:

If Xi . V1, and Xi appears twice" (Ai, Diil, Di;z), (D, Di;,), (D, D62), (Ai, Bi).
If xi V1 and xi appears twice: (D, Dii,, Diiz), (Cil, Dii), (C;2,

where x Cil, Ci, and similarly for the symmetric cases.
In addition we have one complete subgraph for every edge both of whose nodes

have degree at most 2. Clearly every node of G-F belongs to at most 2 subgraphs of the
partition we defined, and therefore the partition is legal.

(only if). Suppose that G’= G-F is line-invertible, with IFI _-< r. Replace an edge in
F of the form (D;, DI) by (Dii, Ci) and an edge (Ei;, El) by (Ei, C/), and let F’ be the
resulting set.

The nodes {Dii, D, Ai, Ci} (and similarly for Eii) form a star $3, a forbidden induced
subgraph of line graphs [H, p. 75]. Therefore at least one edge incident to each Dii, and
each Ei; belongs to F’: IF’I r and no other edges are in F’. Define a truth assignment
T as follows:

0 if there is no edge (Ai, Dii) in G-F’,
x= 1 otherwise.

Because of the edges (A, B) we have: x 1 : G-F’ does not contain any (Ai, Eii)
edge: G-F’ contains all (Eii, Ci) edges. Because of the star formed by C; and the 3
nodes corresponding to its literals (or Ci, C and the 2 nodes corresponding to its literals
if C; has 2 literals), at least one edge incident to each C; belongs to F’ and the
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corresponding literal is therefore true in T. That is, T is a satisfying truth assignment for
the clauses.

Remark 1. The restriction of the maximum degree to 4 in Theorem 4 is best
possible; i.e., for graphs with maximum degree 3 the edge-deletion "line-invertible"
problem can be solved in polynomial time. Let G be a graph with maximum degree 3.
We will show first how to transform G to a graph G’ without triangles and then how to
solve the problem on G’.

Let (Vl, v2, v3) be a triangle of G and let Wl, w2, w3 be their other neighbors (some
may be missing). We will construct from G a new graph G" that does not contain this
triangle (nor any triangles that do not exist in G) and show how to obtain an optimal
solution for G from an optimal solution for G".

Note at first that if Wl w2 w3 w then G is the complete graph on the 4 nodes
Vl, v2, v3, w and therefore is line-invertible. (The reason is that the maximum degree of
G is 3.) Thus, let us assume that the 3 nodes Wl, w., w3 are not identical.

Case 1. W1 7 W2 : W3 7 W1. Since Vl, V2, /33 have no other neighbors in G-
{Vl, v, v3}, an edge (vi, wi), if it appears in the largest line-invertible subgraph, must
form a complete subgraph by itself in a legal partition of the edges. So we can remove
the edges of the triangle as in Fig. 4a..An optimal solution F for the new graph G" is also
an optimal solution for G, and vice-versa" if P is a legal partition of the edges of G"-F
into complete subgraphs, then P together with the triangle (Vl, v, v3) forms a legal
partition for G-F. Conversely, if F is an optimal solution for G and P a legal partition
for G-F, then the restriction of P on the edges of G" is a legal partition of G"-F.

Case 1 applies also if 2 of the three nodes Wl, w2, w3 are missing or if one is missing
and the other two are not identical.

Case 2. Two vi’s have a neighbor in common, say w w2. Let x be the other
neighbor of wl. If x or w3 is missing then we let G" be the graph obtained by deleting
from G the nodes vl, v2, and w if x is missing or v3 if w3 is missing. It is easy to see that
as in Case 1 an optimal solution for G" is also an optimal solution for G. If both x and w3
exist we distinguish three cases: (i) x w3 and x and w3 are not adjacent, (ii) x w3 and
they are adjacent, (iii) x w3. Note that in all three cases the graph formed by the v’s,
the wi’s and x is a forbidden induced subgraph for line-graphs (these are the graphs a4,
GT, G:z respectively in [H, Fig. 8.3]) and that deletion of either (wx, x) or (v3, w3) makes
it a line-graph (see Fig. 4b,c,d).

(i) x w3 and they are not adjacent. Apply the transformation of Fig. 4b, where u
and u’ are new nodes, and let G" be the resulting graph. We claim that the number of
edges that have to be deleted from G in order to form a line-graph is the same as that of
G". Let F be an optimal solution for G. We can assume without loss of generality that F
contains either (Wl, x) or (v3, w3). Deleting from G" the rest of F and edge (u, x) or
(u, w3) results in a line-invertible subgraph. Conversely, let F be an optimal solution for
G". F must contain at least one edge incident to u (since the star $3 is a forbidden
subgraph for line-graphs). We can assume without loss of generality that (u, u’) is not in
F (otherwise replace it by one of the other 2 edges incident to u). Deleting from G the
edges of F that are not incident to u, and (w, x) (resp. (v3, w3)) if (u, x) (resp. (u, w3)) is
in F, results in a line-invertible subgraph of G.

(ii) x w3 and they are adjacent. Let Yl, Z be their other neighbors, respectively.
If yl, Zl are distinct and adjacent, let y2, z be their other neighbors and continue in this
way until we arrive to (a) 2 nonadjacent nodes
(i.e., z-i has degree 2), or (c) 2 identical nodes yg z, or (d) we exhaust the graph. In
case (d) let yk-1, Zk-1 be the last nodes in the sequence (i.e., they have degree 2). Let
A1 {(/)3, W3), (X, Yl)} I.J {(Yi-1, Yi)I odd -<k 1} LI {(Z/-1, Zi) even _-<k 1}, and
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A2={(w,x), (w3, z1)}[..J{(Zi_l, Zi)l odd<-k-1}O{(y_,yi)l even<_-k-1}. If we
delete A1 or A2 from G, the remaining graph (a path attached to the 2 triangles) is
obviously line-invertible. Conversely, let F be an optimal solution for G. Since S3 is a
forbidden subgraph for line-graphs, F must contain at least one edge incident to x, w3,

y, z (for all k 1). In addition F must contain at least one edge incident to w or v3.
Consequently, F must contain at least k edges, and therefore A (or A2) is an optimal
solution.

For the rest of the cases let V {w1, w3, u1, /)2, /)3, x, Yl, Yk-1, Zl, Zk-1},
and let G1 be the graph obtained by deleting from G the set of nodes V. In case (c)
(Yk Zk) an optimal solution for G consists of an optimal solution for G1 and an optimal
solution for (V), the graph induced by V" if F is an optimal solution for G1, and we take
(for example) A to be the optimal solution for (V), then a legal partition of G-(F t..J A )
can be obtained by combining a legal partition of G1-F with a legal partition of V)-A
with the triangle (y-l, Z-l, y) in place of the edge (Yk-1, Z-I). (Note that y has
degree 1 in G.) Thus, in this case we let the new graph G" be G.

In case (b) (z is missing) we let G" be the subgraph of G obtained by deleting all
nodes of V but y_a. Clearly a solution for G must contain a solution for G" and a
solution for (V), since "line-invertible" is a property that is hereditary on induced
subgraphs (i.e., if it holds for a graph it holds also for its induced subgraphs). It is easy to
see that A if k is even (A 2 if k is odd) can be combined with any solution for G" to form
a solution for G. Note that A if k is even (A. if k is odd) contains (y-2, yt,-1).
Therefore, from an optimal solution for G" we can obtain an optimal solution for G.

In case (a) (y z) let G" be the graph of Fig. 4c, where u and u’ are new nodes.
Let F and F" be optimal solutions for G and G" respectively. We claim that IFI-
IF"I + k. F must contain as in case (d) at least k edges from (V); furthermore, if F
contains exactly k such edges then it will have to contain also (y_a, y) or (z_, z)
because otherwise a star $3 will be left around y_a or z_. We let F" consist of the
edges of G that belong to F and (u, y) if (y_x, y) F, (u, z) if (z_, z) e F or either
of the two if neither (y_, y) nor (z_a, z) belongs to F. Clearly F" is a solution for G",
and If"l <--IFI- k,

Conversely, let F" be an optimal solution for G". F" must contain at least one edge
incident to u, and we can assume as in case (i) that it does not contain (u, u’). We let F
contain the edges of G that are in F". In addition, if F" contains (u, y) (resp. (u, z)) we
include in F the edge (y_a, y) (resp. (z_, z)) and the set A if k is odd or A2 if k is
even (resp. A2 or A). If F" contains both (u, y) and (u, z), then we include in F both
(y_, y) and (z_a, z) and either A or A2 (it does not matter which of the two).
Clearly IF[ IFI / k. The graph obtained by deleting F and G is either Ga-F connected
to the two triangles via a path or is the disjoint union of G-F and a path attached to the
two triangles. Consequently, G-F is line-invertible, and F is an optimal solution for G.

(iii) x w3. Apply the transformation of Fig. 4d, and let G" be the new graph. Let
V {Vl, /)2, /-)3, W1, X}. A solution F for G must contain a solution for (V) and a solution
for G", since "line-invertible" is a hereditary property. The edge (w, x) together with
an optimal solution for G" forms a solution for G, which is therefore an optimal
solution.

We have shown thus far how to obtain from a graph G a new graph G" with at least
one triangle fewer in such a way that an optimal solution for G can be easily derived from
an optimal solution for G". Let G’ be the result.of the repeated application of the
transformations, until all triangles have been eliminated. It suffices to show now how to
find an optimal solution F for G’. Since G’ contains no triangles, in a legal partition of
the edges of G’-F into complete subgraphs each edge must form a complete subgraph
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by itself. This means that G’-F must have maximum degree at most 2. Since any graph
with maximum degree 2 (or less) is obviously line-invertible, F is a minimum set of
edges whose deletion results in a subgraph with no node having degree more than 2.
Finding such a set F is exactly the b-matching problem, which can be solved in
polynomial time using matching techniques [E], [EJ].

Wl w2 x

v

v3
G E v vz v3 wl-]

Wl w2 x Yl Y2

v3 w3 z z2

YK-I
K

ZK-I G

Wl=-- w2

v3

(b)

(c)

(d)

FIG. 4

x

G- E v ,vz ,v3,w]

GI

G

Remark 2. The remaining graph in the proof of Theorem 4 is disconnected.
However the same result can be easily shown if we include also the connectivity
requirement, even for graphs with maximum degree 3. In [GJS] it is shown that the
Hamiltonian cycle problem is NP-complete even for graphs that contain no triangles
and have maximum degree 3. Since a connected line-invertible subgraph of a graph with
no triangles is either a path or a cycle, it follows immediately that the same is true for the
edge-deletion connected line-invertible subgraph problem.
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THEOREM 5. The simple max-cut problem restricted to cubic graphs without tri-
angles is NP-complete.

Proof 1. The reduction is from the NOT-ALL-EQUAL 3SAT problem IS]. An
instance of the NOT-ALL-EQUAL 3SAT problem is a set $ {C1, , Cp} of clauses,
each with exactly 3 literals. The instance is satisfied by any truth assignment that does
not leave any clause with all true or all false literals.

Given a set S {el, Cp} of clauses with [Ci] 3 for each i, construct a graph
G (N, E) as follows. Let G have 2p nodes A 1, , Ap, B1, , B, for each variable
x, connected in a path A 1, BI, A2, B2, Ate, Bp. In addition, let G have one node for
each literal occurrence, with literal occurrences in the same clause being connected by
disjoint paths of length 3. If x occurs in Cg, connect by an edge x’s node Ai to the node
that corresponds to the occurrence of x in Cg; if occurs in Cg, connect B; to the
corresponding node.

Example. If C1 Xx v .2 v x3, C2 .,1 v x2 v 33, C3 Xl v x2 v 3, the graph G is as in
Fig. 5.

x

x2"
AI BI2

CI C2

FIG. 5

We claim that there is a set F of p edges whose deletion results in a bipartite
subgraph of G if and only if the instance of NOT-ALL-EQUAL 3SAT is satisfiable.

(if). Suppose that S is satisfiable and let T be a satisfying truth assignment. Let F
contain one edge from each path (of length 3) that connects literal occurrences with the
same truth value in T. Since T is a satisfying truth assignment, F contains one edge from
each clause and therefore [FI p. In our example the set F corresponding to the truth
assignment Xx x2 x3 1 is shown with heavy lines. The graph G-F is bipartite: one
side of the bipartition of the nodes of G-F contains all Ai nodes of true variables, Bi
nodes of false variables, all nodes that correspond to false literal occurrences and the
nodes in the paths of the clause-constructions that are adjacent to true literal occur-
rences. (In Fig. 5 we have circled the nodes in this side of the bipartition.) The other side
of the bipartition contains the rest of the nodes.

(only if). Let F be an optimal solution to the edge-deletion problem, and suppose
that IF[ <_- p. Since G contains an odd cycle (of length 9) for each clause, F must contain
at least one edge from each such cycle. Thus, IFI p, and F contains exactly one edge
from each clause cycle. Let N1, N2 be a bipartition of the nodes of G-F. For each
variable x, all Ag nodes must belong to the one set and all Bi nodes to the other, because

This is a simplification by T. J. Schaefer of our original proof.
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of the path A 1, B1, A,, B,. Define a truth assignment by setting x 1 if its Ai nodes
belong to N1, and 0 otherwise. All clause nodes that correspond to false literal
occurrences must belong to N1, and all those that correspond to true literal occurrences
must be in N2. Suppose that there is a clause all of whose literals receive the same truth
value, say true. Since F contains only one edge from this clause, there are two literals of
it such that F does not contain an edge from the path of length 3 that connects the
corresponding nodes. Thus, there are two nodes of N2 that are connected by an odd
path, a contradiction.

The graph G that we constructed has maximum degree 3 but is not cubic. We can
easily make G cubic by attaching proper graphs to the nodes of degree 1 and 2. An
optimal solution for G can be easily recovered from an optimal solution for the new
graph, since the max-cut problem can be solved independently on the blocks of the
graph (i.e., an optimal solution for a graph is the union of optimal solutions for its
biconnected components).

The NP-completeness of the simple max-cut problem (without the restriction on
the degrees) was shown in [GJS] (there it was called "simple max-cut" to stress the fact
that the edges have no weights; the NP-cornpleteness of the weighted version was
shown in Karp’s paper [K]). Another restriction of the max-cut problem, on planar
graphs, has been proved to be polynomial even in the case of weights. ([OD] and see the
comments in [GJS] on it; also [Ha].)

THEOREM 6. The edge-deletion "transitively orientable" graph problem is NP-
complete, even on cubic graphs without triangles.

Proof. Let G be a graph without any triangles, and suppose that G-F is transitively
orientable with D the transitive digraph that results after a proper orientation of the
edges. In D all edges incident to a node must be directed in the same way: either all
going in or all coming out. That is, D induces a bipartition of the nodes: on the one side
those nodes that have all edges going in and on the other those with all edges coming
out.

Conversely, every bipartite graph is transitively orientable, since we can direct all
edges from the one side of the bipartition to the other. Therefore, if G is a graph without
triangles, any solution to the edge-deletion "transitively orientable" graph problem is
also a solution to the edge-deletion "bipartite" problem. The result then follows from
Theorem 5. l-1

THEOREM 7. The edge-deletion "transitive digraph" problem is NP-complete.
Proof. The reduction is from the simple max-cut problem on graphs without

triangles. Let G be such a graph. Construct a digraph D as follows. Replace each edge
of G with two oppositely directed edges; for each node u of G add two new nodes
u l, u2 and connect each of them with two oppositely directed edges to u. Let n be the
number of nodes of G and e the number of edges. We claim that there is a set F of
e + 2n + k edges of D whose deletion results in a transitive digraph if and only if there is
a set F’ of k edges of G whose deletion from G results in a bipartite subgraph.

(if). Let F’ be a solution to the simple max-cut problem for G with [F’I k. Let N1,
N2 be a bipartition of the edges of G-F’. Let F consist of the edges of D that replaced
the edges in F’ and of all the edges directed into nodes of N1 and out of nodes of N2.
Clearly IF] e +2n + k, and D-F is transitive, since it does not contain any two
consecutive edges (x, y) and (y, z). Note also that D-F is connected (i.e., its underlying
undirected graph is connected) if G-F’ is.

(only if). Let D D-F be transitive with F a minimum set and suppose that
IF[ e + 2n + k. Since G does not contain any triangles, D1 cannot have any pair of
consecutive edges (x, y) and (y, z) with x # z.
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Suppose that D1 contains two opposite edges (x, y) and (y, x). If x and y are both
nodes of the original graph G, we can replace them by (x, x 1), (x, x2), (y, y 1), (y, y2) to get
a subdigraph larger than D1. If one of them is not a node of G, say y x 1, let z be a node
of G adjacent to x. If there are two opposite edges (z, Zl), (Zl, z) incident to z, we can
replace these four edges by (x, Xl), (x, x:), (x, z), (Zl, z), (z:, z). If there are not two
opposite edges incident to z, all edges incident to it must be either ingoing or outgoing,
since D contains no transitive triangles. Assume without any loss of generality that they
are all ingoing. Then we can replace (x, x 1), (x 1, x) by (x, x 1), (x, x), (x, z) to get a larger
transitive subdigraph.

So D1 cannot contain any two opposite edges. But then all edges incident to the
same node must have the same direction and this induces a bipartition of the nodes of D
and consequently also of G.

Therefore, if we let F’ be the set of edges of G that are not in the underlying graph
of D1, then G-F’ is bipartite, and IF’ k, since F contains all edges of D that replaced
edges of F’ and one edge from each other pair of oppositely directed edges of D. [3

3. Conclusions. In this paper we showed several edge-deletion problems to be
NP-complete. Unlike their node-analogues [KD], ILl, [LDL], [Y1], [Y2], edge-
deletion problems do not seem to be amenable in general to a unified approach. It
would be interesting to find classes of properties for which this is possible, that is,
classes of properties for which the edge-deletion problem can be shown NP-complete
using a small number of reductions, or classes of properties for which there is a uniform
polynomial algorithm that solves the edge-deletion problem (for example a uniform
way of reducing it to the maximum matching problem). Note also that the special case of
the edge-deletion problem with r-"complement of a chordal graph" (which is
equivalent to computing a minimum fill-in of a graph, a problem that arises in the
solution of linear equations) remains still an open problem [GJ].
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NODE-DELETION PROBLEMS ON BIPARTITE GRAPHS*

M. YANNAKAKIS’

Abstract. A set of problems which has attracted considerable interest recently is the set of node-deletion
problems. The general node-deletion problem can be stated as follows: Given a graph, find the minimum
number of nodes whose deletion results in a subgraph satisfying property r. In [LY] this problem was shown
to be NP-complete for a large class of properties (the class of properties that are hereditary on induced
subgraphs) using a small number of reduction schemes from the node cover problem. Since the node cover
problem becomes polynomial on bipartite graphs, it might be hoped that this is the case with other
node-deletion problems too.

In this paper we characterize those properties for which the bipartite restriction of the node-deletion
problem is polynomial and those for which it remains NP-complete. Similar results follow for analogous
problems on other structures such as families of sets, hypergraphs and 0,1 matrices. For example, in the case
of matrices, our result states that if M is a class of 0,1 matrices which is closed under permutation and deletion
of rows and columns, then finding the largest submatrix in M of a matrix is polynomial if the matrices of M
have bounded rank and NP-complete otherwise.

Key words, node-deletion, maximum subgraph, bipartite graph, hereditary property, NP-complete,
polynomial algorithm

1. Introduction. A common approach when faced with an NP-complete problem
[C], [K], [GJ] is to restrict its input domain with the hope that the problem may become
solvable in polynomial time under the restriction. In fact it turns out that sometimes this
is the case" for example, the node-cover problem, NP-complete on general graphs [K],
can be solved efficiently when restricted to bipartite graphs. (This follows from K6nig’s
theorem that the node covering number of a bipartite graph equals the number of edges
in a maximum matching, and moreover a minimum node cover can be found efficiently
from a maximum matching when the graph is bipartite--see, for example, [La].) In
other cases, however, the node cover problem continues to be NP-complete under
restriction; for example the node cover problem on planar graphs [GJS].

Much work has been done recently [KD], [LY], [LDL] on a class of problems,
called the node-deletion (or maximum subgraph) problems. The general node-deletion
problem can be stated as follows: Given a graph (or digraph) G, find a set of nodes
of minimum cardinality, whose deletion results in a graph or digraph satisfying a
property r.

Several of the known NP-complete problems, such as the node cover, the max
clique, the feedback-node set [K], as well as some polynomial problems, such as the
connectivity of a graph [E], IT], can be formulated in an obvious way as node-deletion
problems, by specifying appropriately the property r.

Consider the following two properties: (1) "transitively orientable" (or
"comparability graph" in the terminology of [B]), and (2) "complete". The cor-
responding node-deletion problems when restricted to bipartite graphs are polynomial
for different reasons" the first one because all bipartite graphs are transitively orientable
and therefore we never have to delete any nodes (the problem vanishes); the second one
because the largest bipartite graph that is complete consists of a single edge. We say that
a property is nontrivial on some input domain D if it is true for a single node and is not
satisfied by all the graphs in D. For example, "transitively orientable" is a trivial
property on bipartite graphs. Clearly, the nontriviality of a property is a necessary

* Received by the editors June 23, 1978, and in revised form May 1, 1980. Part of this work is based on
the author’s Ph.D. thesis at Princeton University.

t Bell Laboratories, Murray Hill, New Jersey 07974.
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condition for the very existence of the corresponding node-deletion problem. We say
that a property r is interesting on D if there are arbitrarily large graphs in D satisfying
r. For example "complete" is not an interesting property on bipartite graphs. Suppose
that r is not interesting on D. Then the corresponding node-deletion problem is
polynomial in a trivial way" Let k be an upper bound on the orders of the graphs in D
satisfying r. Given a graph G from D, examine all the (induced) subgraphs of G of
order up to k and find the one with the largest order that satisfies

If a property r cannot be recognized in nondeterministic polynomial time, then
obviously the corresponding node-deletion problem is not in NP. Thus we will assume
henceforth that r is in NP (at least for bipartite graphs), although our results are valid
even if this is not the case, with "NP-hard" replacing "NP-complete".

We say that a property r is hereditary on induced subgraphs if whenever G satisfies
r, then deletion of any node does not produce a graph violating r. In [LY] it was shown
that for any (graph or digraph) property that is hereditary on induced subgraphs,
nontrivial and interesting, the node-deletion problem is NP-complete, by using a small
number of reduction schemes from the node-cover problem. The same was shown for
the restriction to planar graphs. The fact, however, that the node-deletion problem used
as a prototype there (the node-cover) can be solved efficiently on bipartite graphs
suggests that more of these problems may become easier when restricted to bipartite
graphs. Our first aim is to disprove this for a broad class of properties. We say that a

property r is determined by the components if, whenever the components of a graph
satisfy r then the whole graph does so too. (Note that if r is a nontrivial property
determined by the components then r is immediately an interesting property" any
independent set of.nodes satisfies it.) Our first theorem states that for all (nontrivial on
bipartite graphs) properties that are determined by the components and hereditary on
induced subgraphs the node-deletion problem restricted to bipartite graphs is NP-
complete with a single exception" the node cover problem.

If, however, we allow properties that are not determined by the components, this is
not the case any more: there are properties for which the node-deletion problem can be
solved efficiently on bipartite graphs by taking advantage of the polynomiality of the
node cover problem. Our main theorem states that these are exactly those properties
that hold for graphs with a bounded number of different neighborhoods. (For example,
all nodes of an independent set of nodes--the property that corresponds to the node
cover problem--have the same neighborhood, the empty set.) Similar results follow for
other structures that can be represented as bipartite graphs, such as families of sets,
hypergraphs and 0,1 inatrices.

The rest of this paper is structured as follows. In 2 we review the basic
graph-theory terminology and the notation we use. In 3 we examine properties that
are determined by the components. Section 4 is devoted to the proof of the main
theorem. In order to completely characterize the properties with an NP-complete
node-deletion problem we need a Ramsey-type theorem for bipartite graphs; its proof
is given at the end of the paper in an Appendix. Finally in 5 we consider the
implications for other structures.

2. Graph-theory terminology and notation. A graph (digraph) is a pair G
(N, E), where N is a finite set of nodes and E, a set of unordered (ordered) pairs (u, v) of
distinct nodes, is a set of edges. The order of G is the cardinality of N, denoted IN or [GI.
Two nodes u and v are adjacent if (u, v)s E. The neighborhood F(v) of a node v is the
set of nodes that are adjacent to v. A set of nodes is independent if no two of them are
adjacent. A graph is complete if every two nodes are adjacent. An independent set of
edges is a graph each component of which consists of a single edge.
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A graph G (N, E) is called bipartite if N can be partitioned into two sets N1, N2 of
independent nodes. (Note that one of the two sets may be empty.) A complete bipartite
graph has E={(u, v)lu N1, v N2} and is denoted by Knln2, where ni [Ni]. The
complete bipartite graph Kl,n is called a star of n nodes rooted at the single node of N1
and is denoted by S,.

If S N is a subset of nodes, the subgraph of G induced by S, denoted as (S), is the
graph (S, Es), where Es {(u, v) E[u, v S}. The graph G-S formed by deleting a
subset S

_
N of nodes from a graph G, is (N S). A cutpoint of a connected graph is a

node whose deletion disconnects the graph. If c is a cutpoint of G, and (NI), (Nt)
the components of G-c, the subgraphs (N1 (_J{c}),’’’, (Nt(.J{c}) are called the
components of G relative to c.

If " is a property, we use y(G) to denote the minimum number of nodes whose
deletion results in a subgraph of G satisfying 7r. Usually, when no ambiguity can arise,
we drop the subscript r. By ao(G) we denote the node-covering number of G; i.e.,
ao(G) yo(G), with zr0 "independent set of nodes".

Several common properties (such as planar, outerplanar, chordal, line-invertible,
et al.) will be used as examples in the paper. For their definition, as well as any other
undefined graph-theory terminology, the reader is referred to [B] or [H].

3. Properties that are determined by the components. The node cover problem
corresponds to the property zro "independent set of nodes". Let zr be any property
other than zro which is hereditary on induced subgraphs, nontrivial on bipartite graphs
and determined by the components. Since r is nontrivial it is satisfied by the trivial
graph, and since it is determined by the components, it is satisfied by any independent
set of nodes. Because we assumed zr 7r0, there is a graph with at least one edge
satisfying zr, and since r is hereditary on induced subgraphs, a single edge also satisfies
zr. Consequently, any graph with maximum degree 1 satisfies zr, since r is determined
by the components. The minimum number of nodes whose deletion from a graph G
results in a subgraph with maximum degree 1 is called the dissociation number dis (G) of
G; i.e., dis (G) y,(G), with zrl "degree constrained with maximum degree 1" [PY].
First we will show that the dissociation number problem for bipartite graphs is
NP-complete. Then we use this result to include the case that some star (other than $1)
does not satisfy zr. Finally we take care of the case that all stars satisfy zr, using the
techniques of fLY].

LEMMA 1. The dissociation number problem for bipartite graphs is NP-complete.
Proof. The reduction is from the NOT-ALL-EQUAL SAT problem [S]. An

instance of NOT-ALL-EQUAL SAT is a set of clauses, each containing 3 literals,
satisfied by any truth assignment that leaves no clause with all true or all false literals.
This problem was shown to be NP-complete in [S]. Let the set of clauses S
{C1, Cp} with variables X1, Xn be an instance of the NOT-ALL-EQUAL SAT
problem. We will construct a graph G such that dis (G) -< 2n + 5p if and only if S can be
satisfied. The graph G contains a hexagon Hi for each variable x, as in Fig. l a.

The nodes Tg and TI of Hi are associated with the literal xi, and Fi and FI with g.
For each clause C, G contains a linked double hexagon D/-/. as in Fig. lb. These
parts are connected to each other as follows. Node Aik (resp. A;k) is connected by an
edge to the primed (resp. unprimed) node associated with the kth literal of C, and node

Bik (resp. Bk) is connected to the primed (resp. unprimed) node associated with the
negation of the kth literal of Ci. In Fig. lb we show the connections for the clause
Ci (xi, , x). Clearly the constructed graph G is bipartite.

Let V be a dissociation set; i.e., G-V has maximum degree 1. Each variable
hexagon needs at least two nodes deleted, and these must be opposite nodes. Note that
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after two opposite nodes are deleted from a hexagon the remaining 4 nodes all have some
edge left incident to them. In a clause construction at least two nodes have to be deleted
from each of the two hexagons. However, 4 nodes do not suffice: if we delete two
opposite nodes from each of the two hexagons there will be two A and two B nodes left,
and therefore for some k both Ajk and Bik (or Ai and B.) are left; these nodes will
have degree at least 2. Thus, each clause construction needs at least 5 nodes deleted to
satisfy rl. If exactly 5 nodes are deleted then at least two of them (one from each
hexagon) must not have a label in Fig. lb, and since each hexagon needs at least 2 nodes,
some A node and some B node will be left.

Now suppose that the dissociation set V has at most 2n + 5p nodes. From the
previous arguments it follows that IV[ 2n + 5p,’and V contains exactly two opposite
nodes from each Hi and five nodes from each D/-//. We can assume without loss of
generality that the two opposite nodes of Hi in V are either both T and T or both Fi
and FI. Consider the truth assignment in whidh a literal is true if its associated nodes are
in V. For each D/-/. some A node is in G- V and therefore the corresponding literal is
true; also some B node is in G V and therefore the corresponding literal is false. Thus,
if dis (G)<-2n + 5p then $ can be satisfied.

Conversely,. suppose that S can be satisfied, and fix a satisfying truth assignment.
Delete from the variable hexagons nodes that are associated with true literals. From
each clause construction delete A nodes whose corresponding literal is false and B
nodes whose corresponding literal is true. At this point, every Hi and each of the two
hexagons of every D/-/ is isolated from the rest of the graph. From each hexagon of a
clause construction delete exactly one unlabeled node that is opposite to an already
deleted A or B node; this is possible since we have a satisfying truth assignment. (In Fig.
lb w.e have circled the nodes deleted for the assignment xi x,, x 0.) The remaining
graph has maximum degree 1 and consequently dis (G)= 2n + 5p. [-1

COROLLAR’V 1. Let zr be any property which is hereditary on induced subgraphs,
determined by the components and satisfied by a single edge, and suppose that zr is not

satisfied by all stars. Then the node-deletion r problem restricted to bipartite graphs is
NP-complete.

Proof. Let Sr be the star of the least order that does not satisfy r. Since a single
edge (the star $1) satisfies zr, we have r -> 2. The graph of Fig. 2 is called the (a, b) double
star with roots Vl and vz, where a, b _-> 0. Thus, for example, the star Sr is a (r 1, 0) and a
(0, r-1) double star. Let q be the largest integer such that the (r-2, q) double star
satisfies r. Since r is hereditary and is violated by S we have 0 _-< q _-< r- 2.
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Let G be a graph whose dissociation number we want to find, and let (P, O) be a
bipartition of its nodes. Attach r- 2 new nodes to every node in P and q new nodes to
every node in Q, and let G’ be the resulting graph. We claim that dis (G)= y=(G’).

Let V be a dissociation set of G. The components of G’- V are (r-2, q) double
stars, and stars Sr-2 and Sq. Since 7r is determined by the components, G’- V satisfies r
and consequently y(G’) -< dis (G).

Let V be a set of nodes whose deletion results in a subgraph of G’ satisfying 7r. We
can assume without loss of generality that V contains no new nodes (otherwise a new
node can be replaced by the node of G to which it is attached). Suppose that G- V
contains a node u of degree at least two; i.e., there are edges (u, v), (u, w) in G- V. If
u E P, then G’- V contains a star Sr rooted at u, consisting of u, v, w and the new nodes
attached to u. If u E O then G’- V’contains a (r- 2, q + 1) double star with roots v, u:
this double star consists of u, v, w and the new nodes attached to v and u. Thus, V is a
dissociation set of G and consequently dis (G)<= y=(G’). !-!

We are ready now for the proof of the main theorem of this section.
THEOREM 1. With the exception of the node cover, the node-deletion problem for

graph-properties that are hereditary on induced subgraphs, determined by the components
and nontrivial on bipartite graphs, restricted to bipartite graphs is NP-complete.

Proof. As we pointed out at the beginning of this section, if 7r is any property (other
than 7r0 "independent set of nodes") satisfying the assumptions of the theorem, then
7r is satisfied by a single edge.

Case 1. 7r is not satisfied by all stars. The result follows from Corollary 1.
Case 2. 7r is satisfied by all stars. In [LY] the node cover problem is reduced to the

node-deletion 7r problem on general graphs as follows. For every connected graph H
we form a sequence OfH as follows. If c is a cutpoint of H, let Ogc,H (nl,/72, ni(c)),
where n >-- rt2 >--’ -> rli(c are the orders of the components of Hrelative to c. IfH is not
biconnected define (XH lexicographically min {(c,HIC a cutpoint of H} and c(H) any
cutpoint of H that gives the minimum sequence an. If H is biconnected then aH= IHI
and c(H) is any node of H. Let J be a graph with the lexicographically smallest
a-sequence that violates 7r. Let Jo be its largest component relative to c (J), d any node
of Jo other than c (J), and J’ the graph obtained by deleting all nodes of Jo except c (J). It
is shown in [LY] that if graph G’ is obtained from graph G by attaching to each node of
G a copy of J’ through node c(J), and replacing every edge (u, v) of G by a copy of Jo
attached through its c (J) and d nodes (identified with u and v in an arbitrary way--see
Fig. 3) then (1) deleting a node cover of G from G’ leaves connected components with
an a-sequence lexicographically smaller than that of J and therefore satisfying property
7r, and (2) at least ao(G) nodes have to be deleted from G’ if J is not to be contained in
the remaining graph. Thus, ao(G)= T,(G’).

If 6 (al, ’, a.) and/ (bl, ’, bq) are two sequences of integers (or of elements of any totally
ordered set), we say that ( is lexicographically larger than b (denoted as 6 > L/) if either (i) there is an with

-< -<_ min (p, q) such that aj b for <_- j -< and ai > bi, or (ii) q < p and a b for <_- j -< q.
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FIG. 3

Now, let J be the lexicographically smallest bipartite graph that violates property
Since all stars satisfy r, J0 has in its bipartition at least one more node in the same set
with c(J). Choose d to be any such node and apply the previous transformation. The
resulting graph G’ is obviously bipartite. Since "bipartite" is a hereditary property,
deleting a node cover of G from G’ will leave bipartite connected components with an
a-sequence lexicographically smaller than that of J, and therefore y(G’)<-_ao(G).
Combining with (2) above, we have 3,=(G)= ao(G). 71

COROLLARY 2. The restriction to bipartite graphs of the node-deletion 7r problem for
the following properties r is NP-complete: 7r= 1) planar; 2) outerplanar; 3) line-
invertible 4) chordal; 5) interval; 6) without cycles of length for any fixed even >-_ 4; 7)
without cycles of length <-_l, for any >-4; 8) degree constrained with maximum degree
r >_-1;9) acyclic graph (forest).

These problems were first shown to be NP-complete on general graphs by
Krishnamoorthy and Deo [KD]. However, their techniques sufficed to show the
NP-completeness of the bipartite restriction only for property 9).

4. General hereditary properties. If we consider properties that are not deter-
mined by the components then there are some more node-deletion problems besides
the node cover which become polynomial when restricted to bipartite graphs.

Example. Consider the property 7r ="complete bipartite". If G (N, E) is a
bipartite graph with N PU Q a bipartition of the node set, let G’= (N, E’) be the
graph with E’= {(u, v)lu P, v Q, (u, v) E}. Then y(G) min {ao(G), ao(G’)}. For,
consider the maximum induced subgraph H (N1, El) with property or. Either H does
not contain any edge, in which case N1 is an independent set of G and y(G) ao(G), or
it contains some edge, in which case N is an independent set of G’ and y(G)=
ao(G’).

In this section we give an exact characterization of those properties which have a
polynomial node-deletion problem (assuming of course P # NP).

At first we consider properties which are satisfied by some bipartite graphs with an
arbitrarily large number of nontrivial components. (A component is nontrivial if it has
at least two nodes.) Let k(G) be the number of nontrivial components of graph G and
let k(r) sup {k(G)]G is a bipartite graph satisfying r}. We show that if k(cr) o then
the techniques of the previous section together with those of [LY] can be used to prove
the NP-completeness of the corresponding node-deletion problem. As a corollary of
this, we show that if the property r is satisfied by a certain set of graphs {B,]t >- 1} (which
we define later), then the corresponding node-deletion problem is also NP-complete.

Then we focus on properties r with k(r) 1 and the graphs which can satisfy such
properties, i.e., graphs which do not have an induced subgraph with more than one
nontrivial component. Let us call G1 this class of graphs. We show that the node-
deletion problem for the property r which is satisfied exactly by the graphs of class G1
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is NP-complete. We then extend this result to all properties that are satisfied by all
graphs of G1.

Finally, we conclude that if there are graphs with arbitrarily many different
neighborhoods which satisfy a hereditary property zr, then either k(zr) =c or zr is
satisfied by the set of graphs {Bt} or zr is satisfied by all graphs of G1, and consequently
the corresponding node-deletion problem is NP-complete. Then we prove that all
remaining properties have a polynomial node-deletion problem.

4.1. Properties r with k()= oo. An independent set of edges is a graph every
connected component of which is a single edge. We will denote an independent set of
edges by It. Clearly, if vr is a hereditary property with k(Tr) oo then 7r is satisfied by any
independent set of edges and vice-versa.

THEOREM 2. The restriction to bipartite graphs of the node-deletion problem for
properties 7r that are hereditary on induced subgraphs, nontrivial on bipartite graphs and
are satisfied by any independent set of edges is NP-complete.

Proof. Let G be a graph with components G1,’", Gt and assume that
ao ->Lao ->La,, where the a-sequence of a connected graph is defined as in the proof
of Theorem 1. The -sequence of G is defined as/3 =(al,..., a,). Let J be a
bipartite graph with the lexicographically smallest/3-sequence that cannot be repeated
arbitrarily many times without violating 7r; i.e., there exists an l=> 1 such that
independent copies of J (that is, with no interconnecting edges) violate r, but l-1
independent copies of J satisfy r. The existence of such a J follows from the
nontriviallity of yr. Let J, , Jt be the connected components of J sorted according to
their a-sequences. Let J0 be the largest component of J1 relative to c (J1), the node of J1
that gave its a-sequence.

Case 1. Jo is a single edge. Then J1 is a star, say J1--Sr, and J J1, since all
connected graphs with a smaller (or equal) a-sequence are stars of smaller (or equal)
order, and therefore an appropriate number of repetitions of S, contains as an induced
subgraph repetitions of any graph J with J1 S, Since any independent set of edges
satisfies zr, r _-> 2. Let be the minimum number of independent copies of S that violate
zr; >- 1. Let q be the largest integer such that the (r 2, q) double star can be repeated
arbitrarily many times without violating r(r 2 _-> q ->_ 0); i.e., there exists an m _-> 1 such
that m independent copies of the (r- 2, q + 1) double star violate r.

We can reduce now the dissociation number problem to the node-deletion
problem as follows. Given graph G, let G" consist of (l + m)(n + 1) independent copies
of the graph G’ constructed in the proof of Corollary 1, where n is the order of G. We
claim that dis (G)<=hcey,(G")<-h(l + m)(n + 1). Suppose that dis (G)<-h. Deleting a
minimum dissociation set of G from each copy of G" leaves a graph whose connected
components are induced subgraphs of the (r- 2, q) double star. Since this graph can be
repeated arbitrarily many times without violating or, we have y=(G")<= h(l + m)(n + 1).

Conversely, let V be an optimal solution to the node-deletion problem. Then
G"- V can contain Sr in at most 1 copies of G’ and the (r 2, q + 1) double star in at
most m 1 copies of G’. Thus, at least n (l + rn) + 2 copies of G’ do not contain either of
the two after the deletion of V, and V must contain at least dis (G) nodes from each of
these copies. Suppose that dis (G)->_ h + 1. Then,

y,(G’) >-_ (h + 1)[n (l + m)+ 2]= hn(l + m)+ n(l + m)+ 2(h + 1) > h(l + m)(n + 1),

since n > dis (G)->_ h + 1.
Case 2. Yo is not a single edge. Then J0 has in its bipartition at least one more node

d in the same set with c(Y). We can now reduce the node cover problem to the
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node-deletion 7r problem using the same method as above of taking sufficiently many
copies of the graph G’ constructed in the proof of Theorem 1 (see also [LY]).

Theorem 2 implies the NP-completeness of the node-deletion problem also for
some properties rr with k(zr)< oo. For example, let Bt, >_-1 be the graph with nodes
v 1, , vt, u 1, , ut and edges (vi, uj) for : j (in Fig. 4 we show B4), and consider the
property 7r which is satisfied by all Bt and their induced subgraphs. It is not hard to see
that we can reduce the dissociation number problem to the node-deletion problem for
in the same way that the maximum complete bipartite problem was reduced to the node
cover problem in the example at the beginning of this section. Let us formalize this
reduction.

v v2 v3 v4

u U 2 u3 U4

FIG. 4. The graph Ba.

A bipartitioned graph BG (P, O, E) is a bipartite graph G (N, E) together with
a bipartition N P I..J O of its nodes. The bipartite complement of (P, O, U) is the
bipartitioned graph b.c. (BG) (P, Q, U), where E {(u, v)lu P, v O, (u, v) U}.
Thus, if P LI O is any bipartition of L, the independent set of edges, the bipartite
complement of Bit has Bt as its underlying graph. Note, however, that if a graph G has
some nonisomorphic components, then the underlying graph of a bipartite complement
of it might depend on the bipartition chosen. Two bipartitioned graphs BG (P, O, E)
and BG’= (P’, O’, E’) are isomorphic if their underlying graphs are isomorphic via an
isomorphism that sends P to P’ and O to O’. (Thus (P, O, E) is not necessarily
isomorphic to (O, P, E).) Note that BG and BG’ are isomorphic if and only if their
bipartite complements are. Let us call bipartite property 7r a property which is allowed to
take into account also the bipartition of a graph; i.e., if BG, BG’ are two isomorphic
bipartitioned graphs, then 7r is satisfied by BG if and only if it is satisfied by BG’.
Clearly, any graph-property r can be regarded also as a bipartite property" BG satisfies
7r if and only if its underlying graph does. If BG (P, O, E) is a bipartitioned graph, the
subgraph of it induced by a set of nodes S is (S)= (P q S, O f3 S, Us), where Us
{(u, v)lu, vS, (u, v)E}. The subgraph of b.c. (BG) induced by S is obviously the
bipartite complement of the subgraph of BG induced by S.

Now, let - be a bipartite property which is nontrivial, interesting and hereditary on
induced subgraphs. Define the bipartite property - as follows" BG satisfies if and
only if b.c.(BG) satisfies or. Clearly, -8- is also nontrivial, interesting and hereditary on
induced subgraphs. Moreover, the two node-deletion problems are equivalent"
y=(BG) y#(b.c. (BG)). The proofs of NP-completeness for graph properties that we
have given till now (as well as those that follow) can be used verbatim for bipartite
properties as well.2 Thus, from Theorem 2 we have"

COROLLARY 3. The restriction to bipartite graphs of the node-deletion problem for
properties rr that are hereditary on induced subgraphs, nontrivial on bipartite graphs and
are satisfied by all graphs Bt is NP-complete.

We have preferred (and will continue in the sequel) to give the proofs in terms of graph-properties
rather than bipartite properties in order not to unnecessarily complicate the notation.
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4.2. The class G1. For a graph G, let i(G) be the maximum number of indepen-
dent edges that it contains (as an induced subgraph). Clearly i(G) is also the maximum
number of nontrivial components of all induced subgraphs of G. Thus, G1 is the class of
bipartite graphs G with i(G)=< 1. For example, if G is an independent set of nodes
i(G) 0 and consequently G G1. At first we will give a characterization of the graphs
in G1.

LEMMA 2. Let G be a bipartite graph. Then i(G)= 1 if and only if G consists of
isolated nodes and a nontrivial component in which nodes in the same side of the
bipartition are totally ordered by their neighborhoods.

Proof.
(:) Since i(G)- 1, G has exactly one nontrivial component. Let (P, O) be the

bipartition of it. Let F(v) be the neighborhood of a node (the set of nodes adjacent to
v). Suppose that there are nodes v, v. of P such that F(v) F(v) and F(v) F(vs). Let
ueF(v)-F(v) and ueF(v)-F(v). The edges (v, u), (v, u.) are independent,
contradicting i(G)- 1.

((=) If (v, u), (v., u.) are two independent edges with v, v. e P, u, u e O, then
F(v;) and F(v.) are incomparable, and similarly for F(u) and F(u). [3

Lemma 2 has an interesting interpretation in terms of families of sets. Let X be a
finite set and F a finite family of (not necessarily distinct) subsets of X. F is a ckain if F is
the multiset {Sl, S, , S} with Sl

_
S _. __

S, A family of sets can be represented
by a bipartite graph which has one node for every set and one node for every element,
and an edge between a set-node and an element-node if the element is in the set. It
follows then from Lemma 2 that the graphs of G1 represent exactly the chains.

Let G be a connected graph in G1 with bipartition (P, O) and set of edges E. Let cr
be the number of different neighborhoods of nodes in P; i.e., P {v,..., v} with
F(/)I) F(/92)= F()i) F()i+I) 1-’(9i). l-’(vi._+l) F(vp). Let us
denote by F1, F,..., F these different neighborhoods. Let O be {Ul,’’’, Uq} with
F(ul) ___" "F(ttq). Let ] be the largest index of an element of O which is in F but not in
F+I, for k 1,... ,o--1. We have FI=O (since G is connected). If f<-fl then
F(u-)c_F(uh) and therefore u. is not adjacent to a vi with i>il. Consequently,
F {ul] >/’1}, and F(ul) F(uh) {vli <- il}. Proceeding similarly we can show
that F-{u;lf>f-}, and F(u.,+l) r(Uh,+l)={vili<--ik+l}, where for k + l=r,
i p and ] q. Thus, there are also exactly o" different neighborhoods of nodes in O.

For ->_ 0, let D, be the following graph. Dt has nodes v, v,..., vt, u, ua, , ut
and an edge (vi, ui) whenever inf. Clearly F(Vl)F(v)"’F(vt) and
F(Ul) F(u) F(ut). Thus Dt G1 and the parameter r of Dt is equal to t.

LEMMA 3. Let G be a connected graph in G1 with n nodes, let (P, O) be a bipartition
of it, and let o" be the number of different neighborhoods of nodes in P (or 0). Then"

(1) G contains D, as an induced subgraph.
(2) G is an induced subgraph of Dr, where t= n-tr. (Note that o" <-IPI, IQI and

therefore cr <- n/2.)
Proof. Let e={vl,’’’,vp} with F(vl)"’_F(vp), Q={Ul,’",Uq} with

F(Ul) _"
_

F(uq), and let il, , i,/’1, , ] be defined as above.
(1) Let G’ be the graph induced by vi,, vi2,’", vi, uh,"’, uj=. By our previous’

discussion vik is adjacent to ui, with ft>fk-1, or equivalently l>-_k. Thus, G’ is
isomorphic to D.

(2) Let Pk ik --ik-1, qk ]k--]k-1 for k 1,. ., o, where i0 =/’0 0. Note that G
is uniquely determined by the p’s and the q’s (see Fig. 5--here we show schematically
the different neighborhoods, o-from each side; nodes bracketed together have the same
neighborhood). Let D, {P, Q, E} with P= {,51,’’’, Tt}, Q {til,"’", tit}, where t=
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n o" and (/i, /j) E E if <= j. Let G’ be the subgraph of D, obtained as follows. From the
set P we keep the first pl nodes, delete the next ql- 1 nodes, keep the next p2 nodes,
delete the next q2- 1 nodes,. , keep the next p nodes, delete the final q- 1 nodes.
We have

pk+ (q--l)= pk/ qk--a’=p+q--a’=n--cr.
k=l k=l k=l k=l

From the set O we delete the first pl- 1 nodes, keep the next ql nodes, .., delete the
nextp 1 nodes, keep the final q= nodes. It is easy to see that the resulting subgraph G’
is isomorphic to G. 71

4.3. Properties that are satisfied by all graphs of G1.
LEMMA 4. The node-deletion 7r problem restricted to bipartite graphs is NP-

complete, where 7r’1 is the property satisfied exactly by the graphs of G1.
Proof. The reduction is from the satisfiability problem with 3 literals per clause

(3-SAT). Let S ={C1," "’, Cp} be a set of clauses with variables Xl,’", x, and 3
literals per clause. We will construct a graph G that y= (G)-<_ n / 2p if and only if S
is satisfiable. For each variable xi, G has 4 nodes Ti, T’i, Fi, F’ which form two

independent edges (Ti, T ), (Fi, FI ). Node Ti is associated with the literal xi and Fi with

Yi. For each clause Cj, G contains a hexagon as in Fig. 6. Node Ak is connected by an
edge t0 the node associated with the kth literal of C/(k 1, 2, 3). G has two more

BjI,,Bj2
A’j2

FIG. 6

adjacent nodes B, A’ and the following additional edges:

{(Ti, T ), (Ti, F ), (Fi, T. ), (Fi, F )li < f}
UI(B, T’i) (B, Fi)I l <-i<n}
LJ{(B/k, tl), (Bik, FI), (B, A’)]I <_-i-<_p, 1 _-<k <=3, 1 -<_i-<_n}

{(Bk, Al)li < j, 1 <-- k, <- 3}.
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The intention of introducing these edges is that in a subgraph of G with property r], if
primed nodes are ordered according to increasing neighborhoods, theAk nodes should
come first in increasing order of the first index/’, then node A’ and then the nodes
associated with the literals in increasing order of their index, and similarly for the
unprimed nodes. The constructed graph G is clearly bipartite.

Since we have a pair of independent edges per variable, at least one node must be
deleted for each variable. Also two nodes must be deleted from each hexagon for the
remaining graph not to contain two independent edges. Thus, 3’= (G) -> n + 2p. Suppose
now that y,(G)=n +2p, and let V be such that G- V satisfies zr and [V[=n +2p.
Define a truth assignment by setting xg true if and only if Ti W. Now look at the
hexagon of clause Ci; at least one of the A nodes is not in V, say A}k. Since the edge
(B, A’) (which remains in G V) is independent from the edge that connects A;g to the
node associated with the kth literal of Ci, this node must be in V and consequently the
corresponding literal is true. Thus, S is satisfied by this truth assignment.

Conversely, suppose that S is satisfiable, and fix a satisfying n uth assignment.
Delete the nodes associated with true literals. For each clause Ci keep a nodeAwhose
corresponding literal is true, and delete the other two A} nodes. We claim that the
remaining subgraph G’ satisfies zr. From Lemma 2 it suffices to show that nodes in the
same side of G’ (either of the two sides) are totally ordered by their neighborhoods. We
will show this for the primed nodes. At first, note that no A} node is connected in G’ to a

T or F node. Thus, F(Aa) F(A2) _. _
F(Ap,)

_
F(A’)

_
F(T ), F(F;) for any i.

Also F(T ), F(F
__
F(T} ), F(F for </’. In G, T andF were incomparable because

of the two independent edges (T, T’ and (F, FI ). Since either T or F is deleted, this is
not the case in G’. F(TI

_
F(FI if x is true (and thus T is deleted), and F(FI F(TI if

x is false.
Lemma 4 has an interesting corollary for families of sets. If F is a family of subsets

of X, the restriction ofF on X’
_
X is the family which consists of the intersections of the

sets in F with X’. The family obtained from F by deleting the subfamily FI and the
subset of elementsX is the restriction of F-Fa on X-X. Lemma 4 then implies that
it is NP-complete to find the minimum number of sets and elements whose deletion
results in a chain. Note that if only elements or only sets are to be deleted, then the
problem can be solved in polynomial time: both cases can be formulated as a longest-
path problem in a directed acyclic graph, for which there exists an efficient dynamic
programming algorithm (see, for example, [La]).

THEOREM 3. Let 7r be a property with k(Tr)< eo which is hereditary on induced
subgraphs and is satisfied by all graphs of G1. The node-deletion r problem restricted to
bipartite graphs is NP-complete.

_Proof. Recall the definition of Dt from 4.2. Let be the largest integer such that
independent copies of D,, for any t, satisfy 7r; i.e., there exists a to such that + 1 copies
of Dto violate 7r. There exists such an since k(Tr) < oe and =< k(Tr). Since all graphs in
G1 satisfy r, >- 1. From Lemma 3 it follows that any graph G with at most nontrivial
components Ki with i(Ki)= 1 satisfies

We will use a reduction from 3-SAT which is a slight modification of the one used in
the proof of Lemma 4. If S {C1, , Cp} is a set of clauses with variables Xl, , x,
and 3 literals per clause, let G be the graph constructed in the proof of Lemma 4, and
m 4n + 6p + 2 the order of G. We construct a graph G’ as follows. G’ has connected
components; l-1 of them are Dt with to + rm, r tom 5. The/th component KI is
obtained from G as follows. Every node is replaced by r nodes. Every edge
(Ti, TI ), (Fi, FI ), (B, A’), (Bii A), (A}k, Ti), (Ak, F/)is replaced by a copy ofD on the
nodes that replaced the endpoints of the edge. (We assume a fixed ordering among
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nodes that replaced the same node.) The rest of the edges are replaced by complete
bipartite graphs.

We claim that S is satisfiable if and only if y,(G’)<-r(n + 2p).
Suppose that $ is satisfiable and fix a satisfying truth assignment. We delete from

G’ all nodes that replaced the nodes that form the solution to the node-deletion
problem described in Lemma 4. It is easy to see, using arguments similar to those for
Lemma 4, that the remaining part of the/th component of G’ is in G1. Since every graph
in G1 is an induced subgraph of some D,, and from our choice of l, it follows that
%(G’)<=r(n+2p).

Conversely, suppose that y=(G’)<=r(n +2p) and let V be a solution to the
node-deletion problem with IV[ y=(G’). Let V,. be the subset of nodes in V that
belong to the ith component Ki of G’. Let K1 (P1, O1, El) be the first component of G’
(a copy of Dt) with P1 {tl, vt},Ol {/gl, L/t}, E1 {(Ui, ui)li =</’}. Suppose that
vj, u. V and let i>j be such that vi V. Then, in G’- V we have u. F(v.)-Y’(ui)
1-’(Vi) [’(Vi). In K1-V1 there are at least t-21Vl different ]’s with v., u. V.
Thus K- V1 has at least t-21 Vii cr different neighborhoods in each side, and from
Lemma 3 it contains D as an induced subgraph. Now

Iwllwlr(n +2p)

:ff or.>- 2r(n + p) to + rm 2r(n + p) > to + r(2n + 4p) > to.

Therefore K- V1 (and similarly for Ki- Vi, -<_ l- 1) contains D,o. Consequently, the
remaining part of the last component KI- Vt cannot contain two independent copies
of Dto.

For a node v of G, let the ordering of nodes that replaced v be v, v2, , Vr, where
F(Vl)

__
1-’(/)2) ___’

__
F(Or) if v is an unprimed node, and F(vl)

___
F(v2) 2"

____
F(vr) if v

is a primed node. From the constructions of G’ we have, for any i, (v, u) is an edge of G if
and only if (vi, ui) is an edge of G’. Thus, for every i, the subgraph of G’ induced by the
vi’s is a copy of G; we call it the ith copy Gi of G in G’. Let e (v, u’) be an edge of G
that was replaced by a copy of Dr and let H(e) {ilvi, ul e! V}. Then, the graph induced
by {vi, ulli e H(e)} is Dh, where h IH(e)l. Let el= (v, u’), e2 (x, y’) be two indepen-
dent edges of G both of which were replaced by Dr, and let H(el, e2) H(e 1) f’l H(e2).
The graph induced by {vi, ul, xi, yl[i e H(el, e2)} consists of two independent copies of
Dh, where h =lH(ex, e2)l. Thus, IH(e,e2)[<to, since gl-Vt cannot contain two
independent copies of D,o. Let H be the union of all H(e, e2) where el and e2 are as
above, and H ={1,..., r}-H. We have

IHI<=Y[H(el, ez)I<= to<m tollYtl>r to.

For every H, the remaining graph of the ith copy of G does not contain any pair of
independent edges both of which were replaced by a Dr. Since the arguments in the
proof of Lemma 4 were based solely on such pairs of independent edges, at least Y=i (G)
nodes have to be deleted from every such copy of G. Now, if S is not satisfiable,
3’,I (G) ->_ n + 2p + 1, and consequently

y(G’)>=lIlyi(G)>(r-m4to)(n +2p+ 1)

r(n + 2p) + r m4to(n + 2p + 1)

=r(n+2p)+m4to(4n+Gp-n-2p+l)>r(n+2p) 71
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4.4 Properties with a polynomial node-deletion problem. For a bipartite graph G,
let p(G) be the number of different neighborhoods of its nodes. Thus, for example,
,(It) (Bt) ,(Dt) 2t. If r is a property, let ,(r) sup {(G)l the bipartite graph G
satisfies r}. All properties r we have considered till now have ,(r)=ee. In the
Appendix the following Ramsey-type theorem is shown" For every t, there exists a
number M(t) such that every bipartite graph G with ,(G)>=M(t) contains as an
induced subgraph either It or Bt or Dr. Let r be a hereditary property with u(r)= co,
and suppose that r is not satisfied by It1, Bt2 and Dr3. It follows from our Ramsey-type
theorem that r cannot be satisfied by any graph G with ,(G)>-M(t) where t=
max (tl, t2, t3}, contradicting ,(r) co. Consequently, if r is a hereditary property with
/(r) co, then r is satisfied either by all It, or by all Bt, or by all Dr. That is, we have
examined thus far all hereditary properties r with ,(r)= co. We are going to prove in
the remainder of this section that if ,(r)< co, then the corresponding node-deletion
problem is polynomial.

Let G be a graph with ,(G) different neighborhoods, V {vl," , v v()} a set of
nodes of G that have different neighborhoods, and Fi F(v/). The nodes of G are
partitioned into ,(G) subsets V1,. , Vv(a) according to their neighborhoods; i.e. if
u Vi, then F(u)= F(v/). Let FI be the neighborhood of vi in the graph induced by V.
Clearly we have Fi U vjr V. Therefore, if we know V), the subgraph of G induced
by V and the cardinalities of the Vi’s, then we ca reconstruct the graph G. A
characteristic graph of G is a labeled graph G’ with ,(G) nodes labeled 1, 2,. .; u(G)
which is isomorphic to {V} via the mapping i-> vi. The characteristic tuple of G
associated with G’ is the tuple r (I Vii, v2l,,,,, I> (see Fig. 7 for an example).

Vl v2 v3 v4

v5 v6 v7 v8

2 3 4

5 6 7 8

(c) (b)
FIG. 7. (a) A graph O. (b) A characteristic graph O’ of O and the associated tuple r.

A graph G can have as many as u-(G)! pairs (G’, r) of characteristic graph and
tuple; however, a pair (G’, r) specifies a unique G. If ’1, r2 are two v-tuples with - r2,

we say that rl dominates r2(ra > r2) if every entry of rl is at least as large as the
corresponding entry of r2. (Thus > is a partial order among tuples of the same length.)
Note that if rl, r2 are two tuples of length u(G) with ’1 > r2, then the graph (specified
by) (G’, r2) is an induced subgraph of (G’, ra); and conversely, if G2 is an induced sub-
graph of G1, v(G2) v(G) and G’ is a characteristic graph of both, then the associated
characteristic tuples r2, ’1 satisfy rl > r2. We will use characteristic graphs and tuples to
show that every property - with v(r) < co has a finite description of a certain form. Let
Chg (r) be the set of characteristic graphs of all graphs that satisfy r. Clearly, if
,(rr) < co then Chg (rr) is finite. Let G Chg (r). With G we associate a set S(r, G) of
tuples of length v(G)=lG[. The tuples of S(r, G) have entries from N=
{1, 2, 3,.. } U {co}. If r is a tuple with entries from N, we say that (G, r) satisfies r if
for any tuple r’ obtained from r by replacing co entries with positive integers, the graph
specified by (G, r’) satisfies -. S(r, G) is defined to be the set of tuples r for which (1)
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(G, z) satisfies zr, and (2) there is no z’> - such that (G, z’) satisfies r. (c is regarded to
be larger than all positive integers.) Clearly, if G is a graph satisfying zr, G’ a
characteristic graph of it and - the characteristic tuple of G associated with G’, then
either - S(zr, G’) or - is dominated by some tuple z’ of S(Tr, G’). Consequently, a
hereditary property 7r is completely specified by Chg (zr) and the sets $(zr, G)" zr is
satisfied by a graph G if and only if there is a G’ Chg (zr) and a z’ S(Tr, G’) such that
G’ is a characteristic graph of G, and the associated tuple z of G satisfies z-<_ z’. We
will show now that every S(Tr, G) is finite.

LEMMA 5. Let r be a positive integer and $ a set of mutually incomparable (with
respect to <) r-tuples with entries from N. Then S is finite.

Proof. The proof is by induction on r. The basis (r 1) is trivial: $ can have at most
one tuple, since any two 1-tuples are comparable. So let us assume the lemma for all
m < r. Let F1, , Ft be all the distinct subsets of {1, ., r} such that for each Fi there
is a tuple zi in $ with an c entry exactly at the places of Fi. We have t_-<2 r. Let
Fi ={1,..., r}-Fi. Let bii be the jth entry of T with j G Fi, bii < o3. For each i=
1,. , t, j Fi, k 1, 2,. , bii, let Tik be the set of tuples in S which have c at the
places of Fg (possibly also in other places) and k at the jth place. Let T’ijk be the
subtuples of T0. formed by deleting the/’th entry and the entries in F/. The tuples of TiCk
have length r- IF,.I- a. (Note here that if IF I _-> r- 1, then
and therefore Ti  I- a.) For a tuple z e Tii let r’ be the subtuple of it in TI.. Since any
two tuples z, r T0.k agree in the places that we deleted, we have for the corresponding
subtuples r#o’C:t,r’ #o" and r>o’c:r’>o". Thus, [TiI-ITg[ and Titik is a set of
mutually incomparable tuples of smaller length. Therefore, we have from the inductive
hypothesis that T’ii is finite and therefore Tiik too.

Now, let - S, and let Fi be the places in which - has an oo entry, and suppose : ’i.

Since - is incomparable to zi, there is at least one place ] Fi in which - has a smaller
entry, say k, than that of -. Thus, z Tik. Therefore S is the union of the sets Tiik that is,
S is a finite union of finite sets, and therefore is finite.

Note however, that even if r 2 there is no absolute bound on the size of S. For
example, for any t, the set S {(t- i, + i)li O, 1, , t- 1} has size t. That is, S can be
arbitrarily large, though finite.

THEOREM 4. If 7r is a hereditary property with v(zr) < az, then the corresponding
node-deletion problem on bipartite graphs can be solved in polynomial time.

Proof. Let Chg (zr) and S(Tr, G’) for G’ Chg (zr) be defined as above. Let c1(7r) be
Y.,cg(, IS(v, G’)I. For tuple z, let c2(z) be the sum of the entries of
and c2(zr) max {c2(’)1 S(zr, G’), G’ Chg (zr)}. Given a bipartite graph G (N, E)
of order n, we solve the node-deletion zr problem as follows. At first we choose a pair
(G’, z) with G’ Chg (zr), z S(r, G’). There are Cl(Zr) choices of (G’, ). Let IG’I
r, r =< t,(Tr)= ,. Now we choose a mapping of the nodes of G’ into r nodes of G (n
choices). Let V {vl, ’, vr} be these nodes of G. We verify that G’ is isomorphic to
(V) under this mapping. For every node u we compute F(u)(3 V. If F(u)f’l V is not
equal to any [’(vi) 0 V, then node u is deleted. The remaining nodes are thus partitioned
into r sets V1, V2,’", V. Let F___{1,..., r} be the places where z has an entry,
F {1,..., r}-F, and let bj be the/’th entry of for/’ F. For every/" F we pick at
most bi- 1 nodes from V.. Let V’ be the set of these nodes. There are at most
[ip(bi-1)]nC2(*<-c2(Tr)nc2( ways of choosing V’. We verify that a node u
V’ Vi has the same neighborhood in (V LI V’) as vi. For every node u V. with j F
we check if F(u)G(VU V’)=F(vi)fq(V V’); if not we delete it. Let V be the
remaining nodes and N’= LIF V. We construct a (bipartite) graph H (N’, E’) on N’
with edges E’ {(u, v)lu V and v (F(vi) F(u)) LI (F(u) F(vi))}, and solve the node
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cover problem on H. Let V" be the maximum independent set of H and L
V U V’U V". We claim that (L) satisfies r. It suffices to show that if u e V f3 L then u
has the same neighborhood as vi in (L). Suppose without loss of generality that (u, v) e
and (vi, v) E, for some v e L. If e F, then v cannot be in V U V’ because we checked
that u agrees with vi in (VU V’). Thus, v e V for some/’eF. Since (vi, v)E we have
(/-)i, /-)/’) I E and consequently (u, v.) E. But then u F(v) 71 V U V’) F(v.) 71 V U V’),
and therefore v cannot be in V. If e F, then v cannot be in N’ because of the edge
(u, v) in H. Thus v e V U V’ and u shouldn’t be in

Let Lmax be the set L of largest cardinality for all choices of (G’, -) and the
mappings we defined, and let/max--]Lm,x[. We claim that T,(G) n -/max. Since (Lmax)
satisfies r we have T,(G) <- n /max. For the other direction, let (L’) be the largest
induced subgraph of G with property , G’ a characteristic graph of (L’), -’ the
associated tuple, V {Vl, ’, vr} a set of nodes of (L’) with (V) isomorphic to G’ via
the map vi i. Let r be a tuple in S(r, G’) with r’_-< r, and F and F as before. Let V’
(resp. V") be the set of nodes of L’- V with the same neighborhood in (L’) as some
e F, (resp. e F). At some point, the algorithm will try G’, ’, V and V’. Since every

u e V" agrees with some vi, eF in (L’) it agrees also in V U V’. Thus, V"__N’.
Moreover V" is an independent set of the graph H that will be constructed. Thus,
IL’]<=/max and y.(G)>n-lmax. The running time of the algorithm is at most
Cl()nc c()

2 (r)cz()rt 3 c’()rt
Summarizing our results we have
THEOREM 5. Let r be a nontrivialproperty on bipartite graphs which is hereditary on

induced subgraphs. The restriction of the node-deletion problem ]’or r on bipartite graphs is
polynomial or NP-complete according to whether ,(r) < o0 or u(cr)= o0.

5. Extension to other structures. As we mentioned in 4.1, the same proofs go
through also for bipartite properties (i.e., properties on bipartitioned graphs). Note now
that there is a 1-1 correspondence between bipartitioned graphs and families of sets,
hypergraphs, and 0,1 matrices. A bipartitioned graph BG (P, O, E) corresponds to
the family F {F(v)lv P} of subsets of O, to the hypergraph with node set O and edge
set F and to the 0,1 matrix with set of rows P and set of columns O. Thus,’Theorem 5 has
an analogue in each of these structures. We will state here the result only for 0,1
matrices. Let M be a class of 0,1 matrices which is closed under permutation and
deletion of rows and columns; i.e., if A M then deleting and permuting rows and
columns of A results in a matrix in M. If A is a 0,1 matrix, let vl(A) (resp. v2(A)) be the
number of distinct rows (resp. columns) of A, r(A) its rank in Z2, the integers mod 2. If
BG is the bipartitioned graph that corresponds to A we have u(BG)= u(A)+ u2(A)=
,(A). Let/1(11) sup {pl(A)IA M}, and similarly for ’2(M), ’(M), r(M). The class M
of matrices corresponds to a bipartite property 7r which is hereditary on induced
subgraphs, and t,(M)= ,(Tr). For any 0,1 matrix A we have log ul(A), log u2(A)_-<
r(A) <- ,(A), ,2(A), since r linearly independent vector span 2 distinct vectors (in Z2).
Therefore ,(M) o0 if and only if r(M) o0.

3 Therefore, if we take the size of a matrix to
be "number of rows+number of columns", we have

COROLLARY 4. /f M is a class of 0,1 matrices which is closed under permutation
and deletion of rows and columns, then finding the largest submatrix in Mof a matrix is
polynomial if the matrices ofM have bounded rank and NP-complete otherwise.

Examples of classes M that satisfy the assumptions of Corollary 4 (and have
unbounded rank) are: totally unimodular, balanced, with the consecutive ones pro-
perty, with the circular ones property (see [B], [GJ] for definitions).

The same result holds if we take ranks r’ in Q, the rationals, since r(A)<-_ r’(A)<-_ u(A).
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Appendix. We will show that every 0,1 matrix A of "sufficiently large" rank r(A)
(in Z2 or Q) contains either a "large" identity matrix L, or the complement Bt of a
"large" identity, i.e., the matrix formed by changing in L O’s to l’s and l’s to O’s, or a
"large" lower triangular matrix Dt with all entries in the lower triangle and the
diagonal being 1, and all entries in the upper triangle being 0.

PROPOSITION. For every >= 1, there is a number R (t) such that every 0,1 matrix A of
rank r(A) >- R (t) contains (afterpermuting rows and columns) as a submatrix either L, or
Bt, or Dt.

First we will prove two claims.
CLAIM 1. Letk, tbeanypositiveintegersandml(k, t) 2k(t- 1)+ 1.IRA isany 0,1

matrix with r(A) >= ml(k, t) and every row and column ofA has no more than k l’s, then
A contains I,

Proof. We use induction on with k fixed. The basis (t 1) is trivial. For the
induction step, suppose that A is an r r 0,1 matrix of rank r r(A) >= ml(k, t) satisfying
the conditions of the claim. Assume without loss of generality that the first row has 1 in
the first g columns and 0 in the rest, and that the first column has 1 in the first f rows and
0 in the rest. We have 1 =< f, g k. Let B be the submatrix of A formed by the last r -f
rows and C the submatrix of B formed by the last r g columns (see Fig. A1). We have
r(B) r f :ff r(C) >= r-j:- g >= r 2k >= 2k(t- 1) + 1 2k 2k(t- 2) + 1 ml(k, t- 1).

g

III!i" I000,i 0

C

FIG. A1

Since every row and column of C does not contain more than k l’s, and
r(C) >-ml(k, t-1), it follows from the induction hypothesis that C contains L-1 as a
submatrix. This submatrix combined with the first row and column gives/t.

CLAIM 2. Let k, be any positive integers, and m2(k, t) (k + 1)ml(k, t). IrA is any
0,1 matrix of rank r(A) >- m2(k, t) and every row of A has no more than k l’s, then A
contains It.

Proof. Let $1 be the set of columns with at most k l’s and $2 the rest of the
columns. The number of l’s in the r r matrix of full rank r r(A) >= m:(k, t) is at most
rk since every row has at most k l’s. Thus, IS21(k + 1)<=rk(r-[Sll)(k + 1)<=rk
ISal(k / 1)>--r>=m2(k,t)=lSll>=ml(k,t). If A’ is the submatrix of A formed by the
columns in $1, then A’ satisfies the conditions of Claim 1 and therefore contains/t. [3

A similar result holds if the columns of A (instead of the rows) satisfy the condition
of Claim 2. Also, similar arguments can be used to show that if A is a 0,1 matrix of rank
r(A) >= m2(k, t) every row (or every column) of which has at most k O’s, then A contains
Bt. We are ready now for the proof of the proposition.

Proof of proposition. We will show that for any (fixed) positive integer there is a
function ft(s) where s -> 1, such that if the rank of a 0,1 matrix A satisfies r(A)>=ft(s)
then A contains either L or Bt or Ds. The proposition then follows by taking R (t) ft(t).

We use induction on s. For s 1 we have ft(1)= 1. For the induction step let
jet(S)- m(m2(ft(s- 1), t), t), where ml and m2 are defined as in Claims 1 and 2. Let A
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be an r x r matrix of rank r >-_ft(s). If every row and every column of A has no more than
mz(ft(s-1), t) l’s, then from Claim 1 A has to contain L. So assume without loss of
generality that the last row of A has at least mz(ft(s-1), t)+ 1 l’s. Let A’ be the
submatrix of A formed by the columns in which the last row has an 1 and all the rows but
the last (see Fig. A2). We have r(A’) >- mz(ft(s-1), t), since all columns of A are
linearly independent. Let C be a submatrix of A’ formed by r(A’) linearly independent

C

FG. A2

rows of A’ (and all columns). If every column of C has at mostft(s 1) O’s, then by Claim
2 C contains Bt. Thus, let us assume that the last column of C has a 0 in more than
ft(s-1) rows of C and let C’ be the submatrix of C formed by these rows and all
columns of C but the last (see Fig. A2). All rows of C’ are linearly independent and thus
r(C’)>-ft(s- 1). By the induction hypothesis C’ contains either It or Bt or Ds-1. In the
last case Ds-1 together with the last row and column of A’ forms Ds.

Note. An upper bound for R (t) can be computed from the recursive equation we
gave for ft(s). Since all we need for our purposes is the existence of R (t) we have taken
no care in giving a tight proof, and thus we don’t expect this upper bound to be tight. It
would be an interesting combinatorial problem to find better bounds for R (t).

Following our discussion in 5, the proposition we just proved implies similar
results for families of sets and bipartite graphs. For families of sets the result reads" For
every t_-> 1 there is a number N(t) such that if F is any family of at least N(t) distinct
subsets of a set X, then there is a subset X’ of X such that the restriction of F on X’
contains either disjoint nonempty sets, or sets whose complements with respect to X’
are disjoint and nonempty, or a chain of different nonempty sets (i.e., a proper chain
of nonempty sets). An upper bound for N(t) is 2R(t).

In terms of bipartite graphs we have: For every there is a number M(t) such that
every bipartite graph G with v(G) >-M(t) contains as an induced subgraph either a set
of independent edges (L) or the graph Bt or Dt. It suffices, for example, to take
M(t)=2N(t).

Acknowledgments. I would like to thank J. D. Ullman for the careful reading of an
earlier version of the manuscript, and a referee for greatly simplifying the proof of
Lemma 1.
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AN O(n log2 n) ALGORITHM FOR THE kth LONGEST PATH IN A TREE
WITH APPLICATIONS TO LOCATION PROBLEMS*

N. MEGIDDO, A. TAMIR, E. ZEMEL AND R. CHANDRASEKARAN’t

Abstract. Many known algorithms are based on selection in a set whose cardinality is superlinear in
terms of the input length. It is desirable in these cases to have selection algorithms that run in sublinear time in
terms of the cardinality of the set. This paper presents a successful development in this direction. The methods
developed here are applied to improve the previously known upper bounds for the time complexity of various
location problems.

Key words, polynomial algorithm, selection, location theory, tree, p-center

1. Introduction. It is now well known that the kth largest element of an ordered
set S can be found in linear time in the cardinality of S [1]. Since the discovery of that
fact, it has been observed by several authors that in some structured sets, the kth largest
element may be found even faster. For example, if S X + Y (where both X and Y
consist of n numbers) then the kth largest element of S can be found in O(n log n) time,
even though ISI n 2. This was first achieved by Jefferson, Shamos and Tarjan [15] and
by Johnson and Mizoguchi [11], and later generalized and improved by Frederickson
and Johnson [6]. A more general case is the following. Suppose that the set S is
partitioned into m sorted subsets such that the kth largest element in each subset can be
found in constant time. Fox [5] finds the kth largest element of S in O(m + k log m)
time. Galil and Megiddo [7] solve the problem in O(m log2 (IS[/m)) time. The basic
idea of [15] can be used to solve this problem in O(m log ([S[/m)) steps. This was
improved by Frederickson and Johnson [6], who solve the same problem in
O(max {m, c log (k/c)} time, where rain (k, m). This is also proved to be an asymp-
totically optimal bound [6], [10].

The structure of $ in this latter example is quite abstract. It remains an open
question how other structured sets should be handled. For example, suppose that S is
the set of all pairs of nodes of a graph, ordered according to the distance (along a
shortest path) between the members of the pair. How can we exploit this structure on S
for finding the kth largest element? Another interesting example is when S is the set of
maximum flows between pairs of source-sinks in a capacitated network.

In this paper we develop an algorithm for the kth largest element in the set of all
simple paths in a tree with edge-lengths. The cardinality of this set is O(n 2) (n is the
number of nodes in the tree and each simple path is characterized byits two endpoints).
However, our algorithm runs in O(n log2 n) time. This fast method of selecting an
internodal distance is shown to be very useful in the solution of different combinatorial
location problems.

The organization of the paper is as follows. In 2 we review the two basic
approaches to selection in an ordered set with sorted subsets. In 3 we discuss a
decomposition scheme for trees, on which the partition of the set of paths is based. The
partitioning itself is developed in 4 and the solution of the selection problem in the set
of paths is summarized in 5. A brief survey of four different location problems is given
in 6. In 7 we apply the methods developed in this paper to obtain improved
algorithms for the location problems defined in 6. In 8 we briefly discuss the more
general case of weighted location problems.

* Received by the editors May 5, 1979, and in revised form April 21, 1980.
t Northwestern University, Graduate School of Managemen.t, Evanston, Illinois 60201.
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2. An overview of selection algorithms. Suppose that an ordered set $ is parti-
tioned into m subsets $1, $2, , S,, such that the kth largest element in each subset can
be found in constant time. We distinguish between two methods of selection in $. The
first one, which we like to call "trimming," is attributed to Jefferson, Shamos and Tarjan
[15] and is also used in Frederickson and Johnson [6]. The second, which we call
"splitting," is a generalization of linear-time median finding [1] and is used in Johnson
and Mizoguchi [11] and in Galil and Megiddo [7]. For simplicity of exposition, we
assume in this section that all members of S are distinct. Handling the general case of S
being a multiset is similar (see the above references). At a given iteration, let SI

_
$i be

the set of elements still under consideration with S’= [.-Ji=l S.
A. Trimming. Suppose that we are looking for the kth largest element x of S’, and

assume without loss of generality that k -< 1/2IS’[. We first find the lower quartile, yi, in
each S. Next, we consider the set Y {Y l, y,} where each yg is weighted by IS’ [,
and we find the (weighted) lower quartile y of Y. Obviously, at least one half of the
elements of S’ are greater than y, and hence y <_-x. We can now reduce the set S’ by
discarding the lower quarter of each subset S for which yg-<y. This amounts to
discarding 1 of the set S’, and the problem now reduces to finding the kth largest
element of the remaining set.

B. Splitting. In this method we first find the median zi in each S. Next, we find the
weighted median z of Z {zl,’’’, z,} (relative to the weights [SI[). Obviously, z is
between the lower and upper quartiles of $’. By computing the rank of z in S’, we can
tell whether z _-> x or z < x. In the latter case, the lower half of every S’i such that zi <= z
can be discarded, and we look for the kth largest element in the remaining set.
Otherwise, the upper half of every SI such that zi >= z is discarded, and we look for the
(k- 1/41S’l)th largest element of the remaining set.

It is interesting to compare the logic and overall efficiency of splitting and
trimming. One difference between the two methods lies in the position of elements they
eliminate. At any given iteration, splitting may eliminate elements from the upper or
lower quartiles of S’, depending on the outcome of a logical test. In contrast, the
elimination process of trimming is not based on any test, and the elements eliminated
always come from lower parts of S’ if k-<_ ]S’[ and from its upper part if the reverse
condition holds. As will be pointed out in 7, a procedure similar to splitting (i.e., based
on a logical test) turns out to be preferable for solving various location problems on a
tree. As for the efficiency of identifying the kth element of S, we note that, in the worst
case, splitting eliminates at each iteration more variables than trimming (four times as
many in the formulation given above, although the difference can be reduced by a slight
modification of the trimming procedure). However, the corresponding reduction in the
number of iterations enjoyed by the splitting method is more than offset by the effort
involved in identifying the rank of z in S’ which is necessary to support the logical
test. Thus, while the overall complexity achieved by the splitting procedure
is O(m log2 (IS]/m)) the corresponding complexity for trimming is only
O(m log (IS]/m)).

Our algorithm for the kth longest simple path in a tree exploits the structure of the
set $ of paths in the following way. We partition $ into rn O(n log n) subsets
$1,""", S,, with the following properties.

(i) The kth largest element in any Si, as well as its length, can be computed in
constant time.

(ii) All the elements of each Si are paths leading from the same node l)i to other
nodes of the tree.
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(iii) The k largest and the k smallest elements of any Si can be discarded in
constant time.

(iv) The partitioning process is carried out in O(n log2 n) time and O(n log n)
space.

Once this partition is obtained, one can employ the trimming algorithm for finding
the kth longest path. This amounts to a time bound of O(n log2 n). Details are worked
out in the following sections. The partitioning is carried out by a divide-and-conquer
algorithm on the tree T. The first step in this direction is an efficient decomposition of
the tree which we describe in the next section.

3. Decomposition of trees. In this section we show how to decompose a tree T
into three (or fewer) subtrees such that precisely one node of T belongs to more than
one subtree and such that each subtree has no more than n/2 + 1 nodes (where the set of
nodes of T is N ={1, , n}).

Suppose that the tree T is given in the form of lists N(i) of all the neighbors of a
node (i 1,..., n). If and f are neighbors, then by removing the edge (i, j) two
subtrees of T are induced. We denote by K(i, j) the number of nodes in that subtree
which contain node i. (Note that K is defined on ordered pairs of neighboring nodes.) It
is easy to verify the following:

(1)
(2)
(3)
(4)

If is a leaf where N(i) {j} then K(i, j) 1.
K (i, j) +K (], i) n for all pairs of neighbors.
For all j, Yiri)K (i, ])= n 1.
If j, k eN(i) (j k) then g(j, i)<K(i, k).

In order to decompose T in the manner described above, we need to find a node x
such that for all N(x), K(i, x) <= n/2. The existence of such a node, referred to as the
centroid of T, was observed by Jordan in 1869 [12]. Linear time algorithms for finding
the centroid appear in Goldman [8] and Kariv and Hakimi [13]. For the sake of
completeness we provide such an algorithm below.

We first note that the computation of all the K(i, j)s can be carried out in O(n)
time. This is done as follows. Fix one of the nodes r as the "root," so that every other
node has a "father" f(i) relative to r (i.e., f(i) is the node following on the path from
to r).

The quantities K(i,f(i)) (i r) can be computed recursively by K(i,f(i))=
1 +i:f(i)=ig(j, f(j)), and the computation of all K(i, j)s can be completed by (2). The
whole process takes O(n) time.

Once all the K (i, j)s are known, the following process can be used to find a node x
such that K(i, x) <-_ n/2 for all N(x).

(1)

x*-I
if K(i, x) <- n/2 for all N(x) then stop
else (there is precisely one N(x) such that K(i, x) > n/2) x
go to 1

This procedure generates a path 1 Xl, Xk X such that K(Xi+l, xi) > n/2
(]= 1,..., k-1). By (4) and (2), the function m(xi)--maxilV(xj)K(i, xi)is monotone
decreasing along that path, and hence an Xk =X is reached for which m(x)<-n/2.
Obviously, this procedure takes O(n) time.

We now claim that the set N(x) can be partitioned into three or fewer subsets N1,
N2, N3 such that EiN K(i, x)<-n/2. This is easily proved as follows. Assume N(x)=
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{/A1, Vp}. By (3) there is s (1 _-< s -<_ p) such that

s-1 n-1 p n-1Y K(vi, x)<= and K(vi, x)<-_.
/=1 2 i=s+l 2

The desired subsets are N1 {vl," , vs-1}, N2 {vs}, N3 {V+l, , vp}.
Finally, the partition of N(x) induces a decomposition of T into three or fewer

subtrees T1, T2, T3; namely, T. is the subtree consisting of x and all the nodes accessible
from x via a member of N. (] 1, 2, 3). Obviously, x is the only node of T that belongs
to more than one such subtree, and also in each T. there are no more than (n/2)+ 1
nodes. The decomposition is carried out in O(n) time.

4. Partition of the set of paths in a tree. In the preceding section we described a
decomposition of a tree into three subtrees with a single node x common to the three of
them. We refer in this section to that node x as the "decomposer." In this section, $ is
the set of all simple paths in a tree T. Since there is a one-to-one correspondence
between pairs of nodes and simple paths in a tree, we also consider $ as the set of pairs of
nodes, ordered according to the internodal distances. We partition $ into subsets such
that the kth largest element in any subset can be found in constant time.

The essence of the partitioning algorithm is as follows. First, we find a decomposer
x (see 3) and we look at the three subtrees T, T2, T3 in the corresponding
decomposition. For each Ti (i 1, 2, 3), we compute all the distances from the node x to
all other nodes of T/, and we sort the set Si of all simple paths leading from x into Ti
according to these distances. Thus, the node x contributes three sorted subsets to our
partition of S. Next, for each node j x in T1 we can easily compute the sorted set of
distances from/" to all nodes of T2, since this is obtained by adding a constant (namely,
the distance between j and x) to all elements of $2. Analogously, for each j x in either
T or T2, we compute the sorted set of distances from/" to all nodes of T3, by adding the
distance between j and x to all elements of $3. Thus, each node j x of T contributes at
this stage two sorted subsets and each j x in T2 contributes one sorted subset to our
partition of S. We proceed by decomposing the subtrees T1, T2, T3, each along the same
lines described above, until all the paths (or equivalently, pairs) are enumerated.
Throughout this process, we skip paths leading to or from nodes that have previously
served as decomposers, to make sure that each pair of nodes is taken into account
precisely once.

The number of subsets created during the partitioning process is estimated as
follows. Let M(n) denote the maximum number of subsets in such a partition of S for a
tree with n vertices. The tree is decomposed into three subtrees. If n l, n2, r/3 are the
numbers of nodes in these subtrees, then nl + n2 + n3 n + 2 and ni <= n/2 + 1. Each
node contributes no more than three subsets to the partition of $, and we proceed,
recursively, with the subtrees. Hence

M(n)<=3n +M(nl)+M(n2)+M(n3),
and it follows that M(n)= O(n log n).

We now estimate the running time T(n) of the partitioning process. It is very
essential to note here what is meant by "creating" subsets. The creation of the subsets
contributed by the first decomposer requires O(n log n) time, since we need to compute
all distances from the decomposer to all other nodes and then sort them. However, the
creation of other subsets (i.e., subsets contributed by nondecomposers) requires only a
few pointers, as discussed later in this section. Thus, the general step in the partitioning
process consists of: (i) tree decomposition, O(n); (ii) computing all distances from a
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single node, O(n); (iii) sorting the set of all these, distances and discarding those
associated with previous decomposers, O(n log n); (iv) creating the subsets, pointers
and constants, O(n). Thus, the recursive relation is

T(n) Cn log n + T(n 1) -]’- T(n2) + T(n3),

and therefore T(n) O(n log2 n).
Next, we discuss the storage aspects of the partitioning algorithm. Whenever a

node x serves as a decomposer for a subtree T1, three sorted sets R 1, R2, R3 of distances
from x into T1 are generated. We distinguish between the sets Ri and the subsets $i that
actually constitute our partition. Each set is stored as an array, and the total space for
storing these arrays is O(n log n). (This can be proved by induction.) The partition of S
into subsets $,..., Sin, as well as the reduced forms of S that are processed by the
trimming or splitting procedures (see 2), are handled as follows. Each Si is charac-
terized by four items. First is a pointer to the corresponding R from which $i is created.
Second is a constant number that should be added to an element of Ri in order to get an
element of $i. Third and fourth are two pointers needed to specify the boundary of that
portion of Ri from which $i is generated. (These two pointers are at the start the same
for all the Sis that rely on the same Ri, but during the trimming or splitting process they
may become different.) Thus, the total amount of storage that we need is O(n log n). In
addition, at most O(n log n) storage is required in order to properly maintain the set of
trees Ti which are generated throughout the algorithm.

We conclude this section with a pidgin Algol description of the partitioning
process. It receives as input a tree T with a set of nodes N {1, , n} and produces as
output a partition S1,’", S, of the set of internodal distances of T, where m
O(n log n). The sets $1,"’, S,, satisfy the properties (i)-(iii) of 2. The overall
complexity bounds for the algorithm are O(n log: n) time and O(n log n) space. The
procedure uses the following terminology:

Q
B
Ri

k
(k)
t(k)

current set of subtrees not yet subdivided.
current set of nodes which have not as yet served as decomposers.
]th sorted set of distances between a decomposer and the nodes of a
subtree.
index for set Sk used in the partition.
a label identifying the index of subset R used to create Sk.
the constant increment which must be added to each element of Ri to get
the corresponding element of S.

In addition, the procedure uses the following subroutines in the course of its execution:

CENTROID (T)
SUBTREE (T, x, i)

DISTANCE (T, A, B)

SORT (D)

Given a tree T returns its centroid.
Given a tree T, its centroid x and an index 1,. , 3,
returns the subtree Ti (see last paragraph of 3).
Given a tree T and two sets of nodes A and B returns a
vector of all the distances d (i, ), A, j B, - j.
Given a vector D, returns .the entries in a sorted way.

Procedure DECOMPOSE (T)
begin
QT
BN
j,-O
kO
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while C) do
begin

choose T’ from O
x - CENTROID (T’)
for 1,..., 3 do

begin
Ti SUBTREE (T, x, i)
Ni - Nodes of T/
NI Ni (’1B\{x}
De DISTANCE (T. x, N’i
j-j+l

R SORT (D)
end

for each ] N do
begin
kk+l
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end
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end
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end
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end
for 1,..., 3 do

begin
i lNle 3 tUen O O U Ti
else
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Ri SORT (Di)
kk+l
()j
()o

end
end
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5. The kth longest path in a tree. Once the partition of the set S of all paths into
m O(n log n) subsets is established, one can use the techniques introduced in 2 to
find the kth longest path. This amounts to an effort of O(m log n/m)= O(n log2 n) if
one uses trimming and an inferior bound, of O(n log3 n), if splitting is used. As the
effort involved in generating the partition of S is also O(n log2 n), we can conclude that
the overall effort for finding the kth longest path in T is O(n log2 n).

Can this bound be further beaten down? Possibly, but the margin for improvement
is slim. An O(n log n) lower bound on the complexity of the problem can be obtained in
a number of ways. The following simple reduction was offered to us by one of the
referees. Consider the tree of Fig. 1 where the heavy line in the center is chosen long
enough to ensure that the longest paths in T include one element from X and one from
Y. Thus, the well-known O(n log n) bound on selection in X + Y is valid for our
problem as well.

heavy

weighted with weighted with
elements of X elements of Y

FIG.

6. Location problems. We consider here the following different problems of
location. First, we assume that a tree T is embedded in the Euclidean plane, so that the
edges are line segments whose endpoints are the nodes and whose edges intersect one
another only at nodes. Moreover, each edge has a positive length. (Any tree with
positive edge-weights can be so embedded in R a). This embedding enables us to talk
about points, not necessarily nodes, on the edges. We then denote by d(x, y) the
distance, measured along the edges of the tree, between any two points x, y of the tree.

In a typical location problem, one has to select p points of the tree under different
assumptions depending on the particular model considered. In each model, we dis-
tinguish between the "supply" set E (this is the set from which we select the p points)
and the "demand" set A, with reference to which the objective function is defined. The
p-center problem seeks to choose p points Xl,..’,x, from E so as to minimize
supya minl__<i__<v d (Xi, y). The four special cases, where the sets Y_, and A are either the set
of all nodes or the set of all points of the tree, have been discussed and given different
algorithms in [2], [3], [4], [9], [13].

Following Handler [9], we use the categorization scheme {}/{}/p, interpreted as
follows. The first cell describes the supply set Y_,, which could be either the set N of all
nodes or the set A of all points. The second cell describes the demand set A, which could
also be either N or A. The third cell indicates the number of points that we have to select
from 2,. For example, N/A/2 refers to selecting two nodes so as to minimize the
maximum (over all points of the tree) of a distance between a point of the tree and the
selected node that is nearest to that point. Kariv and Hakimi [13] provide O(n :z log n)
algorithms for A/N/p and N/N/p. Chandrasekaran and Tamir [3-1, using, a unified
approach, solve A/NIp, N/N/p and N/A/p in O(n :z log n) time. The A/Alp problem
is solved in [4] in O(n :z log2 p) time.

All the algorithms mentioned above are based on the same principle. First, a finite
set R of real numbers, which is known to contain the optimal objective function value, is
identified. Next, we search R for the minimum value which is feasible in the following
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sense. A value r > 0 is feasible if there exists a set of p points Xa, ", x, of Z such that
the distance between any demand point y and its nearest xi, is not greater than r.
Efficient algorithms are known for deciding whether a given r is feasible, and hence the
location problem can be solved by a binary search of R using such a feasibility test. For
all four problems this test runs in O(n) time. (See 13 for N/N/p and A/NIp and [4] for
N/Alp and A/Alp.) The set R of relevant values in the four different problems is given
in Table 1 (se+ [3], [4], [13]).

TABLE

Model The set R

N/NIp {d(i, ])}i,izv
A/NIp {1/2d(i,i)},,jN
N/Alp {d(i, j), 1/2d(i,
A/a/p {(1/2k)d(i,

Along the lines discussed above, each one of these problems can be solved by
computing the set R and then searching R by repeatedly using linear-time median
finding [1]. This amounts to O(IRI+ n log IRI) time where IR is the dominant term.
Thus, in order to improve this upper bound, one has to bypass the computation of the
set R and still be able to search in that set. This is essentially where we apply the
techniques developed in the previous sections.

7. Improved algorithms for location problems. The sets R of relevant values for
the various versions of the p-center problem bear a close resemblance to the set $ of
internodal distances on T. Thus, we can use any algorithm for finding the kth longest
element in S to support a binary search over R. Such search involves at each iteration
identifying the median element of R, performing the feasibility test and finally discard-
ing one half of the elements. However, we note that identifying the median element at
each iteration may be more than one needs. In fact, one can do better by applying a
search strategy similar to that of splitting.

Assume that the set R is partitioned into m subsets R1, , R, such that the kth
largest element in each subset can be found in constant time. We can employ the
following procedure. First, we find the median element zi in each subset Ri. Next, we
find the median element z in the set z (Zl," Zrn) relative to the weights [Ril. Thus,
z is between the lower and upper quartiles of R. This value z can now be tested for
feasibility. The test takes O(n) time and determines whether the optimal value v is
greater than z (this is when z is not feasible) or not. If v > z, we discard the lower half
(including zi) from each Ri such that Zi Z. If V --< Z, we discard the upper half (including
zi) from each Ri such that zi >- z, with the exception that z itself is not discarded. The
search then proceeds with the reduced set R until the optimal value is singled out.

Since each reduction eliminates one quarter of the remaining set, the number of
such stages is O(log IR I). Following is a more detailed analysis for the particular cases.

A. N/NIp. Here R is the set of the internodal distances. It follows from 4 that R
can be appropriately partitioned into O(n log n) subsets where the partitioning process
takes O(n log2 n) time. During the searching process, in each iteration we need
O(n log n) time for identifying the element z and O(n) time for the feasibility test.
Thus, the searching stage takes O((n + n log n)log IRI) time, and hence the location
problem is solved in O(n log2 n) time.
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{d(t, ])" i, ] N} in this case, the location problem is solvedB. A/N/p. SinceR
by the same partition which is used in N/N/P. Hence, the time bound for this case is
O(n log2 n).

C. N/A/p. The relevant set here is R {d(i, ]), 1/2d(i, ])" i, ] N}. Thus, we use
essentially the same partition as the one for N/N/p and A/N/p, but in terms of pairs of
nodes, each pair is counted twice: once for the distance d (i, ]) and once for the number
d(i, ]). This implies the same time bound of O(n log2 n) for this case too.

D. A/A/p. This last case is slightly more complicated than the previous ones.
Since R ={(1/2k)d(i,/’): i, ] N, k 1,..., p} in this case, one way of partitioning R is
by using the partition of 4 for the set of pairs of nodes and replicating each subset p
times, so that each d(i, ]) is multiplied by all the numbers 1/2, 1/4, , , 1/2p. Thus, R is
partitioned into m O(pn log n) subsets while [R I= O(pn:Z). By applying the search-
ing method, R is successively reduced by a factor of one quarter. Let the set of
remaining variables at a given iteration be R’, and denote by T([R’ I) the time required
by the algorithm to handle this set. We now have

T(R’) <-_ Cim + c2n + T(3/4IR’I).
When the cardinality of R’ reaches the level IR’I- O(m) we can search over R’ directly
using the method of linear-time median finding. This involves, at each iteration, finding
the median element and performing the test. The total effort involved in the
identification of all the median elements is clearly O(m). Also, since the number of
iterations is O(log m), and since each test requires an effort of O(n), the total effort
associated with handling a set of cardinality O(m) is O(n log m)= O(m). Solving the
recursion relation with the initial condition T(m)= O(m) we then get that T(IN’I)=
O(rn log (JR’l/m)) and hence the location problem is solved in this approach in time

0 pnlognlog iogn =O(pnlogn).

There is an alternative partition that in some cases leads to a better upper bound.
We first compute the 1/2n (n 1) internodal distances (in O(n) time). Then we partition
R into m=1/2n(n-1) subsets of the form Ri={(1/2k)d(i,]) k=l,...,p}, where
computing the kth largest element in each set is trivial. Applying the searching
procedure we obtain the following bound:

O(m log ([RI/m))= O(n log p).

To summarize, the different cases are solved with the upper bounds in Table 2.

TABLE 2

Model Upper bound

N/NIp O(n log n)
A/NIp O(n log n)
N/A/p O(n log n)
A/Alp O(n min {p log n, n log p})

8. Location problem with weighted demands. A more general type of location
problem is where the demand is weighted. Specifically, when A N we may have
weights wi > 0 (i N) and seek to select xl, , xp X so as to minimize

max {w min d(xi, i)}.
iN
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It is shown in [3], [13] that the relevant set R generalizes to {wid(i, j)}i,ieN in the N/N/p
case and to {(wiwi/(wi + wi))d(i, j)},N in the A/NIp case. Both cases are solvable in
O(n 2) time [4], [13], but based on our method an O(n log2 n) algorithm for the
weighted N/NIp case can be constructed as follows.

Essentially, we consider the set S’ of all ordered pairs of nodes together with the
linear order induced by the weighted distances wid (i, j). The set S’ is partitioned, along
lines similar to those of 4, into O(n log n) subsets. All the pairs (i, j) in any subset are
with the same i, hence the restriction of the order to each subset is independent of the
weight w. All we have to do during the algorithm, is to multiply the kth largest distance
in a set corresponding to by the weight w. Thus the partition satisfies all the properties
that are required to obtain a bound of O(n log2 n).
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OPTIMIZATION PROBLEMS ON GRAPHS
WITH INDEPENDENT RANDOM EDGE WEIGHTS*

GEORGE S. LUEKER’

Abstract. Optimization problems on complete graphs with edge weights drawn independently, from a
fixed distribution, are considered. Several methods for analyzing these problems are discussed, including
greedy methods, applications of Boole’s inequality, and exploitation of relationships with results about
random unweighted graphs. These techniques are illustrated in the case in which the edge weights are drawn
from a normal distribution; in particular, we investigate the expected behavior of the minimum weight clique
on k vertices. We describe the asymptotic behavior (in probability and/or almost surely) of the random
variable which describes the optimum; we also discuss the asymptotic behavior of its mean. Finally techniques
are demonstrated by which we may determine an asymptotic description of the behavior of a greedy algorithm
for this problem.

Key words, random graphs, optimization problems, normal distribution, weighted graphs, probabilistic
analysis, traveling salesman problem, cliques, Boole’s inequality, greedy algorithms, convergence in prob-
ability, almost sure convergence

1. Introduction. Many results have been proven about the properties of random
graphs. Some of these [1], [3], [9], [10], [12], [19], [26], [27], [29] deal with graphs
constructed by letting each possible edge be present with a specified probability; one
then tries to estimate the probability that a subgraph of a given type will be present.
([11] may be considered a paper about random directed graphs.) We will call such a
problem a subgraph existence problem. Another area of interest is algorithms on graphs
in which all edges are present but weights are assigned to the edges according to some
distribution; one then tries to find the minimum weight subgraph of a given type. We
will call such problems subgraph optimization problems; they are the subject of this
paper. For example, if a traveling salesman problem is constructed using the Euclidean
distance between n points chosen from a uniform distribution in the unit square, then
asymptotically the optimum solution tends to be proportional to n 1/2 [2]; very efficient
algorithms have been designed whose asymptotic behavior tends to be optimal [23],
[21 ]. In this paper we assume that the edge weights are independent; see [31 ], where a
similar, though slightly more general, model is discussed. The assignment problem for
the case in which edge weights are chosen independently from various distributions has
been analyzed by Borovkov [4]. For this problem, it appears that tight bounds are
particularly difficult to obtain in the case in which edge weights are chosen from a
uniform distribution; this case has been further pursued by Walkup [30]. Similarly, for
the traveling salesman problem it appears to be particularly difficult to obtain tight
bounds on the behavior of the true optimum in the case where the edges are drawn from
a uniform distribution; see [24] for an algorithm for this case (with directed graphs)
which tends to give nearly optimum solutions for large n.

In 2, we present some basic definitions and facts. In 3, we will discuss a very
general technique which has been used by a number of researchers for obtaining lower

* Received by the editors March 21, 1978, and in final revised form May 30, 1980. This work was
supported by the National Science Foundation under grants MCS77-04410 and MCS79-04997. This paper
presents and extends the results in Maximization problems on graphs with edge weights chosen from a
normal distribution, presented at the 10th ACM Symposium on Theory of Computing, held in San Diego
in May, 1978.

t Department of Information and Computer Science, University of California, Irvine, California 92717.
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bounds on the values of solutions to optimization problems, based on Boole’s inequal-
ity. Section 4 discusses a very general technique which has been used by a number of
researchers for obtaining upper bounds on these values, using theorems about subgraph
existence problems. Surprisingly, combining the bounds discussed in 3 and 4
sometimes enables us to make rather precise statements about the asymptotic behavior
of the minimum, as will be demonstrated in 5. Since many optimization problems are
NP-complete [17], [22], it is useful to investigate the behavior of heuristics. In 6 we
will investigate the behavior of some greedy algorithms.

2. Definitions. We will frequently discuss probabilities and expected values. IfX is
a random variable and A and B are events, let P{A} be the probability of A, P{AIB} be
the probability of A given B, E[X] be the expected value of X, and E[XIA] be the
expected value of X given A.

Throughout this paper, n will be a random structure which is a complete,
weighted, labeled graph on n vertices; we will assume the vertices are labeled
1, 2,. , n. Weights are chosen, independently, from a distribution whose probability
density function (pdf) is f and whose (cumulative) probability distribution function
(PDF) is F; we assume that F is continuous. X will denote the random variable whose
PDF is F. G will denote some particular weighted complete graph. The weight of the
edge joining vertex v and w will be denoted d(v, w). Depending on the application, n
may be undirected or directed; in the former case, d (v, w) is of course symmetric. When
we make asymptotic statements about the behavior of some random variable which is a
function of q3, we will assume that an infinite sequence , n 1, 2,. , is considered,
with each graph drawn independently.

Let S be a set of labeled graphs on n vertices; again, the vertices are labeled
1, 2, , n, so there is a natural one-to-one correspondence between the vertices of an
element of Sn and the vertices of 3n. All elements of S, are assumed to have the same
number of edges. For any H in S, and any weighted graph G, let W(G, H) be the
number found by summing, over all edges in H, the weight of the corresponding edge in
G. For a given G, we wish to choose H in S so as to minimize W(G, H); this minimum
will be called Wmin(G). Note that, for example, if S, is the set of the (n 1)!/2 cycles on
n vertices in an undirected graph, Wmin(G) gives the solution to the traveling salesman
problem. We wish to investigate the expected behavior of Wmin(C4.n). (Often in an
optimization problem we wish to maximize some quantity; for uniformity, however, we
will always assume that we are minimizing quantities. The methods used here could also
be applied to maximization problems.)

In this paper we will often wish to discuss inequalities which hold approximately,
most of the time, for large enough n. In order to make such statements precisely, we
need to introduce some notation. Let Y and Z be sequences of reals. For any n and
e > 0, consider the following two propositions:

(1)

(2)

If for every e >0, (1) (respectively (2)) holds except for finitely many n, we will write
Y, < Z, (respectively Y, > Z,). If for every e > 0, both (1) and (2) hold except for
finitely many n, we write Yn---Z,.

Now let Y, and Z, be sequences of random variables; we will not assume that Y,
and Zn are independent, but we will assume that variables with different indices are
independent. (In our applications, each Z, will often be a constant.) Note that now (1)
and (2) are events rather than simple predicates. Let Pl(n, e) be the probability that (1)
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fails and P2(n, e) be the probability that (2) fails. If for each e > 0, Pl(n, e) (respectively
P2(n, e)) goes to 0 as n approaches infinity, we will say Y, < Z, (respectively Y, > Z,)
in probability. If both P1 and P2 approach zero for all e > 0, we write Y, .--Z, in
probability. (The phrase "in probability" will be abbreviated "(pr)".)

A much stronger notion is that of almost sure behavior. An asymptotic statement
holds almost surely if the set of sequences Y, and Z which do not obey the statement
has probability measure 0. Suppose that, for each e >0, with probability 1, the
sequences Y and Z, satisfy (1) except for only finitely many n. Then by an argument
like that of [5, Theorems 4.1.1, 4.2.2] we may write

(3) Y, <Z almost surely.

("Almost surely" will be abbreviated "(a.s.)".) By the Borel-Cantelli lemmas (see, for
example, [5]), an equivalent definition of (3) is

Ve >0, Pl(n,

We may similarly define statements that Y, >Z or Y, ---Z, almost surely. Sometimes
we will show that an asymptotic statement which is true in probability is not true almost
surely; it then follows that the statement is almost surely false (see 1-5, Corollary, p. 78]),
even though it is true in probability!

Note that statements about probabilistic convergence and convergence of expec-
ted values are somewhat independent. In particular, either, both or neither of the
following two statements may be true"

E[Y,,]---E[Z,,],

Y Z. (a.s.).

For more information and examples, see [5] and [31].
We will illustrate the methods discussed in this paper in the case in which f is the

unit normal distribution. If X is some random variable, let Xi:, denote the random
variable obtained by selecting the ith smallest of n independent observations of X; this
is called an order statistic of X. For more information about order statistics, see [7], [28];
in particular, it is known that in the unit normal case, as n approaches infinity, the PDF
of (2 log n)1/2[Xn: -(2 log n)1/2] approaches exp(-e-X). The rate of approach is quite
slow, however (an observation which [7] attributes to 16]). The following related obser-
vations, which are well known or easily established, are useful.

FACT 1. Let X be a unit normal variable and let A be an event with probability p.
Then, as p - 0,

-1)1/2(a) IE[XIA]I < (2 log
(b) E[IXIIA] < (2 log p

FACT 2. Let X be a unit normal variable. Then as n
(a) E[X:,,] -(2 log n)l ]2.

Moreover, ]’or any e with 0 < e < 1, as n c,
(b) P{XI:, ->-(I-e)(2 log n)l/2}<exp (-n).
(c) P{XI:, _-< -(1 + e)(2 log n)1/2} nF(-(1 + e)(2 log n) 1/2)

(R)(n-2-2(log n)-1/2).
Note that for any k, and any e > 0,

lim n k exp (-n ) 0;
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we will describe this by saying that exp (-n ) swallows polynomials. Note also that we
may conclude from part (b) that

XI., < -(2 log n)l/: (a.s.),

while on the other hand, from part (c),

XI., > -(2 log n)/2 (pr. but not a.s.).

Intuitively, this is because the minimum cannot be greater (algebraically) than some
bound unless all n observations are greater than the bound; for it to be less than the
bound, only a single observation needs to be low. This sort of behavior will arise again
when we consider the problem of finding minimum weight cliques.

FACT 3. LetX be a unit normal variable and let F be its PDF. Then, as p O,

P(X <- (1 + e )F-(p)lX -<- F-a (p)} O(p:+2(-log p)+2/2).
Now let F again be an arbitrary PDF, and f the corresponding pdf. Let X*’ be the

random variable corresponding to the sum of m random variables chosen indepen-
dently according to F, and let F*" be the corresponding PDF. Note that if F is unit
normal, then

(4) F*’(x)=F(m-a/Zx).
In order to discuss minimization problems, we will need to discuss the expected

value of a sum given that a certain event is true; the following notation will be helpful. If
m is a positive integer and p is a real in (0, 1], let

B (m, p, F) E[X*" IF*" (S*) -<_ p 3.
See Fig. 1. Note that if A is any event with probability p, then

E[X*’ IA >- B m, p, F);

note also that if F is unit normal,

(5) B(m, p, F)--- -(2m log p-1)a/:.

\F *m(’x)

FIG. 1. Illustration of B(m, p, F).- The shaded area in this figure illustrates the event F*’ (X*") <- p. The
expected value ofX*" in this event is B(m, p, F).

3. A lower bound. In this section we derive a simple bound on the expected
behavior of Wmi.(.) and on the PDF of Wmin(.). The method is a straightforward
application of Boole’s inequality, which can be a useful tool for examining distributions
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of extrema; see [6], [7], [14]. Donath [8] used a combinatorial argument which, upon
examination, is quite similar to the method to be used here. See [15] for another
application of this inequality to an optimization problem; there a problem involving
points distributed uniformly over the Euclidean plane was investigated. Let Mn be the
cardinality of Sn recalling that each element of Sn has the same number of edges, let m
be this common number.

LEMMA 1.

P{Wmin(n) <= x} <=MnF*mn(x).

Proof. We have

P{Wmin(n)X}

P{::iH S, such that W(Cgn, H) -<_ x (by the definition of Wmin)

<-_ y_, P{W(n, H) <--x}
It Sn

(by Boole’s inequality [14, p. 23])

y’. F*m,,(x)
HSn

(since each H has m, edges)

MnF*""(x).

COROLLARY 1.

E[ Wmin((n)] B (m,, M-1, F).

Pro@ Note that if a random variable had a PDF of min (1, M,F*""), its expec-
tation would be precisely B(m,, M-a, F). See Fig. 2. FI

1--N

FIG. 2. Illustration for Corollary to Lemma 1. The lower curve gives the distribution of weights of a fixed
subgraph in Sn. The upper curve shows the bound, which follows from Lemma 1, on the true optimum. The
expected value of the variable described by the upper curve is precisely B(mn, M-1, F).
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If F is a normal distribution, it is especially easy to apply this bound.
COROLLARY 2. IfF is unit normal, and Mn approaches infinity, then

E[Wmin(Cn)]>-(2ran log Mn)1/2.

Proof. This follows immediately from the previous corollary and (5).
COROLLARY 3. IfF is unit normal, andM approaches infinity, then

Wmin(n)>-(2mn logM)1/2 (pr.).

Moreover, ifM- swallows polynomials, then this bound holds almost surely.
Proof. Using Lemma 1, we know that the probability of

Wmin(n) -(1 + e)(2m,, log M,,) 1/2

is bounded by

M,,F*mn(-(1 + e)(2m, log M,,)1/2)
M,F(-(1 + e)(2 log M,)a/z) (by (4))

O(M;2 (by Fact 2c).

Clearly this goes to zero if M, goes to infinity; moreover, if MS swallows polynomials,
the sum of this probability must converge, so by the Borel-Cantelli lemma the almost
sure convergence is established.

4. An upper bound. In this section we obtain an upper bound on the expected
behavior of Wmin(,). We will use some results about subgraph existence problems on
random graphs. Define a random structure d,.p. to be a graph on n vertices, where each
edge is present with probability p,, independently of the others. Then, for example, it is
known [27] that if we choose c large enough and let p,=(c log n)/n, then the
probability that ,.p. will have a hamiltonian cycle approaches one as n approaches
infinity. In fact, for any i, we can choose a c large enough so that ,.,. has a hamiltonian
cycle except with probability O(n -i) [1].

In this section, we discuss a simple lemma which uses the notion of thresholds to
relate results of this form to the optimization problems we are considering. (This notion
has been used by a number of researchers. For example, Garfinkel and Gilbert [18] used
it in connection with the bottleneck traveling salesman problem. Walkup [30] used an
argument involving thresholds in establishing an upper bound on the assignment
problem with uniform edge weights. I used it in the case of the normal distribution in
[25]. Weide stated it in a general form in [31].)

LEMMA 2 [18], [25], [31]. Let p, be a sequence of reals in [0, 1] and let q, be the
probability that ,Pn fails to contain an element of Sn. Then

(6) Wmin(Cn) < mnF-l(pn)

except with a probability of at most

Proof. Consider the following algorithm for choosing an element H of
1. Let a F-a(p,), and let Ho be some fixed element of
2. Let E be the set of edges in G whose weight is less than a call these light edges.
3. Let H be any element of S, all of whose edges are light, and stop. If no such H

can be found, go on to step 4.
4. Let H H0.

Note that, except with probability of at most q,, this algorithm returns a subgraph whose
weight satisfies the desired inequality.
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COROLLARY 1 [25]. Suppose that F is unit normal, and that qn goes to zero rapidly
enough that

qn(mn log q21 )1/2 o (mn (log pS1 )1/2).
Then

E[ Wmin((n)] -m,(2 log pl )1/2.

Pro@ Consider again the algorithm in the proof of the lemma. Note that with
probability approaching 1, the algorithm will return a subgraph H whose weight is at
most

mnF-l(pn) -m,(2 log p1)1/2.
Let FAIL be the event that we fail to find an element of S, among the light edges, and
must therefore set H to H0; the probability of FAIL is just q,. By Fact 1, and the fact.
that W(,, Ho) is normally distributed with variance m,, we may conclude that the
expected weight of H0 in the event FAIL is O((m, log q21 )1/2). Then by the hypotheses
of the corollary, the error we commit by ignoring the possibility of event FAIL is
negligible.

COROLLARY 2 [31]. If the sum of the qn in the lemma converges, then

Wmin(?n) m,F-l(p) (a.s.).

5. Some examples. In this section we show some applications of the methods
discussed so far. As mentioned earlier, we will assume that edge weights are unit normal
variables. The assignment problem for the normal distribution (and others) was
analyzed by Borovkov [4]. He observed that a lower bound for this problem may be
obtained by taking the sum of the minimum element in each row of the input matrix;
similarly, he observed that a simple greedy algorithm yields a fairly good upper bound.
Using these results he showed that

Wmin(C4,n)’-/’/(2 log/,/)1/2 (pr.).

His method could also establish a similar result for the traveling salesman problem.
Weide [31 has used results about the probability of finding a Hamiltonian circuit in

n.,. [1], [27], to show that for the traveling salesman problem with unit normal edge
weights,

Wmin((n)-r/(2 log t/) 1/2 (a.s.).

Using Corollary 3 to Lemma 1 we can easily extend this to also be a lower bound. A very
similar analysis holds for the assignment problem, so we obtain the following.

THF.OnFM 1. For the traveling salesman problem or the assignment problem, with
unit normal edge weights,

Wmin(Cn)--rt(2 log n) 1/2 (a.s.).

Of course, these examples do not provide much evidence for the power of the
methods discussed here, since we have only slightly extended a long-known result. The
bounds achieved in the next example, however, do not appear to be obtainable by
simple greedy arguments. Consider the problem of finding the weight of the lightest
k-clique in a graph G. (By a k-clique we mean a subgraph on k vertices, all of which are
adjacent. In the asymptotic statements which follow, we assume that k is fixed and n
goes to infinity.) I am not able to devise a greedy algorithm which gives good bounds for
this problem; in fact, in the next section we will see that the natural greedy algorithm, in
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probability, fails to produce a good bound. The results of the previous sections,
however, easily lead to a tight description of the behavior of this problem.

THEOREM 2. For the problem offinding the lighest k-clique in an n-vertex graph with
unit normal edge weights,

(a) Wmin(n) -k((k- 1) log //)1/2 (a.s.),
(b) Wmin(?n),---.-k((k 1) log n) 1/2 (pr. but not a.s.),
(C) E[Wmin(n)]’.-k((k- 1) log n) /2.

Proof. First note that if we let p, n -2/k-a)+, then the probability that ,,p. fails
to contain a k-clique is O(exp (--n/3)), which swallows polynomials. (This can be seen
by breaking the vertex set of ,,p. into n /3 sets each of size about n a-/3. With the pn we
have given, using [10, Corollary 4, Theorem 1], we know that for large enough n the

-1probability of failing to find a clique on any of these vertex subsets is less than e
independently of the other subsets. For a more clever way of decomposing a graph to
obtain such bounds, involving the notion of a projective geometry, see [3, proof of
Theorem 2(ii)].) Then since the number of edges in a k-clique is C(k, 2), where C(i, j)
denotes the number of combinations of things taken j at a time, Corollary 1 to Lemma
2 gives

E[Wmin(Cn)]-C(k, 2)(2 log n2/(k-l)-) 1/2

1/2

----k((k- 1) log n)1/2(1 )2

Since this holds for arbitrarily small e, we may conclude that

)1/2E[Wmin(n)]-k((k- 1) log n

and, by Corollary 2, part (a) holds almost surely.
Clearly, the number of distinct k-cliques over n vertices is C(//, k). Thus, by

Lemma 1 and its corollaries, we see that

E[Wmin(n)]-(2C(k, 2)log C(n, k)) 1/2

----k((k- 1) log n)/2,
and

(7) Wmi,(c,)>-k((k- 1) log n)a/z (pr.).

Note that M, does not become infinite fast enough to guarantee almost sure

behavior of Corollary 3. We now sketch a proof that the bound in (7) does//ot hold
almost surely. Choose 6 small enough so that

(8) (26 + 2)(k\
2 i)<1.

Now let

(9) P _.//-2/(k-1)+e,

as above. Then if we pick out the light edges of n as in the proof of Lemma 2, we can
almost surely construct a k-clique using only light edges. But by (8), (9) and Fact 3, an
arbitrarily chosen one of the light edges used in the clique will be less than F-a(p,,) by a
factor of (1 + 8), with a probability whose sum does not converge as n goes to infinity.
Since this remains true even if we make e arbitrarily close to zero, and since the number
of edges in a k-clique is independent of n, this likelihood of a single excessively light
edge must prevent (7) from holding almost surely. [3
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The results obtained so far demonstrate that the bounds discussed in the previous
section can give tight descriptions for some interesting problems. However, these
bounds are not always tight, even when the edge weights have unit normal distributions.
Say a graph H has property X(k) if

(a) H contains a clique of size k, and
(b) H has k 2 edges.

Let Sn be the set of all n vertex graphs with property X(k). It is not difficult to show that
for this choice of Sn neither the lower nor the upper bound on the asymptotic expected
behavior is tight; see [25] for details.

6. Regular greedy algorithms. It is easy to devise greedy algorithms for subgraph
optimization problems. For example, to find the lightest Hamiltonian path in a graph,
one can start at an arbitrary vertex and iteratively walk to the nearest unused vertex. A
greedy algorithm was used by Borovkov [4] in his analysis of the assignment problem.
For the lightest clique problem, one can start with the cheapest edge and iteratively add
the vertex which increases the weight of the clique by the smallest amount.

Such algorithms can be viewed in the following way. The desired output is a list L of
the edges in the subgraph found; by a slight abuse of notation, we will say that a vertex is
in L if it is an endpoint of an edge in L. Initially L is the null list. Each partial list L will
somehow determine a family CHOICE(L) of sets of edges in G; each set in
CHOICE (L) must be disjoint from L. At each iteration, we choose the set of edges in
CHOICE (L) of smallest total weight, and append it to L.

For example, in the k-clique algorithm discussed above, after r > 0 iterations L
would be a clique on r + 1 vertices. If L is the empty list, CHOICE (L) would be a family
of singleton sets whose elements were the edges of the graph; for nonempty L,
CHOICE (L) would contain one set for each vertex v not in L, namely, the set of r / 1
edges which join v to vertices in L.

A pidgin-Algol specification of the algorithm appears below; here cost (E), where
E is a set of edges, denotes the total weight of the edges in E.

begin
L (- the empty list;
for r +- 1 until do

begin
let E be the set in CHOICE (L) which minimizes cost (E);
append the elements of E to the end of L;

end;
end;

Let t be such an algorithm. If the length of L determines the cardinality of
CHOICE (L) and of each element of CHOICE (L), we will say the algorithm is regular;
henceforth we assume the algorithm is regular. This means that we know, for each r,
how many choices are possible at iteration r (call this number c(r)) and how many edges
will be added during iteration r (call this number e(r)). It is tempting at this point to use
the following argument, which we shall call the naive analysis. At the rth iteration, we
choose the minimum of c (r) variables each of which is the sum of e (r) random variables
chosen according to CHOICE; thus the amount we add to the cost of L is X*er)

:(r). (In
notation like Xb:, the superscript is considered to have higher precedence; thus this
would mean to choose the bth smallest of independent observations, each of which
was the sum of a observations of X.) Let be the random variable corresponding to
the sum of these variables over all iterations; i.e.,

l:c(r).
r=l
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Let /a be the corresponding PDF. Let F be the PDF which describes the true
distribution of outputs of M, and let X be the corresponding random variable.

Now/6a and Fa may be different; the flaw in the above analysis is twofold"
(a) once any iterations have occurred, the edge weights have been conditioned by

previous choices made during the algorithm, and
(b) the sets in CHOICE (L), for some L, may overlap, and we are thus not

choosing the minimum of independent variables.
If we rule out such problems, the analysis becomes much easier. Define a basic greedy
algorithm to be a regular greedy algorithm for which, at each iteration, none of the
edges in CHOICE (L) can have appeared in a set in CHOICE (L) at some previous
iteration, and the sets in CHOICE (L) are disjoint from each other. Then if M is a basic
greedy algorithm, we have F

Note that the natural greedy algorithm for the assignment problem is basic, so the
analysis of this algorithm is easily carried out [4]. See [31] for a more difficult analysis of
a greedy algorithm (which meets the condition for being a basic greedy algorithm
except for the point at which the last edge is added) for the traveling salesman problem
under a distribution called a fixed cost distribution. The k-clique algorithm described
above, however, is not even close to being basic; an edge may be considered at many
different iterations. We shall, in the remainder of this paper, undertake the analysis of
regular greedy algorithms which are not basic.

TI-IOREM 3. If is a regular greedy algorithm, then for all x

Fa(x <- I(x ).

Hence E[Xa >=E[].
Intuitively, this is because the conditioning on the edges remaining at any step

tends to make them larger, since these edges have been rejected whenever they were
considered in choosing a minimum. This intuition can fairly easily be formalized into a
proof. For this proof we will need a lemma, whose proof is uninteresting and deferred to
the Appendix.

LEMMA 3. Let w be a column vector of rn independent real random variables chosen
with a distribution function G. Let g be a real-valued function of m-vectors which is
monotonic nondecreasing, in the sense that

w <- w’ g(w) <= g(w’).

(Here w is said to be less than or equal to w’ if the inequality holds in each component.)
Finally, letB be an r m matrix of nonnegative reals, and b be a column vector of r reals.
Then

P{g(w) <- xlnw >- b} <- P{g(w) <- x}.

Proof of theorem. Suppose we are at the beginning of iteration r. Let L0 be some
possible value for L at this point, and let Ao be the event that L L0. Consider the
random variable

min cost (E).(1 O)
E CHOICE (Lo)

Were it not for the conditioning on the probabilities of the edge weights due to previous
xe(r)iterations, the PDF for this minimum cost would be less than or equal that for

(The inequality is necessary because the sets in CHOICE (Lo) may not be disjoint.) We
now show that this statement remains true even when we bear in mind that the edge
weights are conditioned. Note that (1 O) depends only on edges which have not yet been
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chosen, and is monotonic increasing in these edges. Now since the choice of edges to add
to L is determined by comparisons of sums of edge weights, the event A0 can be phrased
as a set of inequalities on the edge weights; each inequality expresses that fact that the
selected set of edges was less than or equal to some other set allowed by CHOICE. Note
that each edge not yet chosen must appear only on the greater side of these inequalities.
Thus by the lemma, the true PDF for the variable which describes the total weight of
edges added to L during this iteration can only be decreased by this conditioning.
Summing over all possible L0, and integrating over all values of the variables chosen so
far, we obtain the theorem. Iq

To illustrate the application of this theorem, consider the greedy k-clique
algorithm mentioned above, with unit normal edge weights. The naive analysis says that
the algorithm returns a clique of weight

where

and

k-1,. Xl:c(n,2) "[" Z x:in-i
i=2

""--Sk (log n) 1/2 (pr.)

LEMMA 4.
(a) Xa>-s(log n)/ (pr.)

k-1

Sk 2 + Y (2i) 1/2
i=2

(b) E[Xa]>-sg(log rt) 1/2.
Proof. f(a satisfies the indicated bounds, and hence so does Xa by the previous

theorem. [3
In order to complete our analysis of the behavior of the greedy algorithm for

k-cliques, it would be desirable to have an upper bound on the behavior of the solution
it obtains. The past theorem gives us little help in this direction, but we may nonetheless
establish the desired bound.

LEMMA 5.
(a) X <--Sk(1og n) l/2 (a.s.)

and
(b) E[X]<-s,(log n)1/2.
Proof. An idea similar to that used in [13], [20] is useful here--we can simply

eliminate all cases in which things d6 not work out as we like. Choose any e > 0. Note
)1/2that the probability that the first edge selected is above -2(1 -e)(log n goes to zero

fast enough to swallow polynomials. Next consider the probability that for some set C
of vertices, ICI < k,

min d(v, w)>=-(1-e)(21C[ log (n -IC]))1/2.
v:C wC

Using Fact 2b, we see that for any fixed choice of C, this probability goes to zero fast
enough to swallow polynomials. But, for fixed k, there are only polynomially many
choices for C, so the sum of this probability, over all possible C with IcI < k, must go to
zero fast enough to swallow polynomials. We may conclude that the algorithm produces
a clique of weight less than (1- e) times the expected value predicted by the naive
analysis except with a probability which swallows polynomials. Thus the sum of this
probability over all n must converge, so we have part (a). Part (b) is then easily obtained
using Fact 1.
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and

THEORFM 4. For the greedy k-clique algorithm with unit normal edge weights,
(a) X <--Sk(1Og n) 1/2 (a.s.),
(b) X----sk(logn)1/2 (pr. butnota.s.)

(c) E[Xa]---s.(log n)/.
Proof. Most of the theorem follows directly from Lemmas 4 and 5. To show that

the asymptotic behavior does not hold almost surely, we may use an argument similar to
that used in the proof of Theorem 2. I3

Combining Theorems 2 and 4 and Weide’s "relative error lemma" [31 ], we see that
for k _>- 3

X s(11)
Wmin k(k_l)l/2 (pr.).

For k 2, the algorithm is of course exact, since it merely chooses the cheapest edge; as
k approaches infinity the ratio on the right of (11) approaches ()1/2. (Recall that since
the quantities we are minimizing tend to be negative, the ratio of the result of the
approximate algorithm to the true minimum will tend to be less than one.)

7. Conclusions. We have demonstrated the use of some basic methods for analysis
of the expected behavior of subgraph optimization problems. These methods have
enabled us not only to determine the expected behavior of the optimum, but also to
demonstrate that the asymptotic behavior held in probability, and to determine
whether or not it held almost surely. In addition, we have demonstrated how to analyze
the behavior of a greedy algorithm, even when edge weights were conditioned as the
algorithm proceeded, and when the algorithm was provably suboptimal. (The reader is
cautioned that n may have to be quite large before the asymptotic behavior becomes
apparent. As mentioned earlier, it is well known that even the simple maximum of n
urit normal variables approaches its asymptotic behavior slowly as n becomes large [71,
[16].)

Although many of the techniques discussed here are of fairly general applicability,
we have demonstrated them only in the case where edge weights are chosen from a unit
normal distribution. It would be easy to state the results in the case where an arbitrary
mean and variance were stated for the normal distribution. We plan to investigate these
same problems under distributions other than normal. While the bounds of Lemmas 1
and 2 will still be valid, some complications arise. For one thing, it is more difficult to
calculate the distribution of the sum of several variables. Also, it appears that for
uniform distributions, the bounds do not tend to be as tight. Thus more complicated
techniques are likely to be needed. (See Walkup [30] for an example of a clever analysis
of the true optimum of the assignment problem under the uniform distribution.)

Appendix. Proof of Lemma 3.
LEMMA 3. Let w be a column vector ofm independent real random variables chosen

with a continuous distribution function G. Let g be a real-valued function of m-vectors
which is monotonic nondecreasing, in the sense that

w <= w’ g(w) <- g(w’).

Finally, let B be an r x m matrix of nonnegative reals, and b be a column vector of r reals.
Then

P{g(w) <= xlBw >= bI <- P{g(w) <- x}.
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Proof. We prove the lemma by induction on m. For m 1 it is easy. Suppose it
holds for m k- 1. We may decompose w as

w (w*, w),

where w* is the first k- 1 components of w, and wk is the last component of w. Then

(12) P{g(w)<=x[Bw >=b}=P{g(w*, w,)<-xlBlw* +B2w, >-b},

where B and B2 are appropriate submatrices of B. We may write the right-hand side of
(12) as

I dG()h()PIg(w*, sc) x[B1W* >--_ b -Bzsc}
I dG()h ()

where

h() P{B1 w* >--_ b B2}.

Now by the inductive hypothesis, for any :,
P{g(w*, )<-XlBlW*>=b-BzsC}<=P{g(w *, so) <_--x}.

Thus an upper bound is

I dG(sC)h()P{g(w*, so) -<x }
dG()h()

But since h() is easily seen to be monotonic increasing, while P{g(w*, )<=x} is
monotonic decreasing in ’, this ratio is bounded above by

I dG(f)P{g(w*, ) <-_ x},

which is precisely P{g(w)<=x}. This completes the induction, i1
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EQUIVALENCE OF RELATIONAL DATABASE SCHEMES*

CATRIEL BEERI, ALBERTO O. MENDELZON,: YEHOSHUA SAGIV
AND JEFFREY D. ULLMAN

Abstract. We investigate the question of when two database schemes embody the same information. We
argue that this question reduces to the equivalence of the sets of fixed points of the project-join mappings
associated with the two database schemes in question. When data dependencies are given, we need only
consider those fixed points that satisfy the dependencies. A polynomial algorithm to test the equivalence of
database schemes, when there are no dependencies, is given. We also provide an exponential algorithm to
handle the case where there are functional and/or multivalued dependencies. Furthermore, we give a
polynomial time test to determine whether a project-join mapping preserves a set of functional dependencies,
and a polynomial time algorithm for equivalence of database schemes whose project-join mappings do
preserve the given set of functional dependencies. Lastly, we introduce the "update sets" approach to
database design as an application of these results.

Key words, database scheme equivalence, project-join mapping, functional dependency, multivalued
dependency, join dependency, tableau, relational database, database design

1. Introduction. A central problem in the design of a relational database is the
selection of a database scheme, that is, a set of relation formats (or relation schemes) into
which the information is to be structured. A poor choice of the database scheme may
lead to undesirable anomalies in the operation of-the database system. The elimination
of these anomalies is the purpose of the normalization processes proposed in the
literature [Coddl], [Codd2], [Fagin]. We believe that a precise treatment of these
issues, with an ultimate goal of automating the database design process, requires a
we!l-defined notion of when a database scheme can be replaced by another without
losing any of the information representation capabilities of the database.

To this end, we propose to apply the "universal relation" model of [Arm], [Bern],
[ABU]. Under this model, the "universe" that the database is supposed to represent is
visualized as a finite table, called an instance of the universe, with one column for each
attribute of the database. The relationship between the instance that a database
represents and the actual relations in the database is given by the projection mapping.
That is, each relation is assumed to be a projection of the universal relation on some
subset of the attributes.

The assumption of a universal relation is sometimes criticized as unrealistic, usually
because updates to the actual relations in the database cannot always.be reflected in the
universal relation. However, if one reflects on the matter it appears that there is no
other way to justify even posing questions like "does one database scheme represent the
same information as another?" Similarly, the validity of database design algorithms that
purport to produce database schemes representing certain relationships have no known
theoretical basis save for the universal relation assumption. It is our belief that the
universal relation must be assumed, and issues such as which updates can be permitted
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dealt with as well as possible. In the large, problems raised by the universal model, such
as the ill-definedness of certain updates, are not solved by rejecting the universal
relation assumption.

The instance of the universe should be recoverable from the database by taking the
(natural) join of all the relations. By IRis1], when instances are decomposed into two
projections the join is the only operation that can be used to reco’ver an instance from
the projections. (That is, an instance that has been decomposed into two projections is
recoverable if and only if certain conditions are satisfied, and if an instance I is
recoverable then I is the natural join of its two projections.) We believe that even when
instances are decomposed into more than two projections, the join is still the only
operation that might recover an instance from its projections. However, it is well-
known that, given an instance of the universe I and a database scheme R, it is possible
that the join of the projections of I on the relation schemes of R will not be equal to I;
we may get spurious tuples that were not originally contained in/, although we cannot
lose any tuple in L Let us say that an instance I is a fixed point of a database scheme R if
the join of the projections of I on the relation schemes of R is exactly L

An instance I is representable in a database scheme R if there are relations
rl, r2," rk for the relation schemes of R that have I as a natural join. We claim that
the following principle holds. An instance I is representable in a database scheme R if
and only if I is a fixed point of R. Thus the set of fixed points is a measure of the
representation power of a database scheme. In proof, if I is a fixed point, then its
projection onto the relation schemes in R can be used to reconstruct I by the natural
join. Conversely, if a set of relations rl, r2," rk in the database have I as a natural
join, then I projected onto R gives ra, r2," rk again, so I is a fixed point of R.

Accordingly, we shall consider two database schemes "data equivalent" if they
have the same set of fixed points. Note that this notion of equivalence relates only to the
ability of the schemes to represent the same set of instances, that is, the same collections
of data. There is another aspect of equivalence of database schemes, namely, that they
have the same capability to enforce integrity constraints and thereby prevent incorrect
updates to the database. We do not treat this aspect of equivalence in this paper; see
[BBG] for further details. From now on we shall use the word "equivalence" to mean
"data equivalence." A syntactic characterization of equivalence of database schemes
appears in 3.

It is usually the case that the database designer is not willing to consider all
instances of the universe as equally meaningful, since the semantics of the data impose a
number of restrictions on the instances. In such a case, the data representation power of
a database scheme is measured by the set of meaningful instances in its set of fixed
points. Accordingly, we shall amend our definition of database scheme equivalence to
say that two database schemes are equivalent with respect to a given set of instances P if
they have the same set of fixed points in the set P. In 4 we give some general results on
these types of equivalence.

A common way of restricting the set of meaningful instances is by specifying
constraints that the admissible instances must satisfy. Several kinds of constraints have
been studied in the literature; in particular, functional dependencies [Arm], [Coddl]
and multivalued dependencies [Del], [Fagin], [Zanl]. In 5 we consider the case where
all the constraints are functional and multivalued dependencies and give an
(exponential) algorithm to test for equivalence of database schemes under this type of
constraint.

We also examine the case where only functional dependencies (fd’s) are given. We
show that if the project-join mapping associated with the database scheme preserves
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the given fd’s, then equivalence can be tested in polynomial time. Furthermore, the
question whether the projection mapping preserves the set of fd’s can also be decided in
polynomial time.

Finally, in 6 we present the "update sets" approach to database design. Recently,
much research effort was expended to investigate the structure of the conceptual
scheme [ANSI]. It is generally agreed that the conceptual scheme consists of basic units
of information and that transactions to be effected against the database are expressed in
terms of these units. We model these ideas by assuming that the design starts with a
collection U { U1, U2, , Uk} Of update sets, each Ui being a set of attributes. Each
insert, delete or update operation changes a finite set of tuples in a relation ui on the set
Ui. We postulate that the instance I represented by such a database {ul, , uk} is the
largest I whose projection onto each Ui is ui. We then deduce from our results of 3, 4
and 5 what database schemes can be used to replace the update sets without loss of
representation power. A case of special interest is that of fd’s. We have considered fd’s
as constraints in 5. However, an fd can naturally be thought of as an information unit.
This leads us to consider update sets defined by sets of fd’s, in the sense that the fdX Y
defines the update set that is the union of X and Y. We show, in the second part of 6,
that any set of fd’s defines a certain project-join mapping whose behavior on instances
that satisfy the fd’s is independent of the particular representation chosen for the set of
fd’s. We propose that the set of fixed points of this project-join mapping that satisfy the
given fd’s be taken as the set of meaningful instances. In other words, when fd’s are
given one should look for database schemes that can represent this set of instances. A
characterization of such schemes is presented in 6.2.

We note that there are certain sets of ui’s that are not the projection of any
instance, for example, if one ui is empty and others are not. We can only suggest that this
situation be handled by introducing null symbols into the tuples of the instance, as
discussed in [Codd3], [Zan2], [LP]. We feel that this approach needs further research,
since none of the published solutions appears to be entirely satisfactory.

2. Basic definitions. We present in this section the basic relational model concepts
and the universal relation model, following the terminology of [ABU], [ASU1].

A universe is a finite set U of symbols called attributes, each with an associated
domain of values. We shall assume for simplicity that all attributes have the integers as
their domain. An element of the universe is a function/x mapping each attribute to a
value in its domain. Since we shall often assume an ordering A x,..., Ak for the
attributes, we can represent an element/x as a tuple in the Cartesian product of the
domains of the Ai’s. Thus, elements are really tuples of relations over the attribute set
U, in the usual sense of relational database theory. An instance of the universe is a finite
set of elements. An instance can be visualized as a table with one column for each
attribute and one row for each element.

A database scheme is a finite set of attributes, called relation schemes, such that the
union of these sets is the universe U. Each relation scheme can be viewed as defining a
table format. A relation is the "current value" of a relation scheme, that is, a finite set of
tuples, each a mapping from the attributes of the relation scheme to their domains. A
database is an assignment of a relation to each relation scheme of some database
scheme.

Often, a relation scheme is considered to consist of a set of attributes and some
additional information such as dependencies. For our purposes, however, it suffices to
think of a relation scheme merely as a statement of the domain of definition of the
mappings that constitute a relation, that is, as a set. In the following, we use the terms
relation scheme and set of attributes interchangeably.
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Given a relation r on a set X and a subset Y of X, we define try(r), the projection of
r onto Y, to be the set of maps/z from Y to the corresponding domains, such that for
some v in r, v agrees with/z on Y. In other words, the projection of r onto Y is obtained
by deleting from the table represented by r all columns except those labeled by
attributes in Y, and then identifying repeated rows.

The (natural) loin of relations r, r2, r on schemes R, R2, R, denoted
N= r, is the set of mappings/x on 1.3 = Ri such that for each 1 <- -< k there is a vi in ri
that agrees with/x on Ri. We note that the join operator is commutative and associative.
For k 2, we also write rl N r2.

Given a database scheme R {Rx,..., R}, we define the project-join mapping
associated with R, denoted by ma, as a mapping on instances given by

mR(/)--i-_ 7rR, ([)

{/z I/z is a map on U, and there are maps vl vk
in I such that/x and /2 agree on Ri for every i}.

It is easy to show the following basic properties of mR.
(J1) I mR(l) for all L
(J2) mR(mR(l))= mR(l) (idempotence).
(J3) If ! J, then mR(l) mR(J) (monotonicity).
Property J1 tells us that if we take any instance/, project it onto a set of schemes

and then join the relations obtained, we shall always recover all the tuples that were
originally in L However, it is easy to construct examples where we also obtain some new
tuples that were not in L We say that I is a fixed point of R if mR(l) L We denote by
FIXPT (R) the set of all fixed points of R. A database scheme R is said to have a lossless
oin with respect to a set of instances P if P FIXPT (R).

3. Scheme equivalence. In this section we present our notion of database scheme
equivalence and give a necessary and sufficient syntactic condition for two database
schemes to be equivalent. (We assume that there are no constraints, that is, all instances
have to be considered.)

Let R and S be two database schemes. We say that R and S are equivalent if
FIXPT (R) FIXPT (S). By the principle enunciated in the introduction, this notion of
equivalence reflects the equality of the database schemes with regard to their ability to
represent instances. We say R covers S, written R_-> $, if for all relation schemes S in S
there exists a relation scheme R in R such that S

_
R. We write R S if R -> S and S _-> R.

LEMMA 1. S -> R if and only if ms(I)_ mR(I) for all instances I.
Proof. The lemma follows as a special case of [ASU1, Thm. 3]. However, we

present here a direct proof.
(if). Suppose ms(I)

_
mR(I) for all I. Construct an instance Is as follows. For each

Si in S, the instance Is contains the tuple/xi, where tzi(A) 0 if A is in Si and/x.(A) 1
otherwise. Clearly, 0 is in ms(Is), where 0 maps all the attributes of U to 0, i.e., 0 is the
all-zero tuple. It follows that 0 is in mR(Is). By the definition of mR, for each Re in R,
there is a tuple/xi in Is such that/zi agrees with 0 on Ri, that is, Ri Si. The claim
follows.

(only if). For an instance I and for/x in ms(I), let v,. , vk be in I such that v.
agrees with/x on S.. If Ri is a subset of Si, then v. agrees with/x on Ri. it follows that if
S _-> R then/x is also in mR(I).

LEMMA 2. If ms(I)
_
mi(I) [or all L then FIXPT (R)

_
FIXPT (S).

Proofi Let I be in FIXPT (R); that is, mR(I)= L Then by hypothesis ms(I)_ L
Since ms(I) contains I by J1, it follows that I is in FIXPT (S).
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LEMMA 3. If FIXPT (R)
_
FIXPT (S), then ms(l)

_
mR(I) for all instances L

Proof. Let I be any instance. Since mR is idempotent (property J2), it follows that
mR(I) is in FIXPT (R), and therefore in FIXPT (S), that is,

ms(mR(I)) mR(I).

Since I mR(I) by J1, it follows by monotonicity of ms (property J3) that

ms(l)
_
ms(mR(I))

and hence ms(I)
_
mR(I).

THEOREM 1. The following are equivalent:
() R_-<S.

(2) ms(I)_ mR(l) for all I.
(3) FIXPT (R)_ FIXPT ($).
Proof. Immediate from Lemmas 1, 2 and 3. 71
COROLLARY 1. The following are equivalent:
(1) R--S.
(2) mR(I)= ms(I) for all L
(3) FIXPT (R)- FIXPT ($).
By Corollary 1, if we add to a database scheme R or delete from R a relation

scheme R that is contained in another relation scheme of R, then the resulting database
scheme is equivalent to R. Therefore a database scheme R can be transformed to a
minimal unique form by taking only the maximal relation schemes of R. (A relation
scheme of R is maximal if it is not contained in any other relation scheme of R.)

4. Equivalence under constraints. It is generally agreed that it is very important in
the design of a relational database to specify the various constraints that the data must
satisfy in order to model correctly the user’s view of the world. In our model, these
constraints define a subset of all possible instances of the universe, and instances outside
this subset are regarded as meaningless or incorrect.

Let P be any set of instances. We say that two database schemes R and S are
equivalent with respect to P if

FIXPT (R) fl P FIXPT (S) V1P.

From now on, we shall use the abbreviation FIXPT1, (R) for FIXPT (R) f) P. Given a
database scheme R, we shall be interested in the question of how the membership in P
of an instance is affected by applying the mapping mR to it. We define
PRESERVED (R, P) as the set of instances in P such that their image under mR is also
in P, that is

PRESERVED (R, P) {III P and mR(l) 6 P}.

We say that R preserves P if PRESERVED (R, P)= P.
Example 1. Consider the database scheme R {AB, BC}, and let P be the set of

all instances/, such that if any two elements of I have the same value for A then they
also have the same value for B. (This constraint can be described by a functional
dependency.) The instance I={101,202} is in P, and so is mR(I)=
{101, 102,201,202}, but I is not a fixed point of R.

Let P a set of instances defined by a given set of constraints. One possible approach
is to choose a database scheme R such that P c__ FIXPT (R) [ABU], IRis1] (that is, a
database scheme that has the lossless join property). A different view is that the
constraints alone describe all the relevant properties of the data and, therefore, it is
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sufficient to choose a database scheme R that allows enforcement of all the constraints
[Bern]. Under the universal instance assumption, this approach amounts to selecting a
database scheme R that preserves P. When the only constraints are functional depen-
dencies (which are defined in the next section), the results proved in this section imply
that if two database schemes R and $ have the same set of fixed points in P then they
preserve the same set of instances in P. In 6.2 we show that if one accepts the view that
functional dependencies describe all the relevant properties of the data, then the set of
meaningful instances is a subset of P. Furthermore, if a database scheme R preserves P,
then every meaningful instance is a fixed point of R.

We now give a theorem that characterizes containment of fixed point sets over a set
of instances.

THEOREM 2. Let Q be any set of instances such that

FIXPTe (R)
___
Q
_
PRESERVED (R, P).

Then FIXPT, (R)
___
FIXPT (S) ifand only if ms(l)

___
mR(I) for all instances I in Q. (Note

that FIXPTe (R)
_
FIXPT (S)//and only i[ FIXPTe (R) FIXPTe (S).)

Proof. (only if). Given I in Q, we know that I is in PRESERVED (R, P), and
hence mR(l) is in P. Also, by J2, mR(l) is in FIXPT (R). Thus, by assumption, mR(l) is in
FIXPT (S). Since ! mR(l) by J1, it follows that ms(I) ms(mi(I)) by J3, that is,
ms(l)

___
mR(I).

(if). Let I be in FIXPT1, (R). Then I is in Q, so ms(l)
_
mR(l) L Hence, by J 1,

the instance I is in FIXPT (S). fi
The following two corollaries are immediate consequences of the above.
COROLLARY 2. The following are equivalent:
(1) FIXPT1, (R)

___
FIXPT (S).

(2) ms(I)
___
mR(I) for all I in FIXPT1, (R).

(3) ms(I)c_ mR(I) for all I in PRESERVED (R, P).
Proof. For (1) equivalent to (2), let Q=FIXPT,(R) in Theorem 2. For (1)

equivalent to (3), let Q PRESERVED (R, P). 71
COROLLARY 3. If R preserves P, then FIXPTe (R)_ FIXPT (S) if and only if

ms(l)
___
mR(I) for all instances I in P.

5. Equivalence under dependencies. The subset P of acceptable instances will
usually not be given explicitly by the user. Instead, the user will specify in an appropriate
language a set of constraints to be satisfied by the data, and P will be taken to be the set
of all instances that satisfy these constraints. A useful constraint language should
probably allow the user to specify functional dependencies, multivalued dependencies,
and other structural properties of the data. In this section we shall deal with the case
where functional and multivalued dependencies are allowed.

5.1. Functional and multivalued dependencies. A functional dependency (fd) is a
constraint of the form X Y, where X and Y are sets of attributes. We say that an
instance I satisfies X Y if whenever two tuples in I agree in their X-columns, they
also agree in their Y-columns. We shall assume without loss of generality [Arm] that
every fd is of the form X - A, where A is a single attribute.

A multivalued dependency (mvd) is a constraint of the form X-- Y, whereX and Y
are sets of attributes. An instance I satisfies X-- Y if the following condition holds. Let
Z U-X-Y. Whenever there are two tuples Wl, w2 in I that agree in the X-
columns, then there must also be a tuple v in I such that

i)[X U Y] Wl[X L.J Y] but vEZ] wzEZ],
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where x[W] means the components of tuple x corresponding to those attributes in the
set of attributes W. In other words, X- Y means that the set of Y-values associated
with a particular X-value must be independent of the rest of the attributes in the
universe.

Given a set of fd’s and mvd’s D, we define SAT (D) as the set of all instances that
satisfy all the dependencies in D, and we shall use the abbreviations
PRESERVED (R, D) for PRESERVED (R, SAT (D)) and FIXPTo (R) for
FIXPT(R) f’ISAT(D). We also say that R preserves D if SAT(D)=
PRESERVED (R, D).

5.2. Tableaux. In [ASU1], [ASU2] it is shown how certain matrices called
tableaux can be used to represent a class of relational expressions. In particular, we shall
use a simplified version of this construct, originally introduced in [ABU], to represent
the project-join mappings associated with database schemes.

A tableau is a matrix consisting of a set of rows. Each column of a tableau
corresponds to an attribute of the universe. Each row may contain distinguished and
nondistinguished variables. We shall denote the distinguished variables by subscripted
a’s and the nondistinguished variables by subscripted b’s. No variable may appear in
more than one column, and no column may have two (or more) distinct distinguished
variables. We shall assume in this paper that every column contains at least one
occurrence of a distinguished variable. Thus, every column has a unique distinguished
variable associated with it. (Usually, the distinguished variable in the ith column is
denoted by ai.)

Let T be a tableau and S the set of all the variables that appear in T. A valuation p
for T is a mapping from S into the integers. If the rows of T are Wx, , wn, then p(wi)
is the result of substituting p(v) for every variable v that appears in wi. A tableau T
defines a mapping from instances to instances as follows. Let ai be the distinguished
variable appearing in the ith column, and suppose T has m columns. Then, given an
instance L we define

T(I)={p(al,..., a,)lp is a valuation for T, and p(wi)EI for all rows wi}.

In Codd’s relational calculus, the mapping associated with the tableau T can be
defined by the following expression over a single universal relation I:

(ax,’’’, a,): ::lbl""" ::lbk[I(Wl)A’’" ^ I(w)].

The distinguished variables are those that appear in the target list, while the nondistin-
guished variables are all the other variables of the expression.

Example 2. Let T be the tableau

al a2 bl
b2 a2 a3

and consider the instance I {121,322}. If we assign 2 to a2 and 1 to all other variables,
each row becomes 121, which belongs to L Therefore, 121 is in T(I). If we assign 1 to ax
and bl, 3 to b2 and 2 to a2 and a3, the first row of T is mapped into 121 and the second
row into 322. Both these tuples are in/, hence 122 belongs to T(I). Similarly one can
show that 322 and 321, and no other tuples, are in T(I). Thus

T(I) {121,322, 122,321}.



EQUIVALENCE OF RELATIONAL DATABASE SCHEMES 359

Given a database scheme R, we can construct a tableau TR such that the mapping
defined by Tl is ml, that is, Ta(I)= mi(I) for all instances L The tableau Tl has one
row for each relation scheme in R. If the relation scheme is {A1,’" ,Ak}, the
corresponding row will contain distinguished variables in the columns corresponding to
attributes A 1, ",Ak. All entries of the tableau not defined by this rule will be assigned
distinct nondistinguished variables. The correctness of this construction is obvious
when one considers the relational calculus expression that corresponds to this tableau.

Example 3. The tableau of Example 2,

A B C

al a2 bl
b2 a2 a3

is obtained from the database scheme {AB, BC} on universe {A, B, C}.
Given two tableaux T1 and T2, defined on the same set of attributes, we say T2 is

contained in T1, written T
___

T1, if T2(I)_ T(I) for all instances L The following fact
[CM] will be useful in proving containment of tableaux:

FACT 1. T2 T1 i] and only i] there is a mapping (called a containment mapping)
from the set o[ variables of T1 to the set o] variables ol Tz such that:

(a) Each distinguished variable is mapped to itsel]
(b) The image o] each row o] T is a row ot T2.
Example 4. Consider the following two tableaux:

al a bl b
al b3 a3 b4
b5 a2 b6 a4

al a2 a3

b2 a2 a3 a4

The mapping that sends the first and second rows of T1 to the first row of Tz and the
third row of T1 to the second row of T2 is a containment mapping, showing that T2 is
contained in Ta.

So far we have treated tableaux essentially as nonprocedural expressions denoting
mappings. However, a tableau can also be viewed as a set of tuples, that is, an instance.
This instance has the property that when the corresponding mapping is applied to it,
then the tuple (al, , a,,) is in the image. This is a canonical instance for the mapping
associated with the tableau, in the sense that properties of the mapping can be
investigated by examining the instance. We make use of this fact below when we discuss
the effect of dependencies on expressions.
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5.3. Testing equivalence under dependencies. In this section we return to the
problem of testing, given two database schemes R and S and a set of functional and
multivalued dependencies D, whether every fixed point of S that satisfies O is also a
fixed point of R.

The algorithm we shall present is an application of the generalized "chase" process
described in [MMS]. By Corollary 2, our problem is equivalent to testing whether
mi(I)

_
ms(I) for all I in FIXPTo (S). Let a Cull loin dependency [Ris2] be a statement

of the form N JR], where R is a database scheme. We say that an instance I satisfies the
dependency N JR] if I is in FIXPT (R). In other words, SAT (N JR])= FIXPT (R). We
may now rephrase our problem as follows. Given a database scheme R, and a set D’ of
fd’s, mvd’s, and a full join dependency [S], determine whether m(I)

_
ms(l) for all

instances I satisfying the dependencies of D’. But ms(I) I for every I that satisfies the
full join dependency [S]. Therefore the problem is to determine whether ma(I)_ I
for all instances I in SAT (D’).

Let Tl be the tableau for the database scheme R, and let To be the tableau
containing a single row with only distinguished variables (i.e., it corresponds to the
database scheme { U}, where U is the set of all the attributes). Tableau To represents the
identity mapping, i.e., To(I)= I for all instances I. We have to determine whether
Tl(I)

_
To(I) for all instances I in SAT (D’). Since we have a situation where instances

are required to satisfy a set D’ of fd’s, mvd’s, and full join dependencies, Fact 1 is no
longer true. However, it would be true if the canonical instance for Tl (i.e., T viewed
as an instance) satisfied the dependencies. Using the chase process of [MMS], we can
transform Tl to another tableau T’ such that T(I)= T’(I) for all instances I in
SAT (D’), and T’ satisfies D’. The chase process is carried out by applying the
dependencies of D’ to TI. Formally, we associate with each dependency in D’ a rule for
modifying an arbitrary tableau T, and these rules are repeatedly applied to T until no
longer possible. The rules for each type of dependency in D’ (i.e., fd’s, mvd’s, and full
join dependencies) are defined as follows.

(rl) If X-A is one of the fd’s, and rows and/’ of tableau T have identical
variables in all the X-columns but different variables in the A-column, then change T by
making the variables found in rows and/" of column A identical wherever they appear
in T. If one of the equated variables is a distinguished variable, make the resulting
variable equal to that variable. Identify rows that become identical.

(r2) If X-- Y is one of the mvd’s, and rows and ] of tableau T agree on the
X-columns but disagree on some of the Y-columns and some of the remaining columns,
then change T by adding two new rows i’ and ]’ such that i’ agrees with on X kJ Y and
with ] on the rest of the columns, and ]’ agrees with ] on X Y and with on the rest of
the columns. Identify identical rows in the result.

(r3) If [R] is one of the full join dependencies, then replace T with mi(T) (i.e.,
apply the mapping ml to T).

Example 5. Let T be

A B C

al bl a3
a a2 b2
b3 a2 b4

and D {A -- B, B C, N JR]}, where R {AC, BC}. By applying A -- B to the first
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and second rows of T, we obtain

A B C

al bl a3
al a2 b2
al bl b2
al a2 a3
b3 a2 b4

Now applying B C to rows 1 and 3, and then to rows 4 and 5 yields, after
identifying common rows,

A B C

al bl a3
al a2 a3
b3 a2 a3

Finally, applying rule r3 for N [R] yields

A B C

al bl a3
al a2 a3

b3 a2 a3
b3 bl a3

It is shown in [MMS] that any sequence of applications of the rules terminates after
a finite (exponential) number of steps, that is, a tableau is reached that cannot be
changed by applying any of the rules. (It is also shown there that the final tableau is
unique, regardless of the order of application of the rules, but for our purposes here
uniqueness does not matter.) For a given set of dependencies C, let chasec (T) denote a
tableau obtained from T by exhaustive application of the rules.

Let I be in SAT (C) and suppose a tableau T is changed to a tableau T’ by applying
one of the rules, using a dependency from C. It can be easily shown that any valuation of
T into I is also a valuation of T’ into I and vice versa. Therefore, T’(I)= T(I). By
induction, we obtain the following.

FACT 2. Let Cbe a set ofconstraints containing fd’s, mvd’s, and full join dependen
cies, and let T be a tableau. Then chasec (T)(I) T(I) for all instances I in SAT (C).

From the above it follows that T2(I) TI(I) for all I in SAT (C) if and only if
chasec (T2)(I)_ TI(I) for all I in SAT (C). Notice, however, that the canonical
instance for chasec (Tz) satisfies C. Therefore it can be shown (as in [ASU1], [MMS])
that the last containment holds if and only if chasec (T2)(I)_ T(I) for all L In
summary:

FACT 3. T2(/)
_

TI(I) for all I in SAT (C)/f and only if chasec (T2)
_

rl.
Returning now to the problem at hand, we have to determine whether TI(I)_

To(I) for all instances I in SAT (D’). (Recall that D’ is the original set of fd’s and mvd’s
along with the full join dependency N IS], and To is the tableau containing the single row
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al’’’am and it represents the identity mapping.) By Facts 2 and 3, we know that
Tit(I)

_
To(I) for all I in SAT (D’) if and only if chaseo, (Tit)

_
To; that is, (by Fact 1) if

and only if there is a containment mapping from To to chaseo, (Tit). But such a
containment mapping exists if and only if chaseo, (TI) contains a row with a dis-
tinguished variable in every column. In summary, given two database schemes R and S
and a set of functional and multivalued dependencies D, we have an algorithm for
determining whether every fixed point of S that satisfies D is also a fixed point of R. Let
D’ be D along with the full join dependency [S]. The algorithm consists of computing
chaseo,(Tit) and checking whether chaseo, (Tit) has a row containing only distinguished
variables. This is summarized in the following theorem.

THEOREM 3. There is an algorithm ofcomplexity O(rt kn) tO test containment offixed
point sets oftwo database schemes under a set of fd’s and mvd’s, where n is the total space
required to write down the relation schemes and the dependencies and k is a constant.

Proof. By the above remarks. [3

5.4. Schemes that preserve tunctional dependencies. We shall now consider the
special case where D consists only of fd’s, and furthermore, the database scheme S
preserves the set D, that is, PRESERVED (S, D) SAT (D). In this case we can derive
a polynomial algorithm for testing containment of fixed point sets in the following way.

THEOREM 4. If database scheme S preserves a set of fd’s D, then FIXPTo (S)_
FIXPT (R)/f and only if chaseU (TR) Ts.

Proof. By Corollary 3, we know that if S preserves D, then FIXPTo (S)_
FIXPT (R) if and only if mit(I) ms(l) for all instances I in SAT (D). By Fact 3, the
latter condition is equivalent to chaseo (Tit)_ Ts.

COROLLARY 4. Under the conditions of Theorem 4, containment offixed point sets
can be tested in time polynomial in the size of the relation schemes and the dependencies.

Proof. As shown in [ABU], if D contains only fd’s, the chase of Tit under D can be
computed in time O(rt4), where n is the total space required to write down Tit and D. It
remains to test whether there exists a containment mapping from Ts to chaseo (Tit).
Since Ts contains no repeated nondistinguished variables, this can be done simply by
checking each row s in Ts against all rows of chaseo (Tit) until we find one that s can be
mapped to. That is, until we find a row w of chaseU (Tit) such that w has a distinguished
variable in every column in which s has a distinguished variable. This can clearly be
done in time O(p2q) for two tableaux with no more than q columns and p rows.

Our next theorem will show that the class of database schemes that preserves a
given set of fd’s can be characterized by a simple tableau-based condition that can also
be tested in polynomial time. We shall need some definitions and preliminary results.

Given a set of fd’s, some other fd’s will be implied by them" for example, X Y
and Y Z imply X Z. The closure D+ of D is the set of fd’s that must be satisfied by
any relation that satisfies D. A set of fd’s Fcovers an fd f if f is in F+. In particular, every
fd of the form X Y, with Y

___
X, is covered by . A cover for D is any set of fd’s E

such that E/ D+. A cover for D is nonredundant if no proper subset of it is a cover for
D. Given a set of attributes X, and a set of fd’s D, the closure o]X under D, denoted C1
(X), is the set of all attributes A such that X A is in D+. A set of fd’s D is embedded in
a database scheme R if for every dependency X A in D there is a set R in R such that
X {A}

_
R. Similarly, we say that a set of fd’s D is embedded in a tableau T if for every

dependencyX A in D, there is a row in the tableau containing distinguished variables
in all columns corresponding to attributes in X U {A}.

PROPOSITION 1. Suppose R preserves D and TR is the tableau for mR. For a row r of
TR, letX(r) be the set of attributes such that their columns have distinguished variables in
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row r. Then chased (TR) is obtained from TR by replacing each row r by the row r +,
where r

/ has distinguished variables exactly in the C1 (X(r))-columns and the same
nondistinguished variables as r in the other columns, and then identifying identical
rows.

Proof. Let X(r’) denote the set of attributes whose columns have distinguished
variables in row r’ of chased (TR). We first prove that C1 (X(r’))=X(r’). Indeed,
suppose not. Then there is some attribute B such that X(r’)B is in D+, but the
B-column in row r’ contains a nondistinguished variable. By the definition of the chase,
chased (TR) (considered as an instance) satisfies D and, since R preserves D, so does
mR(chaseD (TR)). However, mR(chaseD (TR)) contains the tuple (al,’", a,) that
agrees with r’ on the X(r’)-columns but not on the B-columnma contradiction.

Now, each r of TR is transformed by the chase process into a row r’ of chaseD (TR).
(Note that several rows of TR may be transformed into the same row of chaseD (TR),
because identical rows are identified in the process.) Since the process preserves the
distinguished variables in the tableau, X(r)_X(r’), hence C1 (X(r))C1 (X(r’))=
X(r’).

To conclude the proof, note that if the fd Y B is the first fd applied to rows and j
of a tableau T, then Y

_
X(i) f3 X(j), so B e C1 (X(i) f3 X(]))

_
C1 (X(i)). It follows

easily by induction that the set of columns in row r of TR that are affected by the chase
process is contained in C1 (X(r)). Hence X(r’)=C1 (X(r)) and the variables in the
columns not in C1 (X(r)) remain as in

COROLLARY 5. If II preserves D, then the application of the chase process to TR
produces the same tableau regardless of which cover ofD/

was used in the process and
regardless of the order of application of the fd’s in the process.

Proof. For any set of attributes X, the set CI (X) does not depend upon the
particular cover chosen to represent D. The tableau chaseD (TR) is defined in terms of
closures, hence is independent of the cover used and the order of application of the
fd’s.

Note that uniqueness of the result of the chase holds even when R does not
preserve D and even when other types of dependencies such as mvd’s are present
[MMS].

LEMMA 4. Suppose R preserves D, the tableau ofmR is TR, andXis a set ofattributes.
Let T’ be the tableau obtained from chaseD (TR) by adding to it an additional row with
distinguished variables in the X-columns and new, nondistinguished variables every-
where else. Then chaseD (T’) is chaseD (TR) with the additional row modified only by
replacing in some columns the nondistinguished variables with the distinguished variables
of those columns (and, perhaps, identifying it with a row of chaseD (TR)). Each variable
so changed in the additional row is in C1 (X).

Proof. The proof is by induction on the number of applications of fd’s to compute
chased (T’). As long as chased (TR) is unchanged, the next application of an fd must
necessarily involve the additional row. Say we apply Y B to the new row and to row r
of chased (TR). Then all the Y-columns in row r contain distinguished variables. By
Proposition 1, the B-column of r must also contain a distinguished variable. Hence row r
is not modified and the only change is that the nondistinguished variable in the
B-column in the new row becomes distinguished. By the induction hypothesis, Y_
C1 (X), so B C1 (X). !1

LEMMA 5. Under the assumptions o[ the previous lemma, i[ the last row o[
chaseD (T’) contains a distinguished variable in its A-column ]:or any attribute A, then
there must be a subset of D that covers the dependency XA and is embedded in
chaseD (TR).
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Proof. The proof is again by induction on the number of applications of fd’s to
compute chased (T’). Initially, only variables in the X-columns of the last row are
distinguished. For each A e X, the fd X A is covered by the empty set of fd’s. Suppose
now that, after n => 1 applications of fd’s, the next application uses the fd Y-/3 of D.
Let Y {C1, , Ck}. By the proof of Lemma 4, the last row must be involved in this
application and all the Y-columns in the last row already have distinguished variables.
By the induction hypothesis there are subsets D1,..., Dk of D tha cover the fd’s
X ")C1, X- Ck, and are embedded in chaseD (TR). That Y B is embedded in
chased (TR) follows from the fact that it is now applicable. The set (/=a Di) LJ{Y B}
is the required set.

THEOREM 5. Let R be a database scheme, letD be a set of fd’s and letD* denote the
union of all nonredundant covers of D. Then the following are equivalent:

(1) R preserves D.
(2) Some cover ofD is embedded in chased (TR).
(3) The setD* is embedded in chased (TR). (That is, every nonredundant cover ofD

is embedded in chased (TR).)
Proof. (1) implies (2). Let X-A be in D. Let T’ be the augmented tableau

constructed as in Lemmas 4 and 5 for the set X. By definition of the chase, chaseD (T’)
satisfies D and, since R preserves D, so does mR(chaseD (T’)). This tableau contains a
tuple (al, , a) which agrees with the last row of chaseD (T’) on the X-columns and,
hence, also on the A-column. It follows that the A-column in the last row of chased (T’)
contains a distinguished variable and, by Lemma 5, there exists a subset ofD that covers
X -A and is embedded in chased (Ta). Since X -A was an arbitrary fd in D, there is
the subset of D that covers D and is embedded in chased (TR).

(2) implies (1). Suppose some cover E of D is embedded in chased (TR). (We do
not need here the uniqueness of chased (TR). Rather, let chased (TR) be any tableau
that is obtained by applying the chase process to TR using fd’s from D.) Let I be an
instance in SAT (D). Note that I also satisfies E. Now, mR, TR and chaseD (TR) define
the same mapping on SAT (D) (Fact 2). For every dependency X A in E, the tableau
chased (TR) contains a row where the columns for X I..J {A} have distinguished vari-
ables. By the definition of the mapping associated with chaseD (Ta), every tuple in
mR(l) chased (TR)(I) must agree on X {A} with some tuple of L

Suppose that tuples rl and r2 of chaseD (TR)(/) agree on all the X-columns. There
are rows s and s2 of I such that ra and r2 agree with s and s2, respectively, on the
columns for X (_J {A}. Since I satisfies E, rows sa and s2 agree also on their A-column
and, hence, so do rows rl and r2. It follows that chaseD (TR)(I) satisfies every fd in E,
hence it satisfies D and R preserves D.

(1) implies (3). We have already seen in the proof of "(1) implies (2)" that if E is a
set of fd’s and R preserves E, then chasez (Ta) embeds a subset of E that covers E. In
particular, if E is nonredundant, then E itself is embedded in chasez (TR). This holds
for any E that is a nonredundant cover of D. By Corollary 5, if R preserves D then
chased (TR) is independent of the cover used in the chase. Hence this unique tableau
embeds every fd that belongs to some nonredundant cover of D, that is, it embeds D*.

(3) implies (2). Obvious.
COROLLARY 6. It can be decided in polynomial time whether R preserves D.
Proof. Given D, first compute a nonredundant cover E of D using, say, the method

of [BB], which takes time O([D[2). Then compute chased (Ta) by the method of [ABU]
in quartic time. Now, check if the cover E is embedded in chased (Tg)in O([E[. [TR])
time.
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This algorithm is an extension of the lossless join algorithm of [ABU]. There the
problem was to decide whether a given set of fd’s D implies a lossless join [R]. In other
terms, the problem was to decide if SAT (D)_ FIXPT (R), which is stronger than R,
preserves D. In both cases, the algorithm starts by computing chased (TI). Then, if a
cover of D is embedded in chased (TI) then R preserves D, while if chased (TI)
contains a row of only distinguished variables then SAT (D)_ FIXPT (R).

The reader should observe that Theorem 5 is less restrictive than the notion of
[Bern] that a cover forD+ be embedded in TR (as opposed to chased (TR)) in order for a
database scheme to be an adequate representation of D. We shall deal with this notion
of representation in the next section. The examples in the next section can be used to
show that there are schemes that have a lossless join, but do not embed a cover of D,
there are schemes that embed a cover of D but have a lossy join and there are schemes
that preserve D but have a lossy join and do not embed a cover of D.

6. Update sets.
6.1. Update sets anti the conceptual schema. In this section we apply the concepts

that we have developed to examine how a universal relation can be used as a conceptual
database. Recently, attention has focused on the problem of which structures should be
used in the conceptual schema (e.g., [Nijs], [HOT]). It seems to be agreed that the
conceptual schema for an application should be constructed of basic, irreducible units of
information (called irreducible sentences in [Nijs], irreducible relations in [HOT]).
These irreducible information units serve as a complete description of the database
structure. Every transaction to be effected against the database is expressed in terms of
these units.

In our model, we can take these irreducible units to be simply sets of attributes. The
conceptual schema then consists of a collection U {U1, , Uk}, of sets of attributes,
and the corresponding database is viewed as a set of relations {u 1, ’, Uk} where ui is a
relation on the set Ui. Every transaction against the database is expressed in terms of
updates to these relations. Therefore, we call the given sets U1,’", Uk update sets.

Obviously, an instance I represents the same database as the ui’s only if its
projection onto each Ui is ui. However, many different instances may have the same
projections onto the Ui’s. To avoid ambiguities and, more importantly, to establish in
the conceptual database all the relationships that are deducible from the relations
u 1,’’’, Uk by using the join operation, we restrict I to be maximal, that is, to be the
largest instance that projects to the ui’s. Put another way, given u 1," ’, uk we select
their join as the universal instance representing the same database. It follows that the
instance selected will be a fixed point of the project-join mapping defined by the U’s.

The assumption that we are only interested in instances that are fixed points of U
will permit us to infer, using Theorem 1, that certain database schemes are guaranteed
to have a lossless join over the same set of instances as the collection U. Under our
interpretation, this means that each of these schemes is as powerful as U, that is, the
database can be represented by any of these schemes without losing the ability to
represent any collection of information pertaining to the user world. Thus, if there are
no dependencies, we may summarize this as follows:

COROLLARY 7. If U is a collection of update sets, and R is a database scheme, then
the loin of the relation schemes in R is lossless with respect to all the fixed points of mu if
and only if each update set is contained in some relation scheme o[ R. I3

When the instances are constrained, Corollary 7 is unnecessarily restrictive.
Suppose we have a set D of functional and multivalued dependencies that every
instance must satisfy. Then there may be database schemes that can be used to replace
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U without loss of potential information even if they do not meet the conditions of the
corollary, since we are only considering instances in FIXPT (U) (’1 SAT (D). In this case,
the algorithm of 5.3 provides a better criterion, although at a large price in compu-
tation time. Since the algorithm is used only at the scheme construction stage, it may
well be beneficial to use it despite the high price.

6.2. Functional dependencies as update sets. To illustrate the concept of update
sets we consider a special case. Suppose we have a set D of fd’s. (The arguments we are
going to present apply to mvd’s as well but, for simplicity, we restrict ourselves to fd’s.)
So far, we have taken into account only the role of fd’s as constraints on the database.
This was effected by restricting our attention to SAT (D). However, fd’s have also a
natural interpretation as information units. Fd’s such as EMPLOYEE- SALARY or
DEPARTMENT- MANAGER represent (aside from the functionality constraint)
associations between the attributes that appear in their left and right sides. Such
associations are, in a sense, more primitive than the relations in the database (see, e.g.,
[Bern]). They are, therefore, prime candidates for the irreducible relations of the
conceptual schema.

For an fd 1 X- Y, let ATTR (]’) denote the set X Y; for a set D of fd’s let
ATTR (D) be {ATTR (]’) I/" s D}. Given a set D, we would like to choose a set of update
sets related to D. We have to be careful, though, since sets of fd’s may contain
redundancy in various forms. As an example, if an fd X- Y is in D+ then so is the fd
(U-X- Y)X- Y. But the set of attributes of the latter fd is U, so if we choose
ATTR (D+) to be the collection of update sets, it will always contain U and its set of
fixed points is the set of all instances. As another example, suppose we choose
ATTR ({A--> B, B- C, A C}) as the collection of update sets. Obviously, given
relations on the sets AB and BC, the relation on AC can be obtained by join and
projection from the first two relations, so there seems to be a good reason not to include
AC in the collection.

Let us then restrict our attention to collections of the form ATTR (E), where E is a
nonredundant cover of D. We note that D may have several nonredundant covers. Let
us denote by T the tableau of ATTR (E). By Fact 2, the tableaux T and chaseo (T)
define the same mapping on SAT (D). By Theorem 5, for each cover E of D, the
database scheme ATTR (E) preserves SAT (D), hence we can apply Proposition 1 to
compute chaseo (T). Let E {],. ,/’}. So the tableau chaseo (T) is the tableau of
the collection {C1 (ATTR (/’)),. ., C1 (ATTR (/’))}. However, for an fd X- Y,
C1 (X LJ Y)= C1 (X). Furthermore, as shown in [Bern], if Ex and Ez are two non-
redundant covers of a set of fd’s D, then for each X -> W in E there exists an fd Y - Zin Ez such that X-Y and Y--,X are both in D+, and hence CI(X)=CI(Y).
Therefore, the collection

D {C1 (X)IX - Y is in the nonredundant cover E of D}
is the same for all nonredundant covers of D and is independent of the particular cover
E. Hence chase, (T) is the same tableau for all nonredundant covers of D. We have
proved the following:

TI-IEOIEM 6. LetD be a set o]’ fd’s. For every pairE1 and E2 o’nonredundant covers
olD, the mappings defined by the collection ATTR (El) and ATTR (/2) are the same on
SAT(D). 71

COlOIIAl 8. For a set o fd’s D, the set o]’ instances FIXPT (ATTR (E))71
SAT (D) is the same ]’or all nonredundant covers 1 o" D.

In view of the corollary, for the set of fd’s D there exists a set of fixed points in
SAT (D) which is obtained by considering the fd’s as information units and is indepen-
dent of the particular representation E chosen for D, provided that E is nonredundant.
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Let us denote this set by

INTENDED (D) FIXPT (ATTR (E)) SAT (D).

We propose that INTENDED (D) is the set of instances that are of interest for an
application described by a set of fd’s D. In other words, when looking for a database
scheme to represent such an application, one should select one whose set of fixed points
contains INTENDED (D).

The next theorem characterizes all database schemes "that have at least
INTENDED (D) as their fixed point set, given some D. These can be thought of as the
schemes that may be used instead of any non-redundant cover of D without losing
representation power. It turns out that these are exactly the schemes that preserve D.

THEOREM 7. INTENDED (D)
___
FIXPT (R) SAT (D) if and only if R

preserves D.
Proof. (if) Let I be an instance in INTENDED (D). The database scheme R

preserves D, hence by Proposition 1, the tableau chaseD (TR) corresponds to some
database scheme R’. Since R’ embeds a cover of D by Theorem 5, the instance I must be
in FIXPT (R’)f3 SAT (D). Since mR, agrees with mR on SAT (D), it follows that I is in
FIXPT (R) (q SAT (D).

(only if) Let S be a database scheme corresponding to some nonredundant cover
of D. Note that INTENDED (D)-FIXPT (S)(q SAT (D), and S preserves D; i.e.,
PRESERVED (S, D)-SAT (D). By Corollary 2, FIXPT (S)(q SAT (D)_ FIXPT (R)
implies mR(l) ms(l) for all I in PRESERVED (S, D). Hence, mR(l)

___
ms(l) for all I

in SAT (D), which implies that R preserves D. [3
COROLLARY 9. There is a polynomial time algorithm to determine, given a set of

fd’s D and a database scheme R, whether FIXPT (R) contains INTENDED (D).
Proof. By Theorem 7 and Corollary 6. [-1

By Theorem 7, INTENDED (D) is the minimal set of fixed points of database
schemes that preserve D. However, it is possible that the set of fixed points of R in
SAT (D) properly contains INTENDED (D), yet there is no subset of R that is a
database scheme, as in Example 6 below. If we want to have a database scheme whose
set of fixed points in SAT (D) is exactly INTENDED (D), then the prime candidates
are the schemes that embed nonredundant covers of D. An efficient algorithm for
synthesizing such schemes is presented in [Bern].

We conclude with a few examples that differentiate between the various concepts
that were discussed in 5 and 6.

Example 6.

D={A-C,B C}

R={AC, AB}

A B C

al bl a3

chaseD (TR)=

A B C

al

al

bl
a2

a3
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Since chaseo (T10 contains a row of distinguished variables, R has a loosless join so
INTENDED (D) FIXPT (R)I"1 SAT (D)= SAT (D).

Example 7.

D={AB,AC,BD, CD}

R {AB, AC, BD}

A B C D

al a. bl be
al b3 a3 b4
bs ae b6 a4

chaseD (TR)

A B C D

al ae a3 a4

bs ae b6 a4

Here again R has a lossless join. Note that R is a proper subset of a nonredundant
cover of D.

In the preceding examples we had the somewhat peculiar situation of an attribute
that appears on the right side of two fd’s. This is not a necessary condition.

Example 8.
D {AB C, C D, D A, ADE F}

R {ABC, CD, DEF}

A B C D E F

al a2 a3 bl be b3
b4 bs a3 a4 b6 b7
b8 b9 b0 a4 a5 a6

chaseo (T10

A B C D E F

al a2 a3 a4 be b3
al b3 a3 a4 b6 b7
al b9 bo a4 as a6

In this case the join is lossy, since there is no row of distinguished variables in
chaseo (T10. However, the rows of chaseo (Ta) represent the database scheme
{ABCD, ACD, ADEF}, and by Corollary 1, this database scheme is equivalent to the
database scheme D {ABCD, ACD, AD, ADEF} (see the definition of D just before
Theorem 6). Therefore, the set of fixed points of R in SAT(D) is exactly
INTENDED (D).

7. Conclusions. In this paper we introduced and investigated a formalization of
the concept of data equivalence of database schemes. Algorithms for testing
equivalence of schemes under dependencies were presented and cases where poly-
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nomial time algorithms exist were distinguished. The problem of whether more efficient
algorithms exist is open.

Of particular importance is the concept of update sets introduced in 6. There are
currently several approaches to relational database scheme design, in the presence of
fd’s. Bernstein [Bern] advocates schemes that embed a nonredundant cover of the given
fd’s; another approach is to look for schemes that enjoy the lossless join property
[ABU], [Risl]. These approaches do not always yield the same results. Example 6 in
6.2 is probably the smallest case where they disagree. The scheme R {AC, AB} has

the lossless join property with respect to the given fd’s, but does not embed a cover of
them. The scheme S {AC, BC} embeds a cover but has a lossy join.

Our approach to this apparent contradiction has been to restrict the requirement of
the lossless join to some set of meaningful instances. When fd’s are given, it seems
natural in the light of Theorem 7 to take INTENDED (D) as this set. It is then trivially
true that every database scheme that embeds a cover of the fd’s has the lossless join
property with respect to this set.

Note that we deal here only with data equivalence. As stated in the introduction,
there is another aspect to equivalence, the ability of two database schemes to enforce
the same sets of dependencies. A treatment of this aspect is outside the scope of this
paper; however, when this aspect is also taken into consideration, the class of database
schemes that have the lossless join property with respect to INTENDED (D) will be
probably found to be a proper subset of the set of database schemes that preserve the
fd’s.

8. Acknowledgment. The authors thank Ron Fagin for helpful comments.
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AN EXTENSION OF STRASSEN’S DEGREE BOUND*

C. P. SCHNORR

Abstract. With every set P1,’ ’, Pm of multivariate polynomials we associate in a natural way several
algebraic varieties, i.e., irreducible Zariski-closed sets. The degree of each of these closed sets can be nicely
bounded in terms of the number Lns(P1, , P,,,) of nonscalar operations which are necessary to evaluate
Px,"" ’, P,. We establish lower bounds Lns(P)>-(k lg n) for single specific polynomials P of degree n,

nyidepending on O(k) variables with 0, 1-coefficients. Typical examples are L,s(Y’.i=l xi )>--
1/2k lg n, L,s(Y.i=x (xl + x2 +" + xi)nYi) 1/2k lg n, provided k < n By our method and evaluating the

degree of closed sets one obtains lower bounds L,s(P) > fl(k lg n) for "almost all" polynomials P of degree n

depending on k variables, k << n. These lower bounds hold for any field characteristic.

Key words, arithmetic complexity, Bezout’s theorem, Strassen’s degree bound, computationally hard
polynomials

1. Introduction and preliminaries. It was Strassen who first recognized the
importance of algebraic geometry for the complexity of polynomial evaluation.
Strassen 10] proved that every set of multivariate polynomials which can be evaluated
with _-<v nonscalar operations defines an algebraic variety of degree _-<2 v. This yields
examples of sets of k polynomials of degree n depending on k variables that cannot be
computed with less than k lg n nonscalar operations. We are now able to prove such
k lg n-lower bounds for single polynomials of degree n depending on k variables. The
lower bounds of this paper apply to specific polynomials with small integer coefficients
and even 0, 1-coefficients, as well as to those with algebraic coefficients. Observe that
specific polynomials that are hard to compute and which have algebraic or large integer
coefficients are known from Strassen [11]; see also Schnorr [6], Schnorr and van de
Wiele [8] and Heintz and Sieveking [33].

In order to make the paper understandable for readers without prior knowledge of
algebraic geometry, the basic definitions and facts are collected in 2. For convenience
we shall work with affine varieties. Kendig [5] and Hartshorne [1] contain an intro-
duction to affine and projective varieties.

A basic tool for the application of algebraic geometry to the complexity of
polynomials is the Bezout inequality for the degree of the affine closed sets. See Heintz
[2], Heintz and Sieveking [3] and Heintz and Schnorr [4] for further applications of the
Bezout inequality. For completeness and for lack of a suitable reference we give a proof
of the Bezout inequality in the Appendix. We reduce the Bezout inequality for affine
closed sets to the well-known Bezout equality for projective varieties which is due to
van de Waerden [12]. A complete proof for Bezout’s inequality based on com-
mutative algebra has been given by Heintz [2].

In 3 we reprove Strassen’s degree bound and extend it to computations with
arbitrary rational operations. We give a direct proof based on Bezout’s inequality,
which unlike Strassen’s original proof does not proceed by induction on the length of
the computation. Observe that the elementary proof of Sch6nhage [9] only yields a
weak version of Strassen’s degree bound. Our main new results are contained in 4
and 5. These results follow from the obvious extension of Strassen’s degree bound in
Theorem 1 without further application of algebraic geometry. We implicitly use a

* Received by the editors June 7, 1979, and in revised form January 15, 1980. The results of this paper
were obtained in the spring of 1979 during a stay in Nice, supported by the DAAD.

"t Fachbereich Mathematik, Universitit Frankfurt, West Germany.
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technique of Schnorr [6] for representing the coefficients of all polynomials that can be
computed with -<v multiplications and divisions. This is the background of our key
Lemma 1.

Throughout the paper [No is an algebraically closed field of any characteristic;
xl, , xn, y, yl, Y, are indeterminates over INo. tNo[Xl, , xn] is the ring of
multivariate polynomials in the indeterminates x1,’", x with coefficients in No.
[No(x l,’’’, x,) is the field of rational functions in the determinates x 1," ’’, xn with
coefficients in [No. Tuples are underlined, e.g., _x (x 1, x2, , x,). N is the set of natural
numbers, 0 included, and 2 is the set of integers, lg is the logarithm to base 2. Given a
field and a subset FeN, an arithmetical computation over F is a sequence
R 1, , R of elements in N such that for 1, , v either (1) Ri F or (2) Ri RjoRk
with j, k <i and {+,-,.,/}. R1,..., R are the results of ft. We say "/3 computes
P1,’" ", P," if {P1,"’", Pro} c {R1,’’’, R}. Particularly important is the case that
F=[NoU{Xl,..., x,}c to(Xl,’’’, xn) where oCtN is a subfield of constants. In
this case a "computation step" Ri :=R. Rk is called nonscalar provided (1) is and
R,RC:IKo or (2) is / and RtNo. For P1,’",P,o(Xl,’",x) let
L,,s(P1,’", P,,) be the minimal number of nonscalar steps in any computation of
P1," ,P, over NokJ{xl," ’, xn}.

2. Requisites from algebraic geometry. Given an algebraic closed field No, a
subset E c [N is called (Zariski) closed if it is definable as the set of common zeros of
some set of polynomials B c 0[xl,""", x]; i.e.,

E {_a e 3IP B’ P(_a) 0}.

E is a hypersurface or hyperplane if B consists of a single polynomial or single linear
polynomial, respectively. Note that an arbitrary intersection and a finite union of closed
sets is closed. These closed sets define the Zariski topology on. The closure A of a set
A cN is the intersection of all closed sets E that contain A, or equivalently, A is the
smallest closed set containing A.

A closed set E is called irreducible (E is then called an affine variety) if there do not
exist closed sets E1 and E2 such that E E1 I,] E2 and El, E2 # E. The irreducible closed
sets E c) are exactly those sets E c) which are definable as the sets of zeros of a
prime ideal P g 0[Xl,’’’, x]. Each closed set is a finite union of irreducible closed
sets. Such a representation of E as a finite union of irreducible closed sets is unique if it is
not redundant. Therefore the irreducible closed sets appearing in this representation of
E are called components of E. The dimension dim E of a closed set E c [N, E # is the
maximal integer m such that there exist distinct irreducible closed sets Z1, , Zm such
that # Z1 c. c Zm E. We have dim iN; n. The zero-dimensional subsets of ;
are exactly the finite, nonempty sets. The dimension of a hypersurface H c; is n 1.
Our definition immediately implies the following fact.

FACT 1. Let E, D be closed sets, E irreducible and E-D. Then dim (E f) D) <
dim E.

The degree deg E of an irreducible closed set E c iN; is the maximal cardinality of a
finite intersection E f-)L with a linear affine subspace L"

deg E :=max {#(E fqL) < oelL c Ng linear affine subspace}.

Following Heintz [2] we extend this definition to reducible closed sets E [ as

deg E := Y’, deg C.
C component of E

Every closed set has finite degree. The degree of a linear affine subspace is 1. Let
P 1-Ii__lPi’ be a polynomial with a pairwise distinct, irreducible factors Pi, and let Hp,
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Hp, be the hypersurface defined by P, Pi. Then Hp, is irreducible, deg Hp,--deg Pi,
Hp=_Ji=lHP and we have degHp=i=adegHpi=i=idegPi<=degP with
deg Hp deg P if and only if P is squarefree, i.e., ui 1 for 1,. , r.

The degree of Ec can be characterized in a particularly useful way if all
components of E have the same dimension d (E is then called of pure dimension d).

+a (a, a)0 we associate the hyperplane H(_a) defined by theWith _ao
equation 7=a aixi a+l. Let E Co be of pure dimension d; then ’for almost all

d n+l d
_a , _a No #(E (’l(-’]i=lH(_ai)) deg E" holds in the following sense"

FACT 2. ([5], p. 196, Thm. 6.2). Let E c; be of pure dimension d. Then
d 0d(n+l){(_a ,...,_a ) [#(Ef’l(]=lH(a_i))degE} is contained in some proper closed

subset of
Our main tool in applying algebraic geometry to the complexity of polynomials is

Bezout’s inequality for the degree of affine closed sets. For completeness and for lack of
a suitable reference we give a proof in the Appendix.

BEZOUT’S INEQUALITY. Let E, DcH be closed sets. Then deg(EfqD)=<

deg E.degD.
For instance, let the closed set E be defined by the polynomials P1," , Pro, i.e.,

E (")i-- Hpi. Then Bezout’s inequality implies deg E <= l-[i= deg Hp, <= 1-Ii= deg Pi.
Let E = H; then U = E is called open in E if there is a closed D c such that

U E D. Next we define the degree of sets U open in E with E c[ irreducible and
U. Let U=E-D with DcH closed; then by Fact 1 dim(ED)<dimE
provided U
[g, d :=dim E we have deg E (E (q Ha f3 Hd) and E fq D (3 Ha f’) f’] Hd. Hence there exists an integer k such that for almost all hyperplanes
: #(U f) Ha f-)" fq Hd) k. Moreover, k max { : (U f’) L) < clLcH linear affine
subspace}. We define deg U := k. This clearly implies deg U deg E but the definition
of deg U is independent from E.

In particular, this applies to the graph of a (partial) rational map R "H ’; i.e.,
R is given as R(_a)= (Rl(_a), ", Rm(a_)) with rational functions Rg o(X1, ", Xn),

n+rn1,. ., m and graph R {(_a, R (_a)) o R (a) defined}.
FACT 3. LetR o o be a rational map. Then graph R [o is irreducible, dim

graph R n and graph R is open in graph R.
Proof. graph R is open in graph R" Let Ri Si/Ti with Si, Ti o[Xa, ’, x, ], gcd

tq-m

(Si, Ti) 1, i-- 1,. , m and let xa," , x,, za," , Zm be the coordinates of [o
Then the equations

ziri(xl, Xn) Si(Xl,

n+m n+rn
define a closed set E co with graph R E. Hence graph R c E. Let D o be
the hypersurface associated with i=l Ti; then E-D=graphR and therefore
graph R-D graph R. This proves that graph R is open in graph R.

dim graph R n and graph R is irreducible since graph R and H are "birational
equivalent" (compare [1, p. 24 if]). This birational equivalence is given by the rational

map R and the projection rr" graph R o. Clearly dim o n and Ho is irreducible;
moreover, dimension and irreducibility are invariants with respect to birational
equivalence. [3

3. Strassen’s degree bound, m rational functions P1, ,Pm :=[o(X1, Xn)
give rise to a rational map qp" -->H as qp(_a) (Pl(_a), ’, P,(_a)). It was Strassen
[10] who first established a lower bound on the multiplicative complexity of
{P1,’"’, Pro} in terms of the degree of the closure of the graph of the map qp:
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STRASSEN’S DEGREE BOUND. Suppose {P1,’", P,,}eN can be computed over

No Cl{xl, , xn} with v nonscalar steps. Then deg graph qe_-<2.
We know from Fact 3 that graph qe is open in graph qe and graph qe is irreducible;

hence deggraph qe=deggraph qe. Therefore in Strassen’s degree bound we can
replace graph qe by graph qe. Observe that deg graph , is the maximal cardinality of a
finite set which is obtained by intersecting graph qe with a linear affine subspace. This
shows that there is no further need of algebraic geometry in applying Strassen’s degree
bound.

We need a more general version of Strassen’s degree bound. Instead of allowing
only arithmetic operations in computations, we shall permit the application of arbitrary
rational operations. Our main notion is the degree of such rational computations.

Let Yl, Y2, Y/ be indeterminates over 4 :=4o(Xl, , xn) and F . A
rational computation over F is a sequence R 1, , R N together with a sequence
of rational operations Wl,’’’,wN0(Yl,’’’,yk) for some k such that for i=
1,..., v, Ri wi(Si,l,’’" ,Si,k) with {Si,1,""" ,Si.k}C{Rt, ,Ri-1}(.Jf. R1,"" ,R
are the results of/3.

Let the degree of k-ary operation w be the degree of the closure of the graph
of the rational map w’[No-40. In particular, if w =8/3/ with
4o[yl, , Yk], gcd (8, 3‘)= 1, then deg (w) max {deg 8, 1 +deg 3‘}. For instance the
degree of a nonscalar multiplication/division is 2, the degree of an addition or a scalar
multiplication/division is 1. Then the degree of a rational computation/3 is by definition
the product of the degrees of all operations/3; i.e., deg/3 I-[i=1 deg wi. For instance,
the degree of a computation which only uses arithmetical operations.,/, +,- is 2",
provided that the number of nonscalar steps in /3 is u. We are now able to extend
Strassen’s degree bound in an obvious way.

THEOREM 1. Suppose the rational computation computes P,... ,Pm
o(xl, , xn over {X l, , xn }. Then deg graph qp _-< deg ft.

Proof. Let R a, , R, be the results of 3 and let R ’N; N be the rational map
given by R(_a)= (Rl(_a),..., R,(_a)). We know from Fact 3 that graph R is open in
graph R and graph qp is open in graph qp. Moreover, there is a projection

-t-[Ko such that graph qp 7r graph R. Hence deg graph qp-deg rr graph R
deg graph R, since 7r is linear. Therefore it will suffice to prove deg graph R <_-deg/3.

We introduce indeterminates Zl, , z, and associate to each computation step of
fl a polynomial equation in the indeterminates x,...,xn, z,...,z,. Let the ith
computation step be

Ri :=wi(Rh, Ri, xi+, xi,), jl, .,is<i, l <=js+l, fk <-- n

with We (i/3‘i, ti, 3‘i [o[yl, Yk], gcd (Be, 3‘i)= 1.
tl-t-Let E c0 be the closed set which is defined by the equations

Zi3"i(Zjl, Zjs, Xjs+l, Xjk) (i(Z]l, Zjs, Xjs+l, Xjk)

for 1,..., u. Clearly graph R c E. We have graph R c E, and since graph R is
irreducible the decomposition graph R ._Jc comp. of E (graph R fl C) is trivial. Hence
there is a component C of E with graph RcC. Let R=S/T with S, T
0[xl,’’’, x], gcd (S, T)= 1 for i= 1,..., u, and let D c[K; be the hypersurface
defined by [I’= Ti 0. We have E D x [K graph R C D x [K, which shows that
graph R is open in C. Therefore deggraph R -deg C=<degE and by Bezout’s
inequality and the definition of E we have deg E <= 1-Ii__ max {deg 8i, 1 + deg q}
deg/.
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4. A new, more powerful degree bound. Strassen’s degree bound does not yield
any nontrivial lower bound on the multiplicative complexity of single polynomials.
Here we establish a more powerful degree bound which is nontrivial even for single
polynomials and which contains Strassen’s degree bound as a special case. Let
[K0(x,. ., x) and P {P,. , P,,} K[y], P /k=0 P,iy with P,i . With any
such P and a finite set I {1,. ., m}we associate the rational map Cp,z" *z
defined as qe,t(_a) (P,i (_a )l( t,, i) I). We abbreviate I/ :={(,, i) Ili 0} and we
establish a lower bound on the multiplicative complexity of P,..., P, in terms of
graph qp,z.

THEOREM 2. Suppose {P,..’,P,}K[y] can be computed over
{x , x, y} with v nonscalar operations. Then, for all finite sets I {1,. m }
[, deg graph (DP,I 2 H(,,i)I+ 2vi.

In the special case I c {1, , m} {0} and P this means deg graph qP.i <= 2,
which is Strassen’s degree bound.

k i)Comments on the proof. Suppose tns(i=o aiy --v with ai in the field [. Then,
following Schnorr 1-6, Thm. 2.1], there exist polynomials Qi Z[zl, , z,],
i=l,...,k,m=(v+l)(v+2) such that degQi<=2vi and (al,’’., ak)
Im (Q1, , Qk), where Im (Q1, ’, Qk)istheimageofthemap(Q1,..., Qk).["-->
k. Now suppose (al,..., ak) Im (Q1, , Qk). Then ai-Qi(’Y1,’’’, a/m)for some
yio(Xl,’’’,xn). A careful inspection of the proof of Schnorr [6, Thm. 2.1]
shows that the i can be chosen such that deg graph (yl,’" ’, y,)<-2. Since the
al,’’’,ak are obtained by evaluating Q1,...,Q at y,...,y, this
yields deg graph (al,’’., a)_<-deg graph (y,..., y,). deg graph (Qa,..., Qk)<=
2 1-1-_ 2vi, which is the core of the theorem. There are several difficulties in exploiting
this proof idea. First, in general (a,..., ag) is not in Im (Q1," ", Qg) but only in the
closure of the image of (Qx,.. , Qk). We will overcome this difficulty by means of an
additional variable z. In order to obtain nice functions yl,"’, y, (these will be
Xl,’’ ", xn, R1,0,’’’, R,0 in the proof) the Q1," ", Qk will not be polynomials but
rational functions. This is necessary in order to handle the operation of division. With
division not allowed the proof would be somewhat easier. Lemma 1 in the proof
rephrases the proof of the corresponding Schnorr [6, Thm. 2.1], adapting this proof to
our special intentions.

Proof. Let /3 be an arithmetic computation for P with v =Ls(P) nonscalar
arithmetic operations. In order to prove the theorem we introduce a new indeterminate
z and rational functions P,*,i [o(X, , x,, z), such that P,i P*,ilz 0 and which can
be computed by some rational computation /* over {x 1,’’’, x,, z} with deg/3*<_-
2 l-[. i)I+ 2vi.

Let n+a I .P.I"0 -->[g be the rational map defined as p.1(xl, .,x,,z)=
<2 H(v,i)I+(P,,i (_X, Z)I(/, i) S I). Then Theorem 1 implies deg graph e,t 2vi. Since

[z 0 this yields deg graph qP,Z < 2 1-I,/)z/ 2vi.
We now construct the P*.i and B* which are closely related to/3. After collecting

scalar steps,/3 can be written as a recursion scheme with parameters a..i, b..i, c,i [o
and linear polynomials U,, V,, W s 0[xa,’’’, x,,]:

R0:-y for/x=l,...,v;

(1) a..iRi * Vu + b..iR for u 1,’’ ", m"
i=0 i=



376 c.P. $CHNORR

Ra,." ", Rv are the results of the nonscalar steps in ft. There exist rational functions
R,,i e No(X1, , xn, z) such that for all but finitely many No

n. E R..(x,..., x., n)(y- n), 1,..., v.
i__>o

In particular, we have Ro,o =- rt, Ro,a =- 1 and Ro,i 0 for > 1. We can now define the
P*,g with the above-mentioned properties"

c,,uRu, i, iO,

(2) p..= .=o

W + c.R.,o, O.
=0

By definition P, P*,lz 0 and we shall construct/3*.
As a first part of the computation fl* for the P*,g with (u, i)eI, we compute

R.o, x 1,... , v with v nonscalar operations over o:

(3) R.,o:= U. + a.,iRi,o * V. + 2 b.,Ri,o for/x 1,..., v.
i=1 i=a

Observe that there is not always a similar computation for R..o[Z 0,/x 1, , v since
some of the R.,o may be undefined at z 0. However R.,o always exists as a rational
function in z and this is the reason for introducing z.

The remaining part of the computation/3", which computes P,.*.i for (u, i) I over
< 2vi, will be prepared[KoU{RI.o, Rv,o, Xl, ", xn} and which has degree

by Lemma 1 below.
Using U. and V. as in the recursion (1), we abbreviate:

.-I .-I
(4) S. := U, + E a.,iRi,o, T. := V. + E b,,iRi,o.

i=1 i=1

LEMMA 1. There exist polynomials O.,i with v + n indeterminates and coefficients in
No such that, for/x 0,. ., v and 1, 2,. .,

(a) R,i O,,,(Ra,o, R,o, XX Xn)/ fi T),
I

(b) deg O., -< 2vi.

Proof. We first show that it is sufficient to construct polynomials
o[ra, , r, ya, , y, za, , z] with 2v + n indeterminates and coefficients in
such that, for tz 0,. , v and 1, 2,. ,

(a*) R.,, O.,,(Ra,o,’", R,,,o, Xl,’", Xn, (l/T1), (1/Tv)),

/ for]<=(b*) deg. O.,i <= Ii and degzj O.,i <=
0

Here deg. denotes the degree with respect to rl, , r, y 1, , y.. Since $. and T. are
linear combinations of Ra,o," ", R,0, x1,’", x. over No, there exist linear poly-
nomials $’., ivy. No[r1,’’’, r, y l, , y.] such that

(5)
.(Ra,o,’’"~ Rv,o, Xl,’"" ,Xn)=S.,

T,(Ra,o, Rv,o, xl, Xn) T..
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Given the Qo, we define Qo, E 0[rl,""’, rv, Y a, ", Yn] as

Oo, :=(o,i(rl rv, yl, Yn, (1/’1), (1//%v)), fl (~Z..i
i=1

Now (a*), (b*)imply (a), (b).
We define the Qo,i by induction on/x following the recursion (1). The induction

hypothesis holds for/x 0 and

{1, i=1
Qo,i

O, il.

For the induction step we distinguish whether the /xth nonscalar step in (1) is a
multiplication or a division. In case of a multiplication we define the Qo, as

(6) Z Qo,iy i= + Z ao, Z O,iy * o + Z bo, Z O,iy
i=>0 v=0 /’-->_1 v=0

By (1), (4), (5) and the induction hypothesis we conclude that (a*) holds for/x. It can
easily be seen that (6) implies

deg, Qo, < max
deg. 0u,i-[- 1 j + ]=

Application of the induction hypothesis deg, ,. =< u/ for u </z yields deg, Op,,i
(tz 1)i + 1 _-< tzi.

The induction hypothesis also implies

[i for/<tz,
degzj Oo, <

=0 for/->/z..

In case of a division, (1) can be rewritten as

Z Ro,iY i= So + Z ao,, Z R,y (1/To)
i_-->O u=0

* Z -(l/To) Z bo,, Z R,.,,iY
o’-->0 u=O j_->l

R,.o+(1/To) Z ao, , R,y
u=0 jl

,Z R* o -(l/T) bo, Z ,iy
j_-->l

since R.,0 S/T.. Thus we can define the 0,i by

Z (t,iyi--(r
i>__o

+z. a., Q,jy * -z. b., . O,iY
=0 jl =0 jl
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This implies

deg. 0tx, max 1 + deg. (,.
k jk >- 1, O<=uk

Application of the induction hypothesis deg. O,i --< uj for u </x implies deg. O.,i <-

1 + (z 1)i <_-/xi. It can also easily be seen that the induction hypothesis implies

deg Ou.,i < ! 0 forj->_/x.

This finishes the proof of Lemma 1.
Following the recursion (1) and by Lemma 1, we can now give a rational compu-

tation for P* with (u, i) I over {R1.0, R.0, Xl, x} as follows"

i-1
(7) T:= V.+ b..R..o forf=l,...,v;

=1

(8’ P*.i:=[ c.,O,.i(R,.o,...,R.o,X,,.",x,]/fl(T, ,or(u,i,I, i0;
LJ/ix=0j=

(9) P*,0::W+ c.,.R,,o for(u, 0)I.
=0

Each operation in (7) has degree 1, each instance of (8) represents an operation of
degree <-2vi, and each instance of (9) represents an operation of degree 1. Therefore
the computation (7), (8), (9) has degree --<l-I(,i;/ 2vi.

The whole computation/3* for (P*,il(u, i)eI) consisting of (3), (7), (8), (9) has
degree <-2 1-[(,ii+ 2vi.

Therefore Theorem 1 implies that the degree of the rational map q*p,i" [IX"n+lu’,xO [t!

P* 2vi. Sincewhich is induced by ,i[(u, i) I), is bounded as deg graph q*p,z=< 2 1-I(,/.
qP,Z o p,;lz 0, it follows immediately that graph qp,z graph q p,** f? H, whereH is the
hyperpline defined by z 0. This clearly implies deg graph qp,1 <= deg graph q p,** which
finally proves deg graph g,e,z <= 2" I-I, i)I+ 2vi. [3

5. Applications of the new degree bound.
COROLLARY. Let P 0[Xi], deg Pg >- n with distinct indeterminates xg,

1,..., k. Then Ln(=x Piyg)>-6k lg n, provided 6 satisfies k <_- (nX-/(2 lg n))/2.
Proof. Let graph Pi {b, ei(b))lb t0} g. We prove deg graph P deg Pi. Let

z l, z2 be the coordinates of o and let H,dCtN be the hyperplane defined by
cz + dzz 0 for c, d [o- 0. Then

Hc,d gl graph Pg {(b, Pg(b))[Pi(b) cb/d}.

b is a multiple zero of Pi(x)- cx/d iff b is a common zero of Pi(x)- cx/d and PI (x)- c/d
(here PI is the formal derivation of P). Clearly this is the case iff Pi(b) PI (b) b. Since
Pg(x)-P(x)x has only finitely many zeros, it follows that, for "almost all" (c, d)
INo, Pg(x)-cx/d has no multiple zeros; hence #(H,d f’l graph Pi)=deg Pi. This proves
deg graph P deg P.

Let Op" o o be defined by qe(X) (Pl(X), , P(xk)). Since graph qp
graphP graph P, we have deg graph qp I-Ig deg Pi -> n . On the other hand
Theorem 2 implies

deg graph qp <- 2 (2vk) for v::L,( pyi).
i=1
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Hence nk<--2V(2vk)k, which yields k lg(n/2vk)<=v. Suppose v<t3klgn; then by
k _-< (n a-/(2 lg n)) 1/2 we have

2vk < 26 k2 lg n <-6n 1-6.
Hence v >_-k lg (n/2vk)> k lg(n/3)>-6k lgn, which contradicts our assumption v <
6k lg n. This proves v >-6k lg n. Observe that the proof holds for any field charac-
teristic.

In the special case Pi x’ the bound of Corollary 1 is sharp up to the factor 3, since
k

L(i=xiy )=O(k lgn). The restriction k<=(n-/(21gn))/ in the above lower
bounds is rather strange, and it is an open problem whether this restriction can be
removed.

COROLLARY 2. Let Pio[Xz], degPi-n for i= 1,..., k and let the (k, k)-
matrix (Ci,]) i,]<=k with Ci, E 10 be regular. Then every computation of .5-..i= 2/.k= ci.iPiyi over
INo LJ {x, "_’’, xk, y} requires >-6k lg n nonscalar steps, provided k _-< (n1-/(2 lg n)) a/2.

k kPro@ Let qe"o- [o and qR [14o [No be defined as qe(_a)
(Pa(_a),’’’, P(_a)), (_a)= (Y=I c,iPi(a_)[i= 1,... ,k). Since the matrix (ci,i)i,i<__ is
regular we have deg graph qR deg graph Ce. Therefore the assertion follows as in the
proof of Corollary 1.

COROLLARY 3. Let (Ci,j)i,j<=k be a regular (k, k)-matrix with ci,iEo. Then k <-

(n 1-/(2 lg n))/2 implies Lns(i=lk (=1 ci,ixi)nyi)>=k lg n.

Proof. Let zi :==x ciaxi. Since (ci,i)i,i<__ is regular, zx,’’ ", z are indeterminates
over o. But we already know from Corollary 1 that Zns(= zTyi} -> 8k lg n with
respect to computations over KoU{Zx,’’’, z}. This clearly implies tns(i=lzTyi)>=
6k lg n with respect to computations over o

Observe that our method distinguishes well between hard polynomials as above
and extremely easy polynomials such as

and

(XI+’" "+Xk+’y)n-- (i)(Xl+’’’-t-xk)n-iyi
i=0

[1-(x+...+x)"+y"+]/[1-(x+ .+x)y]= (x+... +x)y,
i=0

which can be computed with O(lg n) nonscalar steps. Indeed, let qe" [N IN; be defined
as ,,(Xl, ’, x)- ((Y= xi)ili 1,..., n), then deg graph qe n.

Theorem 2 can be extended in a straightforward way from one indeterminate y to
several indeterminates yx, ., y. Let_i (il, ik) N be a multiindex, [_/I :==x i
and y" ’.=1-[=1 Y. We consider a set

P=IP1,’", P,} cIN[yl,’’’, y,],

P,, P,/y- with P,/ .
With each finite set I {1,. , m} xNg

we associate the rational map qe,z "iN;g
defined as

q,,,(Xl, ., x,) (P,_ (_x)l(,, _/)m I).

Let I+ :={(u, _/) e I11_/] 0}. Then the obvious extension of the proof of Theorem 2 yields
THEOREM 3. Suppose P={Px,’’’,P,}c[N[yl,"’, yk] can be computed over

o LI {x 1,""", x,, y 1,"" ", y} with v nonscalar operations. Then for all finite sets I
{1,. , m} x Nk, deg graph qe,, --< 2 I-I(,/)t+ 2vl_/[.
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Also, the above corollaries can easily be extended to the case of several variables
ya,"’, Yk. In this way one obtains lower bounds on L,,(P)>=6k lgn for single
polynomials P with 2k variables and degree n, provided k <=na-/(2 lg n). As an
example we extend Corollary 1.

COROLLARY 4. LetP o[X], deg P >-_ n fori 1,. , k. Thenevery computation
of =x Piyi over oLl{x:.,.’., xk, yx," ", Yk} requires >-6k lg n nonscalar steps pro-
vided k <-- n -/(2 lg n ).

Proof. Let qp’oko be defined as qp(_a)=(P(_a),...,Pg(_a)). Let v=
L,(k= Pgy); then Theorem 3 implies deggraph qp<-2v(2v)k. On the other hand,
deggraph qp= n . It follows that k lg(n/2v)<-v. Suppose v <6k lg n; then 2v<
26k lg n <-_ 6n -. It follows that

v _-> k lg (n/2v) > k lg (n/6) >- 8 k lg n.

This contradicts our assumption that v < 6 k lg n. Hence v -_> k lg n.
It is perhaps an interesting observation that all our lower bounds still hold if

multiplications by y, y 1," ", Yk are counted as scalar multiplications.
THEOREM 4. Suppose P={P1,’" .,p,}c[y] can be computed over

{Xl, , xn, y} with v nonscalar operations without counting multiplications by y. Then

for all finite sets I {1, , m} N, deg graph qp,t -<_ 2 (,iz+ 2vi.

Proof. Consider the proof of Theorem 2. In case where the/th nonscalar step in
the computation/3 is a multiplication by y, then (6) looks like

i>0 u=0

This clearly implies deg. 0,,i =max {1, deg. t,i_llU </x} and degzj (,,i-<-
max {degzj O,i-l[V </z}. Therefore Lemma 1 holds even if v does not contain the
multiplications by y. Then, however, Theorem 4 follows in the same way as
Theorem 2.

It is obvious by Theorem 4 that Theorem 3 and Corollaries 1-4 still hold if
multiplications by y, yl," , y are considered as scalar steps.

We finally observe that by our method and by evaluating the degree of closed sets
one obtains lower bounds L,,(P) lq(k lg n) for "almost all" polynomials P of degree n
depending on k + 1 variables, k << n. We identify P [K0[xl, ’, Xk, y with its vector of
coefficients in [o. Then, for each n ,

V,,,t, :={ Piyilpio[xl, xk], degPi <=n, i= 1,’’’, k}
i=1

is a closed set.
Let qp’ II0k[0 be defined by qe(X,. ., Xk) (PI(_X), ", Pg (_x)). Then

V,*,k :={e Vn.kldeg graph (.19p < n k}

is contained in a proper closed subset of V,,.k. Hence deg graph qe n k for "almost all"
P V,,.k. Using similar calculations as in the proof of Corollary 4 we obtain Lns(P) -<

2--ak lg n for all P V, k *V,,,k provided k<=n1-2-/(2 lgn) with rt.

Appendix. A proot o[ Bezout’s inequality. We reduce Bezout’s inequality to the
well-known Bezout equality for the degree of projective closed sets which was first
proved by van der Waerden [12] (see also Kendig I-5, Thm. 7.1, p. 207]. Heintz l-2] has
given a direct proof of Bezout’s inequality based on commutative algebra.
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The projective n-space over [Ko,’denoted pn (o), is the set of equivalence classes
n+l on+l(called projective points) of (n+l)-tuples (ao,"’,an)[Ko under the

equivalence relation (ao,...,an)---(Aao,... ,Aan) for all A [Ko-O. Thus the
equivalence class [(ao, , an)] of (ao, , an) is the line in IK+lthrough (ao, ,
and the origin On/l. Since the zero sets of homogeneous polynomials
[o[Xo,"’", xn] are closed with repect to this equivalence relation one defines V
[?n ([0) to be (Zariski) closed if V is the set of projective points which consist entirely of
common zeros of some set of homogeneous polynomials B c o[Xo,’’’, xn]. Dimen-
sion, irreducibility and components of projective closed sets V c pn (o) are defined as
in the affine case. A linear subspace L c zn([o) is a closed set which is defined by
homogeneous linear equations. Then the degree of an irreducible closed set V
zn ([Ko) is max# (V L) over all linear subspaces L c pn ([Ko) such that V 71L is finite.
For reducible closed sets EPn(o) we set degE =Ccomp.ofzdeg C. Facts 1, 2
also hold for closed sets E, D pn ([Ko). Our remark on the degree of sets U, U open in
E with E irreducible closed, applies to closed sets E pn(o) as well; i.e., deg U
degE in this case. We use the embedding p "--> Pn(o) defined as p(al,’", an)
[(1, al,’’’, an)]. p([o) is open in n(o) since Pn(io)-Ho p(l) where Ho is the
hyperplane defined by Xo O. Also, for every closed set E , p(E) is open in p(E)"
Let E n be defined by the polynomia.ls P1, ’, P [Ko[Xl, , xn]; P1, , P
correspond to homogeneous p.olynomials P1, ’,/5 6 o[Xo, xl, , xn which define
a closed set " c zn (o) with E-Ho p(E). It can easily be seen that E [K is irreduc-
ible iff p(E) is irreducible. L [K is a linear affine subspace iff p(L) = zn (IIo) is a linear
projective subspace. This taken together implies deg E deg p (E) deg p (E) for every
closed E . Therefore it remains to prove deg (E 71 D) <- deg E deg D for closed
sets E, D = n(o). Moreover, it is obvious that we only need this statement for
irreducible closed sets E, D zn (Io). We use the

BEZOtT EQtAtITY. (Kendig 1-5, Thm. 7.1, p. 207], van der Waerden [12].) Let
V, W pn (o) be irreducible and closed such that V and W intersect properly (which
means dim (V (3 W) dim V + dim W- n). Then

Y i(V, W, C)deg C deg V. deg W,
C comp. of V(-I W

where i(V, W; C)-O is the "intersection multiplicity" of V and W along C.
Since i(V, W; C)->1, Bezout’s equality implies deg(V W)<=deg V.deg W,

provided V and W intersect properly. This latter condition is needed in Bezout’s
equality for the definition of the intersection multiplicities, but it is unnecessary for
the conclusion deg (V FI W)-<_ deg V. deg W. We finally show how to eliminate this
condition.

For A, B c n (lEo) closed we define

A(R)B :={[(ao,’’’, an, bo,""", bn)]l[(ao,""", an)]A, [(bo,""", bn)] 6 B}.

A(R)B [13)2n+1([]0) is closed" it is defined by the polynomials that define A (working on
the first n + 1 coordinates of [izzn+l(tK0)) and the polynomials that define B (working on
the last n+l coordinates of [2n+1(o)). We have dim(A(R)B)=dimA+
dimB+l. For our given irreducible closed sets E,DPn([Ko), we set

" :=E(R)Pn(o), 10 :=Pn(tKo) (R)D, ’,/ PZn+l([]0). It can.easily be seen that ,/ are

irreducible and that deg E deg , deg D deg D. We have " (3/
E (R) D, dim (" Yl/) dim (E (R)D) dim E + dim D + 1 dim " +dim/ (2n + 1),
which shows that ’,/ intersect prope.rly. Therefore Bezout’s equality implies
deg (E (R)D) deg (" KI/) _-< deg ’. deg D deg E. deg D.
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It remains to prove deg (E f3 D) <_- deg (E (R)D). Let x0, , xn, Zo, , zn be the
coordinates of Pzn+l(iK0) and let Hi c p2n+l(K0) be the hyperplane defined by xi zi.
Let A zn ([K0) - P2n+l(K0) be the linear map A[(a0,..., an)]
[(ao,’’’,a,,ao,’’’,an)]. Clearly A yields a linear isomorphism A:Ef’ID
E(R)D71[")n Hi. Hence deg(Ef3D)=deg(E(R)Df30 Hi) Now we can=o =o
inductively apply Bezout’s equality to the components V of E(R)Df3Oi=iHi and
W :=/-/.+1, o’bserve that V and Hi+l intersect properly provided V Hi+l (see, e.g.,
Kendig [5, p. 183 if]). This inductive application of Bezout’s equality yields

deg (E(R)D 7)
i=0
[ Hi)-<deg (E(R)D).

Thus we have proved deg (E f3 D) -<_ deg (E (R) D) -<_ deg E deg D for any irre-
ducible, closed sets E, D c n ([K0), and this immediately implies the same assertion for
any closed sets E, D

Acknowledgment. I am greatly indebted to Joos Heintz for thoroughly reading
and criticizing the manuscript, and for indicating improvements both in style and in
proofs.
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LANGUAGES SIMULTANEOUSLY COMPLETE FOR ONE-WAY AND
TWO-WAY LOG-TAPE AUTOMATA*

J. HARTMANISS" AND S. MAHANEY"

Abstract. In this paper we study languages accepted by nondeterministic log n-tape automata that scan
their input only once and relate their computational power to two-way log n-tape automata. We show that for
the one-way log n-tape automata the nondeterministic model (1-NL) is computationally much more powerful
than the deterministic model (l-L), that under one-way log n-tape reductions there exist natural complete
languages for these automata and that the complete languages cannot be sparse. Furthermore, we show that
any language complete for nondeterministic one-way log n-tape automata (under 1-L reductions) is also
complete for the computationally more powerful nondeterministic two-way log n-tape automata (NL) under
two-way log n-tape reductions. Therefore, for all bounds T(n), T(n >- log n, the deterministic and
nondeterministic T(n)-tape bounded computations collapse iff the nondeterministic one-way log n-tape
computations can be carried out by two-way deterministic log n-tape automata.

Key words, deterministic languages, nondeterministic languages, log n-tape automata, one-way
automata, two-way automata, complete languages, context-sensitive languages

1. Introduction. Work in computational complexity theory has been strongly
influenced by the study of the families of languages accepted by Turing machines in
polynomial tape, nondeterministic polynomial time, deterministic polynomial time,
nondeterministic logarithmic tape and deterministic logarithmic tape, denoted by

PTAPE, NP, P, NL and L

respectively [1], [5].
Though the proper containment relations between these families of languages are

not yet known, they form a natural hierarchy to classify the complexity of many
practical computational problems by their membership in these families. Furthermore,
each of these families contains many natural complete problems which, in a sense,
characterize and represent their computational complexity. Currently, among the most
challenging problems in the theory of computation is to establish the proper contain-
ment relations between these families of languages and to gain a better understanding
of their structure.

In this paper we show that the above described "hierarchy" of families of
languages, PTAPE, NP, P, NL and L, can be naturally extended downward to one-way
log n-tape deterministic and nondeterministic Turing machines. These are (nondeter-
ministic) two-tape Turing machines with a one-way input tape (with end marker) and
for an input of length n a two-way, read-write work tape of length [logz n] (with end
markers). We denote the families of languages accepted by the nondeterministic and
deterministic models by 1-NL and l-L, respectively.

The results in this paper show that these automata exhibit some very interesting
properties and that they capture our intuitive idea of what can be achieved by guessing
and polynomial bounded counting in one scan of the input.

Their importance is further enhanced by their relations to nondeterministic
two-way log n-tape automata. We prove that every complete 1-NL language under
one-way log n-tape reductions, is also complete for NL languages under two-way
log n-tape reductions. Thus, these two different families of languages share many

* Received by the editors March 5, 1980, and in final form June 24, 1980. This research was supported in
part by the National Science Foundation under grant MSC 78-00418.

5" Department of Computer Science, Cornell University, Ithaca, New York 14853.
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complete sets. From this follows that for all tape bounds T(n), T(n)_->log n, the
deterministic and nondeterministic T(n)-tape bounded computations collapse iff the
nondeterministic one-way log n-tape computations can be performed by two-way
deterministic log n-tape machines. Thus, we see that the basic question about eliminat-
ing nondeterminism in tape-bounded computations is equivalent to the question
whether we can replace nondeterminism in one-way log n-tape computations by
deterministic two-way computations.

Finally, we show that if NL L then there exist natural incomplete languages in
1-NL- 1-L. Recall that the incomplete languages in NP- P, under the assumption that
P NP, are obtained by diagonalization and that no natural incomplete languages are
known for NP [9].

2. 1-NL languages. First we observe that, though we do not yet know whether

PCNP and LCNL,

we can easily show that for one-way log n-tape computations the nondeterministic
computations are more powerful than the deterministic ones; i.e.,

1-L 1-NL.

Actually, we prove that the gap between deterministic and nondeterministic one-way
log n-tape computations is exponential. This shows that one-way computations with
small amounts of work tape behave differently from two-way tape-bounded compu-
tations (with log n or more tape), which going from nondeterministic to deterministic
computations need no more than to square the amount of tape used [11].

Let 1-TAPE[T(n)] denote the family of languages accepted by deterministic
one-way Turing machines with T(n) work tape.

THEORFM 1. If T(n) is such that

hen

T(n)
lim 0

1-NL 1-TAPE[T(n)].

Proof. The language

A={uvlu, v*, Eandug:v}

is in 1-NL but not in 1-TAPE[T(n)], if the above limit condition holds for T(n). To see
this, note that A can be recognized by a nondeterministic, one-way log n-tape machine
which guesses whether tul or lul- I1 and u v ;in the first case the guess is easily
verified on log n-tape, in the second case the machine guesses in which digit the two
strings differ and then counts up to the position in u and v, respectively, using its work
tape to verify its guess.

On the other hand, if

T(n)
lim 0,

then for any q, q > 0, and sufficiently large n,
T(n) < 2 n.q

Therefore for some sufficiently long sequences u and u2, ua u2, the machine must be
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in the same total configuration after scanning

Ul:: and

But then

Ul#Ul and u2#ul

are either both accepted or both rejected, showing that A is not in 1-TAPE[T(n)]. l-I
Next we show that there exist natural complete problems for the 1-NL family of

languages. To do this we use deterministic one-way log n-tape reductions that were
introduced and studied in [6]. A 1-L transducer is a deterministic one-way log n-tape
machine with a one-way output tape. From Theorem 1 we know that the 1-L
transducers are not computationally strong enough to recognize the languages in 1-NL.

Recall that it is not yet known whether P - NP and/or L - NL, and therefore we do
not know whether the polynomial time reductions used to study NP problems are not
sufficiently powerful computationally to recognize directly all the languages in NP; the
related question about two-way log n-tape reductions also remains open. On the other
hand, from [6] we know that the well-known "classic" complete problems for PTAPE,
NP, P, NL and L, respectively, all remain complete for these families under one-way
log n-tape reductions and that these transducers are not capable of recognizing the
languages in L. At the same time, it was also shown that there are complete problems,
say, in NP under polynomial time reductions, which are not complete under one-’way
log n-tape reductions [6].

We recall that there is a nice hierarchy of "graph connectivity problems" which
form complete sets for PTAPE, P, NL and L. The complete problem that we will define
below for 1-NL fits in naturally in this hierarchy, extending it downward. For the sake of
comparison we describe the other complete "graph connectivity" problems.

A complete language for PTAPE is formed by all directed graphs with an IN and
OUT node for which there exists a winning strategy for the first player of the game of
hex on this graph [1].

A complete language for P is formed by all directed graphs whose nodes are labeled
with either AND or OR and are such that the IN and OUT nodes are connected by a
path system which must take all possible edges out of an AND node and some edge out
of an OR node.

A complete language for NL is formed by the set of all directed graphs with an IN
and OUT node, which have a directed path from the IN to the OUT node [7].

A complete language for L is formed by all directed graphs of outdegree one for
which there is a path from the IN to the OUT node [6], [7].

A directed graph is represented by a sequence of pairs of nodes (a, b) indicating
that there is an edge leading from node a to node b. We will say that the representation
of a directed, acyclic graph, G is topologically sorted if for any pair of edges (a, b) and
(b, c) in G, edge (a, b) is listed before (b, c).

Next we show that the problem of determining whether the topologically sorted
representations of acyclic graphs have a directed path from the IN to an OUT node is a
complete 1-NL problem. Denote the set of these graph representations by TAGAP. It
is seen that TAGAP fits in naturally in the hierarchy of the other complete "graph
connectivity problems" for PTAPE, P, NL and L, where the acyclic nature of the
graphs directly mirrors the limited ability of reading the input only once. Similarly, the
difference between the complete graph problems for NL and L is captured in the
difference between the outdegree of the graphs: for NL we can use graphs with
outdegree k _-> 1, whereas for L we are restricted to outdegree one.
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THEOREM 2. The set of topologically sorted representations of directed, acyclic
graphs with a directedpath from the IN to an OUT node is a complete languagefor 1-NL.

Proof. TAGAP is contained in 1-NL since a one-way nondeterministic device can
successively guess on its log n tape the sequence of nodes which form a path from IN to
OUT. Since the representation of the graph is topologically sorted, the correctness of
these guesses can be verified in one scan of the input.

To see that TAGAP is complete for 1-NL, we show that for every one-way
log n-tape nondeterministic machine M, we can reduce every input string w (by a 1-L
transducer) to an acyclic graph in which IN is connected to OUT iff w is accepted by M.
The nodes of the graph Gw, corresponding to the input w, consists of triplets

(nl, n2, x),
where n a, 1 <_-nx <= [w[ n, indicates the head position of M on the input tape, nz,

0 _-< nz _-< q", indicates the number of operations performed since the last head move on
the input and x describes the configuration of M (input symbol scanned, state,
worktape content, and head position on work tape).

For any fixed M we can construct a one-way deterministic log n-tape transducer
which for input w enumerates in topological order on its output tape all pairs of nodes

((n,n2, x),(n’, n, x’))

such that in one move the machine M goes from the total configuration described by
(hi, n2, x) to the one described by (n , n2, x’). If the input head is moved, then

n nl+ 1 and n’2 =0;
otherwise, if the machine performs an operation and 112 < qn,

We denote the pair

n=nl and n=n2+l.

((n n, x), (n’1, n, x’)) by ((nl, n2, x), Succ (hi, n2, x)).

The enumeration is described by the following program"

begin
For each 111 1, 2,’’’, wl do

begin
For each 112 0, 1, 2,. ., qlwl do

begin
For each x, Ix =< [log w l] do

begin
print all pairs ((nl, n2, x), Succ (nl, n2, x))

end
end

end
end

The resulting graph is topologically sorted and the IN node, the initial configura-
tion, is connected by a directed path to an OUT node, a node whose configuration
contains the halt state, iff w is accepted by M.

Thus we see that TAGAP is complete for 1-NL.

3. Relations between one-way and two-way computations. We know that the
nondeterministic two-way log n-tape computations are computationally much more
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powerful than the nondeterministic one-way log n-tape computations; i.e., 1-NL NL.
Nevertheless, we will show in this section that there are sets which are simultaneously
complete for both families of languages. More precisely, we know that TAGAP is
complete for 1-NL under one-way log n-tape reductions and we prove below that
TAGAP is also complete for NL under two-way log n-tape reductions. Later we will see
that this result has some very interesting implications.

THEOREM 3. TAGAP is a complete language in NL under two-way log n-tape
reductions.

Proof. Since TAGAP is in 1-NL it is also contained in NL. To show that TAGAP is
complete for NL, let A be a language in NL. We know that A is accepted by a
nondeterministic two-way log n-tape automaton M. This automaton can be easily
converted to an oblivious automaton, M’, that moves its input head on complete sweeps
from (left) end marker to (right) end marker (and back). In other words, the head
movements on the input tape are oblivious to the input and machine configuration.
Furthermore, for any accepting computation of M’ there is an accepting computation
which does not repeat any of the log n long work tape patterns, and therefore we know
that for M’ there exists a k such that if any input w is accepted then w is accepted by M’
within k + n k operations, n [w [.

We will now show that a deterministic two-way log n-tape transducer can reduce
any set A in NL, using an oblivious acceptor M’ of A to topologically sorted
representations of acyclic graphs, Gw, such that an OUT node of Gw can be reached
from the IN node if[ w is in A.

For input w, [w[= n, the graph Gw has nodes of the form

(P/l, n2, n3, x),

where nl, 1<-nl -<_k +n k, counts the sweeps on input w;
n2, 1 <-_ nz <_-n, indicates the head position on the input tape;
n3, 0 -< n3 -<- k + n , counts the operations performed since the last head motion

on the input tape; and
x, x F*, Ix] _-< log n, represents a configuration of M’.

The graph Gw has an edge of the form

((nl, nz, n3, x), (n, n2, n3, x))

iff in one possible operation M’ transforms the state described by (nl, n2, n3, x) to
(n , n, n , x’). The IN node is again the initial configuration of M’ on w and the OUT
nodes are the nodes with an accepting state in x.

For input w the two-way log n-tape transducer enumerates all the nodes of Gw in
sequence for sweeps, head position, how long it has computed without moving the head
and the machine configuration, and lists the possible edges of Gw if there is a one-step
transition

((nl, n2, n3, x), (nl, n2, n3, x’)).

This can be done by an algorithm similar to the one used in the proof of Theorem 2.
It is easily seen that Gw has the desired property that IN is connected to an OUT itt

w A and that Gw is an acyclic graph, printed in a topologically sorted form. Thus
TAGAP is complete for NL, as was to be shown. !-1

From the previous result we can see that for all tape bounds T(n), T(n) >- log n, the
deterministic and nondeterministic T(n)-tape bounded computations collapse, i.e.,

TAPE[T(n)] NTAPE[T(n)],



388 J. HARTMANIS AND S. MAHANEY

if and only if nodeterminism in one-way log n-tape computations can be eliminated by
using deterministic two-way computations.

COROLLARY 4. 1-N __c L iff NL L.
Proof. NL L implies that 1-NL c__ L. Conversely, 1-NL

_
L implies that TAGAP

is in L. Since TAGAP is complete for NL we see that L NL.
The above corollary puts a premium on understanding the power of two-way

computations and their relation to one-way nondeterministic computations. It is
interesting to recall that the related question about one-way nondeterministic push-
down automata and two-way deterministic pushdown automata also remains unsolved:
we know that deterministic two-way pushdown automata can accept languages which
are not context-free, but we do not know whether they can accept all context-free
languages.

From the study of NP-complete problems we know that if P NP then there exist
incomplete languages in NP-P [9]. On the other hand, the known incomplete
languages are constructed by delayed diagonalization, and so far no natural languages
are known to be incomplete.

For 1-NL languages the situation is quite different. Let A be given by
A={u vlu, vZ*, and uv}.

THFOIFM 5. If L NL, then the language A is not complete for 1-NL and is in
1 NL but not in 1 L.

Proof. The language A is seen to be in 1-NL and also in L but, by Theorem 1, A is
not in 1-L. If A is complete for 1-NL then, by Theorems 2 and 3, it is also complete for
NL; but then NL L.

4. Nonexistence o[ sparse complete sets. In this section we show that there cannot
exist sparse complete sets for 1-NL, and compare this result with the not yet completely
resolved question for NP-complete languages. In the last section we discuss the
corresponding problem for complete NL problems under two-way log n-tape
reductions.

A set B, B
__
Z*, is said to be sparse iff there exists a k such that for all n

IBnnl_<k+ .
It has been shown [2], [5] that the known complete sets in NP (and similarly in

PTAPE) are isomorphic under polynomial time mappings, and therefore the known
complete languages are similar in a very strong technical sense. The existence of sparse
complete languages for NP would prove that not all complete languages for NP are
polynomial time isomorphic, and therefore there would exist (as yet undiscovered)
radically different types of complete languages. Furthermore, it would prove that the
necessary information to solve NP-complete problems can be condensed into a sparse
oracle tape (which could be computed once up to sufficiently long strips and then used to
solve NP problems in deterministic polynomial time) [2], [5].

At present we do not know if there exist sparse complete sets in NP under
polynomial time reductions. Recently it has been shown that, if a language A over a
single letter alphabet A a* is complete for NP, then P NP [3]. Similarly, if there
exists a sparse complete language for co-NP, then P=NP [4]. Furthermore, the
existence of a sparse complete language in PTAPE implies that P= PTAPE and
therefore P NP PTAPE [10]. Unfortunately, the main problem, whether there can
exist sparse NP-complete sets under polynomial time reductions without forcing
P NP, remains unsolved.

The situation is different for one-way log n-tape reductions, for which we show
next that there cannot exist sparse complete sets in 1-NL, L, NL, P, NP and PTAPE.
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THEOREM 6. There are no sparse complete sets in 1-NL, L, NL, P, NP and PTAPE
under 1 L reductions.

Proof. We will prove that there exist sets in 1-NL which cannot be reduced to any
sparse sets by 1-L reductions. Suppose, to the contrary, that TAGAP is reduced to a
sparse set A.

For a 1-L transducer let CONFIG be the total configuration consisting of the input
tape square scanned, the machine state, work tape content and head position, and
output tape content.

Consider as inputs topologically sorted representations of dags which consist of
nodes labeled IN, 1, 2,.. , n, and OUT. The edges will be (IN, i) for all in some sets
and (], OUT) for some/’.

After the prefix T {(IN, i): REACH} is read, the set REACH is exactly the
set of nodes that can connect IN to OUT. If REACH , then a suitable choice of
(/’, OUT) can put the graph into TAGAP. Thus, after reading a string in prefix T, the 1-L
reducer for TAGAP to A must print a string from prefixes of A on its output tape.

Since A and PREFIX(A) are sparse sets, we see that any time during the reduction
of a directed tree of size n the reducer is in one of polynomially many different CONFIG
(including the content of the output tape). On the other hand, there are exponentially
many graphs with descriptions of length n and different REACH sets. Therefore, there
exist two graphs T1 and T2, with REACH[T1] REACH[T2], which are mapped by the
1-L transducer onto the same total configuration. But then, by adjoining the same
appropriate edge to both of them, connecting some/" to the OUT node in T1 and Tz, we
place Ta in TAGAP and T2 not in TAGAP. Since the 1-L transducer maps T and T2
onto the same element we see that TAGAP cannot be reduced to a sparse set.

5. Two-way reductions and an open problem. It is interesting to note that for 1-L
reductions we cannot have sparse complete sets in 1-NL, N, NL, etc., nor can we have a
complete set A over a single letter, A a* for NP under polynomial reductions, if
NP P. On the other hand, so far we have not been able to show that the existence of a
complete set over a single letter alphabet for NL would imply that

L= NL.
The assumption that there exists a complete set A, A

___
a*, for NL leads to some strange

implications.
We know that if L NL then the deterministic and nondeterministic computations

for larger amounts of tape are also equal. In particular, NL= L implies-that the
deterministic and nondeterministic context-sensitive languages are the same, DCSL
NDCSL. On the other hand, we get the following result.

THEOREM 7. If A, A a*, is complete for NL, then DCSL NDCSL implies that
L=NL.

Proof. LetM be a nondeterministic log n-tape acceptor for the complete language
A, A a*. Then we can convert M to an equivalent nondeterministic log n-tape
automaton, which for any input a first deterministically represents n in binary on its
[log n] work tape and then, using only the available work tape, simulates M on a n.
Clearly, the last operation can be performed by a nondeterministic linearly bounded
automaton and, therefore, because we assume that DCSL NDCSL, by a deterministic
lba working on the [log n work tape. Thus, A is in L and since A is complete for NL we
have NL L, as was to be shown. [3

Furthermore, if A, A
_

a*, is complete for NL, then every language in NL can be
recognized by a log n-tape automaton which uses its nondeterminism only after it has
scanned the input tape.



390 J. HARTMANIS AND S. MAHANEY

We refer to a two-way log n-tape automaton which operates deterministically
while it scans its input tape and only uses nondeterministic operations (on its log n
work tape) after the input has been completely scanned, as a restricted nondeterministic,
log n-tape automaton, and designate the family of languages accepted by these
automata by RNL.

THEOREM 8. There exists a complete NL language A, A
_

a*, iff RNL NL.
Proof. If RNL NL then we can construct from any complete language A for NL a

complete language A’ for NL such that A’_ a*. To do this, let M be the restricted
recognizer for A. For each input w let w’ be the content of the work tape after M has
finished scanning the input w in a deterministic mode. Let the complete set A’, A’

_
a*,

be the set obtained from A by expressing in unary form all the deterministically
computed work tape contents, w’, which we can view as binary representation of
integers.

Clearly, there is an L reducer of A to A’, and since A is a complete set for NL, it is
easily seen that A’, A’

_
a*, is a complete set for NL.

Conversely, let A, A
_

a*, be a complete set for NL. Then any other set B in NL
can be reduced to A and the resulting element a k can be represented on the
transducer’s log n tape as a binary number. After that we simulate on a separate track of
the log n tape the acceptor of A (the input a k is simulated by counting up to k) and
accepts iff the simulated acceptor accepts. Since the above device uses nondeterminism
only after it has finished scanning the input (computing ak), we see that any set in NL is
accepted by a restricted machine. Thus

RNL NL,

as was to be shown.
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RECURSIVE GRAPHS, RECURSIVE LABELINGS
AND SHORTEST PATHS*

ANDRZEJ PROSKUROWSKI’

Abstract. We consider classes of undirected, not weighted graphs which have recursive representations;
these include trees, maximal outplanar graphs, k-trees, chordal graphs, and minimally two-connected graphs.
We investigate invariants of recursive labelings of some of these graphs. One consequence of the existence of
such invariant relation is that we can describe a single-source, shortest-paths spanning tree in terms of the
recursive representation. We also discuss reasons why we cannot do this as well for other types of recursive
graphs.

Key words, recursive graphs, chordal graphs, data structures, shortest path

Introduction. We are interested in graphs which may be obtained in a recursive
construction process [9]: trees, maximal outplanar graphs, k-trees, chordal graphs and
minimally two-connected graphs are examples of such graphs [7]. Very often combina-
torial problems "hard" for general graphs are efficiently solvable for some of the above
classes [1 ], [11 ], [13 ]. The resulting efficient algorithms frequently use a particular data
structure--recursive representation of the graphsmimplied by the recursive con-
struction process for the given class of graphs. This process involves a labeling of the
graph’s vertices ("recursive labeling") which is not necessarily unique. We would like to
pinpoint reasons for which different classes of recursive graphs have different degree of
difficulty for certain problems. We approach this question by investigating ordering
relations invariant under all recursive labelings of a graph. The existence of such
relations has been studied ("monotone ordering" in [10] and [12]) in connection with
numerical solutions of sparse systems of linear equations.

As an application example of this approach we solve the shortest-path, single-
source problem for some classes of recursive graphs. For a rooted tree T, a recursive
representation gives explicitly the shortest path from any vertex to the root of T. This
property that a recursive representation explicitly gives shortest paths from all vertices
to the root applies to some other classes as well. In particular we prove this for chordal
graphs, which contain mops and k-trees. However, we show that this is not the case for
several other classes of recursive graphs. The shortest-path problem has been discussed
in many papers; bibliography of recent works may be found, e.g., in [8].

1. Recursive representation. Generally speaking, a class of graphs is recursive if
each graph in the class can be constructed from an initial element (vertex, edge, triangle)
by a finite number of applications of the following operation: to a graph G already
constructed add a new vertex and join it to some set of vertices which define a fixed
subgraph of G. A recursive labeling of such graph with n vertices uses integers 1 through
k to label the base vertices and k + 1 through n to label the remaining vertices in the
order they are added in a given recursive construction process.

A recursive representation of a graph G with k distinguished base vertices labeled
1,..., k is an array, GRAPH [k + 1.. hi, such that the ith entry contains labels of
the vertices to which the vertex labeled was joined in the process of recursively"
constructing G, i.e., ] <i for all j in GRAPH [i].

* Received by the editors July 13, 1978, and in revised form May 1, 1980.

" Department of Computer Science, University of Oregon, Eugene, Oregon 97403.
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For trees, the base vertex is the root labeled 1. The notion of a k-tree generalizes
that of a tree" k-trees are generated recursively by joining a new vertex to a complete
subgraph of order k (Kk) in the graph already constructed; in this case the base vertices
form a complete graph of order k.

Maximal outerplanar graphs (mops) are an interesting subclass of 2-trees. During
the recursive construction of a mop, a new vertex is made adjacent to two vertices
adjacent along the Hamiltonian cycle of the already constructed mop. We distinguish
here the base triangle, labeled 1, 2, 3.

There is another class of graphs seemingly "somewhere between" mops and
k-trees, called internally maximalplanar graphs (imps)" here, a new vertex is joined to a
number of vertices on a path along the outer contour of the existing structure [9].

A generalization of k-trees in terms of changing the size of the complete subgraph
to which a new vertex is joined is the class of chordal graphs (see, for instance, [5]). The
base vertex is labeled 1 and the ith entry of a recursive representation of a chordal graph
L consists of the mutually adjacent vertices to which the vertex labeled was joined
during the recursive construction of L.

The class of minimally two-connected graphs (mtcs) is yet another class of graphs
which may be constructed recursively [6]. The generation process, however, differs
from those previously described because it calls for a possible modification of the
existing structure when adding a new vertex. The new vertex is always joined to two
vertices; if these are adjacent, then the existing edge between them is removed.

In general there may be more than one recursive process for constructing a given
(unlabeled) graph. We will discuss this in the following section. Figs. 1, 2 and 3 illustrate
the above definitions.

5o... 6 5

(a) 7 4
(b)

2 3 4 5 6 7

2
3 TREE[i] 3 2 3

MOP[i] 2 2
2 3 3 5 2

4 5
CHORD[i] 2 2 2 2

2 3 3 3 4

7 6 4 4 6

(c) (d) 5

FIG. 1. A tree (a), a mop (b), a chordal graph (c) and their recursive representations (d).

2. Invariants of recursive labelings. The following question is important in studies
of recursive graphs" What is invariant among all recursive labelings of a given graph
with a specified root and the initial ("base") structure? We will answer this question for
the above defined classes of graphs and point out implications of this answer for the
shortest-path problem.

Let us assume that a labeling of the base structure of the recursive graph is given
(say, 1 through k). The following fact was discovered in [4] for chordal graphs and gave
basis for the recursive definition of these graphs.
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FACT 2.1. For a given recursive graph G with a distinguished base structure, there
exists a removal sequence of vertices vn, vn-1, Vk+l such that consecutive deletion
of vertices vi(i=n,...,k+l) preserves the following property R: the graph
G-{v,, , vi} is recursive (of the same type as G) and contains the same base structure
as G.

The subscripts used as labels together with the given base labeling give a recursive
labeling of G. An invariant of recursive labelings is thus an invariant of removal
sequences.

For rooted trees we have an intuitive notion of end-vertices (leaves): a vertex of
degree 1 in a tree is called a leaf if it is not the root. In order to satisfy property R (Fact
2.1) for trees, the operation of removing vertices can only be applied to leaves.
Therefore, the following fact gives a relation on the vertices of a rooted tree T which
remains invariant under all possible recursive labelings of T.

FACT 2.2. Labels and
in all recursive labelings of T if and only if u is contained in the path from w to the root
(u < w). The relation < partially orders the set of vertices of T.

Recursive labelings of k-trees have a similar property. Defining a nonbasic vertex
of degree k as a k-leaf, we have the following procedure for labeling vertices of a k-tree.

FACT 2.3. For a given k-tree O with base structure (Kk ), the removal of a vertex v
results in a k-tree with the same base structure if and only if v is a k-leaf.

The above fact gives us a relation which is invariant under all recursive labelings of
a k-tree with a given base structure.

THEOREM 2.4. Any two adfacent, nonbasic vertices u and w of a k-tree O with a
given base structure must be labeled in the same manner with respect to each other in all
recursive labelings ofO (say, the label ofu is always greater than the label of w). Ifall such
ordered vertex pairs define a relation R then the transitive closure R* (denoted <) is
invariant in all recursive labelings of Q, i.e., if u < w then label (u) < label (w).

Proo[. Consider a pair of adjacent, nonbasic vertices u and w. Let us assume,
without loss of generality, that there exists a recursive removal sequence of vertices
Vn, Vk+l such that u vi, w Vj and n _--> >/’ > k. If u is a k-leaf of Q, then our thesis
follows from Fact 2.3, since w cannot be a k-leaf. Otherwise, u is a k-leaf of the k-tree
Q-{v,,..., Vi+x} which also contains w. Let us now assume that there exists another
removal sequence v’, , v ,+1 in which u v p, w v and p < r. Then the removal of
all vertices {v,, , vi+l} tO {v’, , v’r+x } from Q would result in a k-tree in which both
u and w are k-leaves, by repeated applications of Fact 2.3. But this contradicts the
adjacency of u and w. Thus in all recursive labelings of Q, labels of u and w are ordered
uniformly.

This characteristic of k-trees does not apply to imps. Two adjacent vertices of an
imp in Fig. 2, u and w, may be labeled in different ways, thus preventing a uniform
ordering.

5

FIG. 2. Two different labelings of an imp.

This lack of uniformity in labeling is also characteristic of mtcs (cf. Fig. 3).
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2

4

3

2

5

FIG. 3. An mtc with two labelings switching order of vertices u and w.

Every chordal graph L has a nonbasic vertex, called a simplicial vertex, all of whose
neighboring vertices form a complete subgraph of L [3]. The removal of a simplicial
vertex from a chordal graph results in another chordal graph. (A procedure based on
this fact has been used as a test of chordality in [4].) In contrast to the case of k-trees,
however, two simplicial vertices (which are a generalization of k-leaves) may be
adjacent. Thus, for a chordal graph L, the relation R as defined in Theorem 2.4 is not
necessarily preserved under different recursive labelings of L. The constraints of the
relation R must be slightly relaxed to reflect the weakening of graph’s structure by the
generalization of k-trees to chordal graphs.

THEOREM 2.5. In a chordal graph L, any two adjacent vertices u and v must be
labeled in the same order in every recursive labeling ofL (say, label (u) < label (v)) unless
there exists a partial removal sequence wn,’", wi/l of vertices simplicial in Ln L,
L L-I- {w}, etc., resulting in a chordal graph Li in which both u and v are simplicial.

Proof. Obviously, removal of vertices w,, w,_, , wi/ defines a recursive label-
ing of L based on a recursive labeling of Li. u and v are both simplicial in Li if and only if
they form, together with all their neighbors, a complete subgraph of Li. In that case they
could be removed (or recursively labeled) in arbitrary order. We will show that in the
absence of such a sequence w no removal sequence making v a simplicial vertex
contains u. For purposes of a contradiction, let us assume that a removal sequence
Xn," Xj+l exists such that u is a simplicial vertex of L. and v has not been removed.
Besides, there is no additional sequence yi,..., yi+ of.vertices from L which could
make u and v both simplicial (otherwise xn, , Xi+x, yi, yi+x would play the role of
the sequence w above). Let us now consider the vertices Zk+x, ", Z, with labels larger
than k label (v) in that particular labeling in which label (u) < label (v). Let us further
remove from Li all vertices z. As a result, v would become a simplicial vertex and u
would remain one. This, however, contradicts our assumption. !1

3. A shortest-path spanning tree. For a single-source, shortest-path problem in a
given graph, we can always find a spanning tree of the graph in which the unique path
from any vertex v to the source r is a shortest path from v to r. If this rooted tree is
represented recursively such that its vertices are labeled in a breadth-first order, then
for any vertex v, the sequence 10, 1, , Ip such that l0 label (v), 1. TREE [/j_l] for
j 1, 2, , p and Ip 1 is a shortest path from v to the source labeled 1. Actually, this
ordering (modeled on Dijkstra’s "greedy" approach [2]) may be relaxed to involve only
vertices with a common shortest path, i.e., v < w if v lies on the path from w to the
source (Fact 2.2). This ordering may be obtained by the labeling procedure in the
recursive generation of trees.

FACT 3.1. For any tree Trooted at a source, the recursive representation, TREE, of T
represents explicitly shortest paths from any vertex to the root.

We will call a solution to the single-source, shortest-path problem a minimum
distance spanning tree. The invariant of recursive labelings of a chordal graph with a
given root, stated in Theorem 2.5, suggests a solution to the shortest-path problem. A
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minimum distance spanning tree of such a graph will be given by the array of smallest
entries in the recursive representation of the chordal graph. To prove it we will show
that any recursive labeling of a chordal graph orders adjacent vertices concordantly
with nondecreasing value’of the distance to the root.

LEMMA 3.2. For two adjacent vertices u and v of a chordal graph L, such that
label (u)< label (v) in a particular recursive labeling of L, their shortest distances to the
root rofL satisfy the inequality d (u, r)<-d(v, r). Furthermore, the addition of a simplicial
vertex does not change the shortest distances to the root of any other vertex.

Proof. We prove this result by induction on the number of vertices, n. It is certainly
true for n 2, where there is only one nonbasic vertex, u, such that d(r, r)= 0< 1
d(u, r) and label (r) 1 < 2 label (u). The addition of another vertex to r and u will not
change the value of d (u, r). Let us assume that the theorem is true for all graphs of fewer
than n vertices and add a new vertex v according to the recursive construction scheme,
creating a chordal graph L of n vertices. Let u r be a vertex of the complete subgraph
K of L’ to which v has been joined. A shortest path from u to the root leaves K at some
of u’s neighbors, or at u itself. Shortest paths from v to the root must pass through one
of the vertices of K. Thus d(u, r)<-d(v, r). By Theorem 2.5, either label (u)< label (v)
in all recursive labelings of L or u and v are both simplicial in some L", a chordal
subgraph of L. Then there exists a vertex w of K such that d(u, r) 1 / d(w, r). Thus
d(v, r) d(u, r) and label (x) < label (y) implies d(x, r) <- d(y, r) for all recursive labe-
lings of L (where {x, y}- {u, v}). The addition of another vertex to L will not change
any minimum distance to the root: connects (by paths of length 2) only vertices already
adjacent. This completes the proof.

From this lemma it follows immediately that the minimum distance spanning tree
of a rooted chordal graph may be found trivially from its recursive representation.

THEOREM 3.3. The array LOW [2.. n] of smallest elements of entries in the
recursive representation CHORD of a chordal graph L gives the minimum distance
spanning tree of L with respect to the root labeled "1".

The pointer to the array LOW is enough to indicate the minimum distance
spanning tree of a given k-tree, and the theorem gives us, in fact, a "constant time
algorithm" to compute it; i.e., the minimum distance spanning tree can be recovered
from the recursive representation of the graph in cost proportional to its length. This is
qualified by two assumptions: (i) the root of the chordal graph is the source in our
problem, and (ii) the smallest label in the set CHORD [i] is explicitly available. If the
latter is not true it will take O(n) operations (constant work per vertex) to recover this
information. If the source of our shortest path problem differs from the root of the
recursive representation we can "reroot" the graph.

ALGORITHM Rerooting.
Input: Old recursive representation of the chordal graph and the new source

labeled rn > 1.
Output" New recursive representation rooted at m.
Method: Call the vertices labeled lower than a given vertex v "older" than v.

Starting at the source m, we proceed towards th root through the vertices
older than m relabeling them and arranging elements of the new recur-
sive representation. The vertices not relabeled during this process are
already in order.

The above algorithm can be verified by the following observation (supplied by the
referee). A recursive labeling of the rerooted graph is given by the removal sequence
obtained by first removing simplicial vertices until the new source is simplicial, and then
removing simplicial vertices other than the new source until it is the only vertex left. The
existence of such a removel sequence follows from the characterization of chordal



396 ANDRZEJ PROSKUROWSKI

graphs given in [4] and from the fact that every chordal graph with at least 2 vertices has
more than one simplicial vertex.

An elaboration of the procedure given in the algorithm is given in 11 for the class
of 2-trees.

4. Conclusions. In the paper we have investigated different recursive labelings of
recursive graphs and established invariant relations under all possible such labelings
for k-trees and chordal graphs. As a by-product, we have presented a property of
chordal graphs in terms of their recursive representations. This property allows
recovering of the solution to the single-source, shortest-path problem for these graphs
in cost proportional to its length. In the case when the source differs from the root of a
given recursive representation, the graph must be rerooted. For two other classes of
recursive graphs, imps and mtcs, the "recursive removal" operation does not preserve
the ordering of adjacent vertices. This makes the proof technique of the "constant time
algorithm" inapplicable. It is easy to see that a theorem analogous to Theorem 3.2 does
not hold for imps or mtcs. Fig. 4 presents two counterexamples to this; dist (6, 1)<
1 + dist (4, 1) for the imp in 4(a) and dist (4, 1)= 2 < 1 + dist (2, 1) for the mtc in 4(b).
For an mtc, the aray LOW does not necessarily represent a tree because of the change of
existing structure in the process of recursive construction. This fact singles out the class
of mtcs from the family of recursive graphs even more.

7 6

2

,4

2

(a) (b)

2 3 4 5 6 7

LOW IMP[i] 2 3 4

LOW MTC[i] 2 2 4
(c)

FIG. 4. An imp (a) and an mtc (b) for which arrays LOW (c) do notrepresentminimum distance spanning
trees.
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AN ANALYSIS OF A MEMORY ALLOCATION SCHEME FOR
IMPLEMENTING STACKS*

ANDREW C. YAO

Abstract. Consider the implementation of two stacks by letting them grow towards each other in a table
of size m. Suppose a random sequence of insertions and deletions is executed, with each instruction having a
fixed probability p (0< p < 1/2) to be a deletion. Let Ap(m) denote the expected value of max {x, y}, where x
and y are the stack heights when the table first becomes full. We shall prove that, as m c, Ap(m)=
m/2 + x/m/(2zr(1-2p))+ O((log m)2/x/). This gives a solution to an open problem in Knuth [The Art of
Computer Programming, Vol. 1, Exercise 2.2.2-13].

Key words, deletion, insertion, memory allocation, memory utilization, stack

1. Introduction. The purpose of this paper is to give a solution to an open problem
of Knuth [-2, Exercise 2.2.2-13], regarding the effectiveness of implementing two stacks
by letting them grow towards each other.

Consider a contiguous block of m locations, which we use to implement two stacks.
One stack grows from the left end of the block and the other from the right end; we
denote the heights of the stacks by x and y. One measure of the effectiveness of the
memory utilization for this scheme is the expected value of max {x, y} when the two
stacks first meet, i.e., when x + y m. For example, suppose the value of max {x, y} is
2m/3. If we had used one block for each stack, then we should have reserved at least
4m/3 locations instead of the present m locations. The following model was proposed
in Knuth [2], with p (0 <= p < 1) as a parameter. Consider a sequence of stack operations
to be carried out until the two stacks meet. Each instruction acts either on the left stack
or on the right stack with equal probability; for each choice, there is a probability p for it
to be a deletion and probability 1 p to be an insertion. A deletion on an empty stack will
not have any effect. Let Ap(m) denote the expected value of max {x, y} when the two
stacks first meet. It was shown in Knuth [2, Exercise 2.2.2-12] that A0(m)=
m/2+x/m/(27r)+O(m-1/2). It was also stated [2, Exercise 2.2.2-13] that
limp_,1Ap(m) 3m/4 for fixed m. Thus, in this model, there is little gain in memory
utilization for large m when only insertions are present, whereas substantial gain results
when deletions are overwhelmingly dominant. The question asked was the behavior of
A(m) for fixed p and large m.

In this paper we prove the following result.
TIEOREM 1. Let p (0, 1/2) be a fixed number. Then 2

A,(m)
m / m ((log m)2)--+ +O
2 27r(1-2p) 4

Thus, for such p, there is no substantial gain in memory utilization asymptotically.
Note that the formula is also true for p 0, as mentioned earlier.

We leave open the question of the asymptotic behavior of Ap(m) when p =>1/2.

* Received by the editors January 18, 1979, and in revised form July 8, 1980. This research was
supported in part by the National Science Foundation under grant MCS77-05313. Part of this paper was
prepared while the author was visiting Bell Laboratories, Murray Hill, New Jersey 07974.

+ Computer Science Department, Stanford University, Stanford, California 94305.
This measure is somewhat conservative. An alternative measure might be the expected value of

max {x, y} at any time before the two stacks meet.

Here and throughout this paper, p is assumed to be fixed and the constants in the O-notation may
depend on p. Logarithms are the natural logarithms (i.e., with base e).
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2. Random walks. The main idea of the proof is very simple. With the insertion
probability 1 p greater than 1/2, the length of each stack behaves like a one-dimensional
random walk with an average net gain of (1-2p)/2 per step. At time t, each stack is
almost certain to have a length (1-2p)t/2 / O(x/). As a result, the two stacks are
likely to meet at a point 0(4m/(1-2p)) distance away from the midpoint. A rigorous
proof is complicated by the fact that a deletion has no effect on an empty stack, making
the problem not exactly a free random walk problem. To overcome this difficulty, the
technique is to give a rough estimate of the stack lengths after log m steps and treat
the process after that as a free random walk, taking advantage of the fact that the
probability of further encountering an empty stack will be very small.

We begin the formal proof by casting the problem in random walk terminology (see
Feller [1] for backgrounds on random walks). Let IL, IR denote an insertion instruction
for the left and the right stack, respectively, and DL, DR a respective deletion
instruction. We can regard the execution of a sequence of such instructions as a
"particle" performing a "walk" on the integer lattice points in the plane, with the
coordinates (x, y) being the current heights of the stacks. For example, an instruction IL
causes the particle to move from its current position (x, y) to (x + 1, y). An instruction
DL will cause the particle to move from (x, y) to (x- 1, y), unless x 0 (i.e., an empty
left stack), in which case the position does not change. We shall call the line x 0 a
reflecting barrier, the line y 0 being also a reflecting barrier. The line x + y m will be
referred to as the absorbing barrier. The two-stack problem with deletion probability p
defines a random walk that starts at (0, 0), moving stochastically according to the above
interpretation, and stops when any point on the absorbing barrier is reached (the point
is called the absorption point). Let us call this a (p, m; O, O)-random walk.

In general, a (p, m a, b)-ran[tom walk is defined in the same way, except it starts at
the point (a, b). We will assume hereafter that 0<p <1/2, m >0, a =>0, b _->0, and
a / b <_- m. Let (Xa,b, Ya,b) denote the pair of random variables that have as their values
the coordinates (x, y) of the absorption point if the walk ends on the absorbing barrier,
and have values (0, 0) if the walk never reaches the absorbing barrier. The value (0, 0) in
this latter assignment is not important, as we shall see later (see the remark at the end of
this section) that it occurs only with probability 0. Let Za,b max {Xa,b, Ya,b}. The
quantity of interest, Ap(m), is clearly equal to Z0,o.

We now consider a "free" random walk that is easier to analyze. In a (p, m a, b)’-
random walk, a particle starts at the point (a, b), moves according to the transition rule

(x + 1, y) with probability (1 p)/2,
(x, y + 1) with probability (l-p)/2,

(x, y)
(x- 1, y) with probability p/2,
(x, y 1) with probability p/2,

and stops when it hits the absorbing barrier x + y m. We use Xa.b, Ya,b, Za,b for the
random variables defined in the same way as Xa,b, Ya,b, Za.b. Again, we shall see later
that the particle will eventually hit the absorbing barrier with probability 1.

The value of Z’,b can be evaluated rather precisely. In particular, we have the
following result when (a, b) is close to the origin.

LEMMA 1. If a + b O(log m), then

+O
2"rr(1 2p) /

Proof. See 3.
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We also have the following result.
LEMMA 2. I) a, b -> 10/(log ((1-p)/p)) log m, then

Pro@ See 3.
Let

Zab Za,b+O(m-9).

ep min {(1 2p)/8, p/8},

=max
1-2p log ((1-p)/p)

1-2p
Ap-

4

Clearly, A p’ >= 10/log ((1 p)/p). Define R =[[Ap’ log m] lap log m] + 1]2. Lemmas 1
and 2 combine to give the following formula"

m m (log m )2.(1) Za = -+ + O for (a, b) R.
27r(1-2p) 4

We shall now use (1) to evaluate Z0,0.
Let t= [&p log m] +1 and $ be the set of all sequences of length in

{It, IR, Dt, DR}. For each s=slsz"’stS, let r(s)=[l<=i<=tro(si), where ro(si)
(1 -p)/2 if si {It, IR} and ro(si) p/2 if si {Dr, DR}. For each s $, let (fa(s), fz(s)) be
the position of the particle in a (p, m 0, 0)-random walk after the sequence s have been
executed. Clearly, for each k,

As a result, we have

(2)

Pr (Zo,o k)= Y r(s) Pr (Zrl,),r:() k).
s$

Zo,o-- 2 r(s)Z]:I(S),[2(S),
s$

Now, let M be any integer such that, if m -> M,, then < m.
LEMMA 3. Suppose m >= M,. Let So {sis S; (f(s), f2(s)) gR }. Then sSo r(s) <=

8m-.
Proof. We need the following fact (see R6nyi [3, p. 200]). If the toss of a certain

coin has a probability v (0 < v < 1) to result in a "head", then after tossing the coin N
times we have, for any

0<6 < 2 max
(3) v 1-v

Pr (I : of "heads"- vNI > 6N) <= 2 e -N2/4-)).

For each sS, let It(s), IR(s), Dt(s), DR(s) denote the number of
appearances of It, IR, Dr, DR in s, respectively. It follows from (3) and the fact
4v(1-v)< 1 that, for a random s S (weighted by r(s), of course),

(4) Pr (14f i(s) ro(i)tl > ept) <-- 2 exp (-e2pt),
for e {Ic, In, DL, DR }.

As m =>M., the particle will not be absorbed in steps. Since f.(s) =< for j {1, 2},
it follows that sSo only if f(s)<= [&’. log m] for some j{1,2}. Observe that
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fl(S) -> IL(S)--DL(S) and f2(s) > IR(S)--#DR(s). It is straightforward to verify
that fi(s) -< [A’. log m] for some ]e{1,2} only if at least one of the conditions
I#i(s)- ro(i)tl> ept, where {IL, IR, DL, DR} is satisfied. It follows then from (4) that

--10r(s)<=4 2 e .t_<_8m [-1
sSo

From (1), (2) and Lemma 3 we obtain that, for m -> Mp,

Z0,o= Y r(s)Ze{,,e(,+ Y r(s)Zt,{,,:(s
sSo sSo

+
2r(1 2p)

((log m)2.)) 10)) 10)+0\ 7 (1-O(m- +O(m- O(m)

=--+ +0
2 2rr(1- 2p) 4

This proves Theorem 1. 71
Remark. Let N be any large integer such that ((1-2p)/8)N > m. Similar to the

proof of Lemma 3, one can show that, with probability 1-O(e-"u), the particle
must have been absorbed in the first N steps in a (p, m;a, b)-random walk (or a
(p, m; a, b)’-random walk). Let N - oe. This shows that the particle will be absorbed
with probability 1.

3. Proofs of Lemma 1 and Lemma 2. We need some basic facts about 1-
dimensional random walks (see Feller [1]). Consider a random walk in one dimension
that starts at 0, and at each step moves to the left with probability p (0 < p < 1/2) and to
the right with probability 1-p. Let U,n,n (p) be the probability that position m (m > 0) is
reached for the first time at exactly the nth step. It is known (see Feller [1, Chap. 14,
formula (4.14)]) that

(5) um .(p)
m ( n ) (1-p)(n+m)/ap (-’)/2
n (n +m)/2

if n -> m and n, m are of the same parity. All other Um..(p)= 0. Clearly,

(6)

FACT 1. Let no m/(1-2p) and c. =4p(1-p)/(1-2p)2. Then

Y u.,.(p)n no, E u., .(p)(n no)2 cvno

Proof. The generating function U(z)= Y..>-o um..z is equal to (G(z)), where

G(z) (1-41-4p(1 -p)z)/(2pz),

as can be directly verified. The first sum is given by

E u.,,.(p)n U’., (1) mG’(1)= no.

The second sum is then the variance of the sequence u.,. (p), n 0, 1, 2, ., regarded
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as a probability distribution. Thus, after some calculations, we find

Um,n(p)(n-no)2= U’ (1) + U (1)- (U’ (1))2

m(G"(1)+G’(1)-(G’(1))2)

CpllO.

We also need the following result (see Feller [1, Chap. 14, formula (2.8)]).
FACT 2. The probability that the above random walk ever reaches -z (where z > O)

is equal to (p/(1 _p))Z.
We state one more fact. Let be any number. For each s {a, fl}n, let W( (s)

denote the quantity]# of/3-# of a-l]. Let w (1) be the average value of wl) (s)
assuming that all 2 sequences are equally likely. We omit the proof, which involves
only standard manipulations.

FACT 3. W /2n/r+ o((lll 2 + 1)//).
ProofofLemma 1. Let m’ m (a + b) and a b. A (p, m a, b)’-random walk

can be generated in the following way. First generate a sequence : {/, D}* one symbol
at a time, each with a probability p to be a D and probability 1-p to be an/, until
(#I- #D) m’ for the first time.3 Then convert into a sequence s {/, Iy, Dx, Dy}*
probabilistically by attaching with equal probability a suffix x or y to each symbol in .
We now associate with s a walk starting from the point (a, b) to an absorption point on
x + y m, by interpreting each Ix, Iy, Dx, Dy as a step moving from position (x, y) to
(x + 1, y), (x, y + 1), (x- 1, y), (x, y 1), respectively. It is easy to verify that this pro-
cedure indeed generates a (p, m; a, b)’-random walk. It is also not difficult to see that,
for each such s generated, the value of Z’.b is given by

m h(s)Z’ (s)
2 2’a,b

where h(s)- I(#v ofG + # of Dx)-(# of/ + # of Dr)-/I.
Note that, for each sequence of n symbols, the average value of h(s) for s derived

from is in fact equal to w l). Thus, we have

z,mb-- ---- 1/2 (probability that I:[ n). w (l)

It is easy to see that the quantity (probability that I’l n) is exactly u,,,, (p). Hence

Zr m

Using Fact 3 and the fact O(log m), we have

m/’2- ( ())(7) Z’,b + u.,,.(p) x/+ 0 (log m)2

G
Write x/ and 1/4 as

4- 4n-o+1/2(n-no)(no)-l/2+O((n-n’o)2(no’ )-3/2),

We have ignored here the possibility that : may be infinite. However, our discussion is valid as the
probability is zero for sc to be infinite (see the remark at the end of 2).
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and

1 1
+O(In n’ [(n’ )-/2)-o o

1
+O((n n’o)Z(n;)-3/2) for all n _-> 1,

where n m’/(1 2p). Substituting these expressions into (7) and making use of Fact
1, we obtain

Z ta’b -+ Y’n Um p 4n--o + 2--o n n o + O og m 2 + --n ,o 4-o

/’ (logm)2 ( 1, )m no=--+ +0 1q- Um’,n(p)(n --//;)2
2 /n--0 no

m / m’ ((log)2.)=--+ +O
k -2 2zr(1-2p)

Since m’= m- O(log m), the lemma follows. 71

Proof of Lemma 2. Consider a (p, oo; a, b)-random walk, and let A(a, b) be the
probability that the particle will ever touch the reflecting boundaries (x 0 or y 0). By
Fact 2, the probability for it to touch x 0 is (p/(1 _p))a and for it to touch y 0 is
(p/(1 _p))b. This implies that A(a, b)<_-(p/(1 _p))a + (p/(1 _p))b <__ 2m-lO.

Since any walk that does not touch the reflecting barriers occurs with the same
probability in both the (p, m; a, b)-random walk and the (p, m a, b)’-random walk, we
conclude that

Iz,-z’A _-< rn A(a, b) =< 2m -9.
This completes the proof of Lemma 2.
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INFERRING A TREE FROM LOWEST COMMON ANCESTORS WITH
AN APPLICATION TO THE OPTIMIZATION OF

RELATIONAL EXPRESSIONS*
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Abstract. We present an algorithm for constructing a tree to satisfy a set of lineage constraints on
common ancestors. We then apply this algorithm to synthesize a relational algebra expression from a simple
tableau, a problem arising in the theory of relational databases.

Key words, tree algorithms, lowest common ancestors, relational databases, relational algebra,
tableaux, query optimization, join minimization

1. A tree discovery problem. In a rooted tree, the lowest common ancestor of two
nodes x and y, denoted (x, y), is the node a that is an ancestor of both x and y such that
no proper descendant of a is also an ancestor of both x and y. Suppose we are told a tree
T has leaves numbered 1, 2, .., n, and we are given a set of constraints on the lowest
common ancestors of certain pairs of leaves. In particular, suppose the constraints are of
the form (i,/) < (k, l) where /" and k 1, meaning that the lowest common ancestor of
and j is a proper descendant of the lowest common ancestor of k and l. Note that the

order of and j in (i, j) and of k and in (k, l) are irrelevant. From a set of constraints of
this form, can we reconstruct T, or determine that no such tree exists?

Example 1. Suppose we are given the constraints

(1.1)
(1, 2) < (1, 3),
(3, 4) < (1, 5),
(3, 5)< (2, 4).

One possible tree T consonant with these constraints is shown in Fig. 1. However, if we
add the constraint (4, 5) < (1, 2), then it can be shown that no tree can simultaneously
satisfy all these constraints.

1 2 3 4 5

FIG. 1. A solution to constraints (1.1).

In this paper we give an efficient algorithm for solving this problem. We then
present an application of this algorithm to the problem of synthesizing a relational
algebra expression from a simple tableau.

2. Finding the tree. The central idea behind the solution is to determine for a
potential tree T the sets of leaves that are descendants of each child of the root of T. Call
these sets $1, $2,’", St. We may assume r=>2, since if a tree satisfying a set of

* Received by the editors July 10, 1979, and in revised form June 3, 1980.
5" Bell Laboratories, Murray Hill, New Jersey 07974.
Department of Computer Science, University of Illinois, at Urbana-Champaign, Urbana, Illinois 61801.
Department of Computer Science, Stanford University, Stanford, California. The work of this author

was supported in part by the National Science Foundation under grant MCS-76-15255.
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constraints exists, we can find another tree satisfying the same set of constraints if we
merge each node having one child with that child. In Example 1, we have $1 {1, 2} and
Sz {3, 4, 5}.

There are two conditions that these sets must satisfy for each constraint (i, ])<
(k, t).

(1) and ] must be in the same set. Otherwise (i,/’) is the root of T, and the root
cannot be a proper descendant of (k, l).

(2) Either k and are in different sets, or i,/’, k and are all together in one set.
Otherwise (i, ]) cannot be a proper descendant of (k, l).

We shall also show that conditions (1) and (2) are sufficient. Thus, if we can
partition the nodes into two or more sets satisfying (1) and (2), and if we can recursively
build trees for each set, then a tree exists; otherwise, one does not.

Given a set of constraints C, we define a partition rrc on the leaves 1, 2,..., n
using the following rules"

(1) If (i, ])< (k, l) is a constraint, then and ] are in one block of rrc.
(2) If (i, ]) < (k, l) is a constraint, and k and are in one block, then i,/’, k and are

all in the same block.
(3) No two leaves are in the same block of rrc unless it follows from (1) and (2).
Example 2. rrc for the constraints given in Example 1 is {1, 2}, {3, 4, 5}. Note that

no instance of rule (2) is used. If we add to (1.1) the constraint (4, 5) < (1, 2), to obtain
the set

(1, 2) < (1, 3),
(3, 4) < (1, 5),
(3, 5)< (2, 4),
(4, 5) < (1, 2),

then by rule (2) the two blocks must be merged, yielding a trivial partition. Since a
necessary condition for the existence of a tree is that rrc have more than one block, we
can immediately infer that this new set of constraints is not satisfied by any tree.

In Fig. 2 we present a recursive algorithm to build a tree T satisfying a set of
constraints C on a nonempty set of nodes S. It returns the null tree if no tree exists. The
basic idea is to compute the partition rrc, check that it has at least two blocks
$1, $2, ’, &, r -> 2, and construct the sets of constraints C,,, 1 _-< rn _<- r, such that C, is
C restricted to those constraints that involve members of S, only.

THeOReM 1. If BUILD(S, C) returns a nonnull tree T, then T satisfies the
constraint set C.

Proof. We proceed by induction on the size of S. The basis, one node, is trivial.
Suppose then that the theorem is true for all sets smaller than S. Because every recursive
invocation of BUILD is applied to a set of strictly smaller size than S, we can assume
that all recursive calls of BUILD obey the inductive hypothesis.

We must show that all constraints in C are satisfied by T. Accordingly, let
(i, ]) < (k, l) be an arbitrary member of C. Two cases arise depending on whether k and
are in the same or in different blocks.

Case 1. If k and are in the same block, then all of i,/’, k and are in some set S,, by
rule (2) in the definition of rrc. Also, (i, ])< (k, 1) is in C,,. By the inductive hypothesis,
BUILD(S,, C,,) produces a tree that satisfies (i, ]) < (k, l), so the final tree satisfies that
constraint also.

Case 2. If k and are in different blocks, then (k, l) is the root of T. By rule (1) in
the definition of rrc, and ] are in the same block, and therefore (i, ]) is not the root.
Thus (i,/’) < (k, I) is surely satisfied.
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procedure BUILD(S, C);
if S consists of a single node then

return the tree consisting of node alone
else

begin
compute Zrc $1, $2, , Sr;
if r 1 then

return the null tree
else

for m:= 1 to r do
begin

C. := {(i, j) < (k, l) in C]i,f,k,1 are in S.};
Tn := BUILD(S,., C.);
if T. the null tree then

return the null tree
end;

/. if we reach here a tree exists ./
let T be the tree with a new node for its root and

whose children are the roots of T,., 1 =< m -<_ r;
return T

end
end BUILD

FIG. 2. The procedure BUILD.

LEMMA 1. Let T be any tree satisfying constraint set C. Then each block of 7rc is
wholly contained within a subtree rooted at some child of the root of T.

Proof. Let us consider any fixed order in which we may apply rules (1) and (2) to
construct 7r:, starting with each leaf in a block by itself. We shall show, by induction on
the number of applications of the rules, that each block of the partition being formed
always lies wholly within the subtree of some child of the root of T.

Basis. Zero applications. Each leaf is in a block by itself, so the result is trivial.
Induction. Case 1. Rule (1) is applied to a constraint (i, f)<(k, l) causing the

blocks containing and j, say B1 and B2, to be merged. By induction, all the nodes in B1
and B2 are contained, respectively, in the subtrees rooted at n and nz, two children of
the root. If n n2, then (i, j) is the root of T. But then no constraint of the form
(i, ) < (k, l) can be satisfied by T, violating our assumption that T satisfied C. We must
therefore have rtx n: and all the nodes in B tO Bz are descendants of the same child of
the root.

Case 2. Rule (2) is applied to constraint (i, )< (k, l) because k and are in the
same block. Let B and Bz be the blocks containing and/’, and let B3 be the block
containing k and I. By induction, there exist nodes nx, nz and n3, children of the root of
T, that are the roots of subtrees containing all the nodes of B1, Bz and B3 respectively.
Clearly, n l- nz, for otherwise (i, ) is the root of T and cannot possibly be a proper
descendant of (k, l) as required by the constraint. If nx n3, then (i, j) and (k, l) are
descendants of different children of the root, again violating the constraint. We must
therefore have n- n2 n3 and all the nodes in Ba LIBz LIB3 are descendants of the
same child of the root. [3

TI-IEOREM 2. If there is a tree satisfying the constraint set C, then BUILD(S, C)
returns some nonnull tree.
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Proof. Suppose not, and assume that T with the constraint set C is as small a
counterexample as there is. Suppose BUILD(S, C) returns the null tree. Then either 7rc
has only one block, or BUILD(S,, C,) returns the null tree for some m. In the first
case, it follows from Lemma 1 that the root of T has only one child. But then T’, which is
T with the root removed, provides a smaller counterexample to the theorem.

In the second case, where BUILD(S,, C,,) returns the null tree, let S,, be
contained in the subtree rooted at child n of the root of T. Define T’ to be the subtree of
T with root n, after deleting all leaves not in $,, and any interior nodes none of whose
descendant leaves are in $,,. Then T’ satisfies C,,, T’ is smaller than T, yet
BUILD(S,, C,,) does not construct a nonnull tree. Thus T together with C was not the
smallest counterexample to the theorem, as supposed.

As a single node cannot be counterexample to the theorem, we conclude that the
theorem has no smallest counterexample. Since a counterexample, if one exists, is finite,
there can be no counterexample at all, from which we conclude the theorem.

Example 3. Suppose we are given the constraints

(1,3)<(2,5)
(1, 4)< (3, 7)
(2, 6) < (4, 8)
(3, 4) < (2, 6)

(4, 5) < (1, 9)
(7, 8) < (2, 10)
(7, 8) < (7, 10)
(8,10) < (5, 9).

Rule (1) produces partition {1, 3, 4, 5}, {2, 6}, {7, 8, 10}, {9}. By Rule (2), we must merge
the first two blocks because of constraint (3, 4) < (2, 6). Thus the tree constructed top
down begins as in Fig. 3(a). The constraints germane to {1, 2, , 6} are (1, 3) < (2, 5)
and (3, 4)< (2, 6), while only (7, 8)< (7, 10) is germane to {7, 8, 10}. The partition for
the former is {1, 3, 4}, {2}, {5}, {6}, and for the latter {7, 8}, {10}. The second level of tree
construction is shown in Fig. 3(b). No constraints are applicable to any of the remaining
blocks, so at the next level, each block of more than one leaf is partitioned into
singletons. The final tree is shown in Fig. 3(c). I-1

9
9

1,2,3,4,5,6 7,8,10

1,3,4 7,8

(a) (b)

9

134 78

(c)

FIG. 3. Construction of a tree.

3. Complexity of the tree synthesis algorithm. The running time of the tree
synthesis algorithm of 2 is highly dependent on the method used to partition the set of
constraints. In this section, we shall first analyze the running time of BUILD as a



INFERRING A TREE FROM LOWEST COMMON ANCESTORS 409

function of n, the number of constraints, and f, a function specifying the time needed to
partition a set of constraints. We shall see that the use of the naive partitioning
algorithm leads to an O(n3) implementation of BUILD. By using a more sophisticated
partitioning algorithm, the overall running time can be reduced to O(n 2 log n).
Moreover, by imposing the restriction that all constraints be of the form (i, ]) < (i, k), we
can further reduce the running time to O(n2). Section 4 of this paper presents a
database application in which problems of this restricted form arise naturally.

LEMMA 2. Let f(n) be the time needed to partition a set of n constraints subject to
rules (1) and (2) of the previous section. Iff is monotonically nondecreasing, then the time
consumed by BUILD when applied to a set of n constraints is O(nf(n)).

Proof. The worst-case running time occurs when the algorithm succeeds in
synthesizing a nonnull tree, so we shall restrict our attention to analyzing this case. We
shall proceed by assigning a cost to each node of the tree and summing the costs.

Since the top level call on BUILD involves n constraints, each of which can
introduce at most 4n leaves into the tree, the synthesized tree has at most 4n leaves.
(Leaves not mentioned in any constraint can be made children of the root of the final
tree.) Because the branching factor at each internal node is at least 2, the number of
internal nodes cannot exceed 4n 1.

At each internal node, BUILD partitions some subset of the original constraints
and then spends a constant amount of time (exclusive of recursive calls) processing each
block of the partition. Since f is monotonic, f(n) is certainly an upper bound on the cost
of performing each partition. Moreover, since f must grow at least linearly with its
argument, we can neglect the cost of distributing the constraints over the blocks of the
partition when compared with f(n) and charge each internal node O(f(n)) units of time.
Thus the time charged to all internal nodes is O((4n 1)f(n)) O(nf(n)). Since BUILD
spends a constant amount of time at each leaf, the contribution of the leaves to the
running time is O(n) for a total over all nodes of O(nf(n)). 71

The problem of producing a fast implementation of BUILD thus reduces to one of
producing a fast partitioning algorithm. Let us first address this problem for the special
case mentioned earlier.

THEOREM 3. If all constraints are of the form (i, ])< (i, k), then BUILD can be
implemented to run in O(n 2) time, where n is the number of constraints.

Proof. By Lemma 2, it suffices to show how to partition a set of n constraints in
O(n) time. When all constraints are of the form (i, ])< (i, k), rule (2) of the partition
constructing algorithm of 2 need never be applied explicitly. To see this, suppose that
and k are in the same block. By rule (1), and ] must also be in the same block, and thus
by transitivity, i, ], and k are all in the same block. Accordingly, it suffices to implement
rule (1) alone.

If we take each leaf appearing in one or more constraints to be a node, and each
constraint (i, ]) < (i, k) to represent an edge between and ], then we shall have a graph
(actually, a multigraph) whose connected components represent the blocks of the
partition we are looking for. Since it is easy to find connected components in time
proportional to the number of edges [1], and the graph described above has at most n
edges, we conclude that partitioning can be done in O(n) time. (3

THEOREM 4. Ifno restrictions are placed on theform ofthe constraints, then BUILD
can be implemented to run in O(n 2 log n) time.

Proof. By Lemma 2, it suffices to show how to partition a set of n constraints in
O(n log n) time. Blocks of the partition will be maintained using a set merging
algorithm that supports the following operations"

(1) Given an element i, find the set that currently belongs to.
(2) Given two sets, merge them together and assign them a common name.
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The particular set merging algorithm we need was originally described in [7] and
operates as follows. An array S is maintained so that at all times S[i] gives the name of
the set currently containing element i. This allows each find operation to be performed
in constant time. Each set is represented by a linked list of the current members of the
set and an integer specifying the cardinality of the set. Now suppose we want to merge
sets and ]. Without loss of generality, let set have more members than set/’. Change
S[k to for each element k in set/’. Then append the list of elements of set/" to the list of
elements for set i. Finally, update the length of the new set i. It is easy to see that a merge
operation can be performed in time proportional to the size of the smaller of the two sets
being merged. Thus, starting with a collection of singleton sets, a sequence of n merges
can be performed in time O(n log n).

Returning to the constraint partitioning algorithm, we can use the rules defining
the partition zrc to transform a given set of constraints into a set of commands of the
form ], which means that and/" must appear in the same block, and a set of
implications of the form p =-q =), r--s, which means that if p is in the same block as q,
then r must be in the same block as s. In the algorithm, each block B of the partition will
be associated with a list Ln consisting of all those implications of the form p q => r s
for which either p or q is currently in B. We assume that the length of each list is stored
with it and is available in constant time. We shall also employ a queue O of commands
that remain to be processed. A command is processed by checking that the nodes
involved are in the same block of the partition. If not, a merge operation is performed
on the appropriate blocks and the algorithm then examines (by traversing the appro-
priate list Ln) all implications, whose left side involves nodes in the blocks being
merged. When an implication is examined, it can cause another command (i.e., its right
side) to be generated and placed on O. The algorithm is shown in Fig. 4.

Before proceeding, notice that each constraint gives rise to one command, which is
immediately placed on O in step (2), and two copies of an implication, say p q =), r
s, which are placed on different lists. At most one of these copies will eventually cause
the command r s to be placed on Q, and this will happen when a merge operation first
causes p and q to become elements of the same block. Thus the total number of
commands enqueued is at most 2n (n in step (2) and n in step (3)).

The time spent in steps (1) and (2) is clearly O(n). The time expended by the inner
for loop of Step (3) is O(n log n) because each copy of an implication is only considered
in this loop when it is being moved from a shorter to a longer list. Since no more than
n- 1 merges can be performed, no implication can be moved more than log: n- 1
times. Thus the amount of work done in the inner for loop is O(n log n). The time spent
in the rest of step (3), exclusive of the inner for loop, is expended in removing at most 2n
commands from Q, doing at most O(n) finds and comparisons, and performing at most
n 1 merges. This clearly requires O(n log n) time, and so the total time used by the
algorithm in O(n log n). 71

Extensions. The tree synthesis algorithm of 2 and 3 can be extended to handle a
more general set of constraints than the ones considered so far. More specifically, we
can handle any collection of constraints of the following types’

(1) (i, j) < (k, l),
(2) (i,/’) _-< (k, l),
(3) (i, j)= (k, l)
(4) (i, j) is comparable to (k, l),
(5) (i, j) is incomparable to (k, l).

In the above constraints, two nodes of a tree are said to be comparable if one is the
ancestor of the other, and incomparable otherwise.
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(1) for each leaf mentioned in a constraint do
begin

set Ll to the empty list;
set S[l] to l;

end;
(2) for each constraint (i, j) < (k, l) do

begin
let c be the implication k =- =), l;
add c to Lskl;
add c to Lst;
add the command =/’ to Q;

end;
(3) while Q is not empty do

begin
remove a command p---q from Q;
if Sip] S[q] then

begin
let L be the shorter of Ls and Ls;
for each implication u -= v ==> x =- y on L do

if one of u and v is in
and the other is in S[q] then
add the command x y to

append Lstp to Ls[q];
merge Sip] and S[q];

end;
end;

FIG. 4. The general case partitioning algorithm.

As before, there exists a set of rules for partitioning the leaves of the tree into
disjoint sets so that the leaves in each set are descendants of a different child of the root.
The appropriate set of rules are"

(1) If (i, ])< (k, l) is a constraint, then and/" are in the same block of rc.
(2) If (i,/’) < (k, l) is a constraint, and k and are in the same block, then i,/’, k and

are all in the same block.
(3) If (i,/’) <- (k, l) is a constraint, and k and are in the same block, then i,/’, k and

all in the same block.
(4) If (i,/’) (k, l) is a constraint, and and/’ are in the same block (or k and are in

the same block), then i,/’, k and are all in the same block.
(5) If (i, ]) is comparable to (k, l) is a constraint, and j are all in the same block,

and k and are in the same block, then i, j, k and are all in the same block.
(6) If (i, ]) is incomparable to (k, l) is a constraint, then is in the same block as ],

and k is in the same block as I.
(7) No two leaves are in the same block of 7rc unless it follows from (1) through (6).
These rules can shown to be both necessary and sufficient conditions for construc-

ting a tree obeying a set of constraints (if one exists) using the procedure BUILD. Each
rule involves adding one case to each of Theorem 1 and Lemma 1. A straightforward
modification of the partitioning algorithm in 3 allows us to handle this wider class of
constraints without increasing the running time claimed in Theorem 3. For a further
generalization of this problem, see [6].
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4. An application to relational database queries. In [5], Codd introduced rela-
tional algebra as a notation for expressing database queries. In [2], [3] a class of
relational expressions called SPJ-expressions was investigated in which the operands of
an expression are relations and the operators are the relational algebra operations
select, project and natural join.

In [3] it was shown that the value of an SPJ-expression can be represented in terms
of a two-dimensional matrix called a tableau. A join-minimization procedure for
SPJ-expressions was outlined in which a tableau is constructed from a given SPJ-
expression E. The tableau is then transformed into an equivalent minimum row tableau.
From this minimum row tableau we can then construct an SPJ-expression that has the
fewest joins of any relational expression equivalent to the original expression E.

Unfortunately, this optimization procedure may be computationally expensive in
that it is NP-complete to minimize the number of rows in a tableau. However, for the
important special case of SPJ-expressions with simple tableaux this optimization
method can be carried out efficiently. A simple tableau can be minimized in polynomial
time [3]. In the remainder of this paper we shall complete the details of the optimization
procedure by showing how to use the tree discovery algorithm of 2 to construct an
SPJ-expression from a simple tableau in polynomial time. By way of contrast, Yannak-
akis and Papadimitriou have shown that it is NP-complete to determine whether an
arbitrary tableau has an equivalent SPJ-expression [11].

SPJ-expressions. We assume a data base consisting of a set of two-dimensional
tables called relations. The columns of a table are labeled by distinct attributes and the
entries in each column are drawn from a fixed domain for that column’s attribute. The
ordering of the columns of a table is unimportant. Each row of a table is a mapping from
the table’s attributes to their respective domains. A row is often called a tuple or record.
If r is a relation that is defined on a set of attributes that includes A, and if/x is a tuple of
r, then/x (A) is the value of the A-component of

A relation scheme is the set of attributes labeling the columns of a table. When
there is no ambiguity, we shall use the relation scheme itself as the name of the table. A
relation is just the "current value" of a relation scheme. The relation is said to be defined
on the set of attributes of the relation scheme. The operators select, project and join are
defined as follows.

(1) Select. Let r be a relation on a set of attributes X, A an attribute in X, and c a
value from the domain of A. Then the selection A c applied to r, written O’A= (r), is the
subset of r having value c for attribute A.

(2) Project. Let r be a relation on a set of attributes X. Let Y be a subset of X. We
define y(r), the projection of r onto Y, to be the relation obtained by removing all the
components of the tuples of r that do not belong to Y and removing duplicate tuples.

(3) Join. The join operator, denoted by N, permits two relations to be combined
into a single relation whose attributes are the union of the attributes of the two
argument relations. Let R1 and RE be two relation schemes with values rl and rE.
Then

rl N r2 {/xl/x is a tuple defined on the attributes in R1 [-J R2, and there exist tuples
vl in rl and v2 in r2, such that vl(A)= (A) for all A in R1 and v2(A)=
(A) for all A in R2}.

An SPJ-expression is an expression in which the operands are relation schemes and the
operators are select, project and join. An SPJ-expression with operands
RI, R2," ",Rn evaluates to a single relation when relations are assigned to
R1, R2, ,R,.
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Definition of a tableau. A tableau is a matrix in which the columns correspond to

the attributes of the universe in a fixed order. The first row of the matrix is called the
summary of the tableau. The remaining rows are exclusively called rows. The general
idea is that a tableau is a shorthand for a set former {al’’’ anlO(al,"’, an)} that
defines the value of a relational expression. In the set former 0 does not have any ai’s as
bound variables. To simplify later discussion we shall adopt the following conventions
regarding tableaux. The symbols appearing in a tableau are chosen from"

(1) Distinguished variables, for which we use a’s, possibly with subscripts. These
correspond to the symbols to the left of the bar in .

(2) Nondistinguished variables, for which we generally use b’s. These are the
bound variables appearing in the set former.

(3) Constants, for which we use c’s or nonnegative integers.
(4) Blank.
The summary of a tableau may contain only distinguished variables, constants, and

blanks. The rows of a tableau may contain variables (distinguished and nondistin-
guished) and constants. When tableaux represent SPJ-expressions, we can assume that
the same variable does not appear in two different columns of a tableau, and that a
distinguished variable does not appear in a column unless it also appears in the summary
of that column.

Let Tbe a tableau and let $ be the set of all symbols appearing in T (i.e., variables
and constants). A valuation p for T associates with each symbol of $ a constant, such
that if c is a constant in $, then p (c) c. We extend p to the summary and rows of T as
follows. Let Wo be the summary of T, and wl, w2, , wn the rows. Then p(wi) is the
tuple obtained by substituting p(v) for every variable v that appears in wi.

A tableau defines a mapping from universal instances (relations over ttie set of all
attributes) to relations over a certain subset of the attributes, called the target relation
scheme, in the following way. If T is a tableau and I an instance, then T(I) is the relation
on the attributes whose columns are nonblank in the summary, such that

T(I) {p(Wo)[for some valuation p we have p(wi) in I for 1 <_- -< n}.

Example 4. Let T be the tableau

A B C

al a2

al bl b3
b a 1
b bl b4

We conventionally show the summary first, with a line below it. We can interpret this
tableau as defining the relation on AB

T(I) {aa21(::lbl)(:lb2)(:lb3)(:lb4) such that alblb3 is in I
and b2a21 is in I and b2btb4 is in I}

given any universal instance L
Equivalence. Two SPJ-expressions EI(RI,’", R,) and E2($1,’"’, Sn) are said

to be equivalent if, for all universal instances L E(r, , r,) E2(s, , sn), where
r ZrR, (I), 1 --< --< m, and s 7rs, (I), 1 -< -< n. In words, Et is equivalent to E2 if they
represent the same mapping on universal instances.
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Similarly, two tableaux T1 and T2 are equivalent if, for all L T(I)= T:(I).
Likewise, a tableau T is equivalent to an expression E(R,..., R) if, for all L
T(I) E(r,. ., r) where ri 7rR,(I) for 1 <-- <-- n.

Representation oI SPJ-expressions by tableaux. Given an SPJ-expression E, we
can construct a tableau T to represent the expression in the following manner. The
construction proceeds inductively on the form of E.
(1) If E is a single relation scheme R, then the tableau T for E has one row and a

summary such that:
(i) If A is an attribute in R, then in the column for A tableau T has the same

distinguished variable in the summary and row.
(ii) If A is not in R, then its column has a blank in the summary and a new

nondistinguished variable in the row.
(2a) Suppose E is of the form O’A=c(E1), and we have constructed T, the tableau for

El.
(i) if the summary forE has blank in the column for A, then T T, where T is

a tableau that maps any universal instance into the empty set.
(ii) If there is a constant c’ c in the summary column for A, then T- T. If

c c’, then T T1.
(iii) If T has a distinguished variable a in the summary column for A, the tableau

T for E is constructed by replacing a by c wherever it appears in T1.
(2b) Suppose E is of the form 7rx(E), and T1 is the tableau for E. The tableau T for E

is constructed by replacing nonblank symbols by blanks in the summary of T for
those columns whose attributes are not in X. Distinguished variables in the rows of
those columns are consistently replaced with new nondistinguished variables.

(2c) Suppose E is of the form Ex NEE and T and T2 are the tableaux for E and E2,
respectively. Let Sx and $2 be the symbols of T and T2, respectively. Without loss
of generality, we may take S and $2 to have disjoint sets of nondistinguished
variables, but identical distinguished variables in corresponding columns.

(i) If T and T2 have some column in which their summaries have distinct
constants, then T- Te.

(ii) If no corresponding positions in the summaries have distinct constants, the set
of rows of the tableau T for E consists of the union of all the rows of T and
T2. The summary of T has in a given column:
(a) The constant c if one or both of TI and T2 have c in that column’s

summary. In this case we also replace any distinguished variable in that
column by c.

(b) The distinguished variable a if (a) does not apply, but one or both of T
and T2 have a in that column’s summary.

(c) Blank, otherwise.
It is not hard to show that the tableau constructed by this procedure is equivalent to

the given expression. Note that the number of rows in the resulting tableau is one more
than the number of join operators in the original expression.

Example 5. Let A, B and C be the attributes, in that order, and suppose we are
given the expression 7rA(o’=o(ABNBC)). By Rule (1), the tableaux for AB and BC
are A B C A B C

al a2

a a2 bl
and

a2 a3

b2 a2 a3
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By Rule (2c), the tableau for AB NBC is

A B C

al a2 a3

a a2 bl
b2 a2 a3

By Rule (2a), the tableau for crB=o(AB NBC) is

A B C

al 0 a3

al 0 bl
be 0 a3

Finally, by Rule (2b), the tableau for 7rA(rB=o(ABNBC)) is

A B C

al

ax 0
b2 0 b3

Simple tableaux. A tableau is simple if in any column with a repeated nondistin-
guished variable there is no other symbol that appears in more than one row. For simple
tableaux there exists a polynomial-time equivalence algorithm, whereas for general
tableaux the equivalence problem is NP-complete [3]. In practice, it is not easy
to find an SPJ-expression with a nonsimple tableau. The expression
zrAc(ABBC)N(ABNBD) is a minimal expression that gives rise to a nonsimple
tableau. The tableau is shown in Fig. 5. The rows in the column for B have repeated
nondistinguished and distinguished variables.

A B C D

al a2 a3 a4

al b b2 b3
b4 bl a3 b5
a a2 b6 b7
b8 a2 b9 a4

FIG. 5. A nonsimple tableau.

5. Synthesis of relational expressions |rom tableaux. In this section we shall
present an algorithm for constructing a relational expression from a simple tableau. To
help clarify the presentation, we shall portray a relational expression by its parse tree.
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Although many relational expressions can be synthesized from the same tableau, the
relational expression produced by our algorithm has a parse tree with the following
properties:

(1) Each project operation is done as soon as possible (i.e., is as low in the parse
tree as possible).

(2) Each select operation is applied to a leaf.
These two points are motivated by efficiency considerations; performing projections
and selections as early as possible can significantly reduce the size of intermediate
relations computed in the evaluation of a relational expression. We should point out,
however, that to evaluate a relational expression efficiently in practice, one must take
into account many parameters of the database environment such as the costs of the
various data access methods that are available and the nature of the data structures used
to store the relations. See [8], [9], [10], [12] for more discussion of query evaluation
strategies.

We shall assume the leaves of a parse tree are labeled by relation schemes. In the
absence of other information, we can choose as leaf labels relation schemes having as
few attributes as possible. For example, the expressions 7"gA (A), 7"l’A (AB), 7rA(AC), and
7"gA(ABC) all have the same tableau. Of these expressions, 71"3 (A) is minimal in that the
other expressions can be produced from it by simply adding one or more attributes to
the relation scheme which is the operand of the expression.

For the application considered here, however, the problem of deciding which
relation scheme corresponds to which leaf of the tree vanishes. Here we are interested
in minimizing the number of joins in a given SPJ-expression. One way to perform this
optimization is to construct a tableau for the given expression, minimize the number of
rows in the tableau using the procedure in [2], and then convert the resulting tableau
back to an SPJ-expression. The number of rows in the tableau is one more than the
number of joins in the associated expression. In the process, it is easy to keep track of
which rows correspond to which operands of the original expression. Since the tableau
minimization algorithm of [2] can only delete rows but never change one, we can
associate each leaf of the tree eventually produced with a relation scheme appearing in
the original expression. Accordingly, we shall henceforth assume that each row of the
tableaux under consideration is identified with some given relation scheme.

Let us initially consider a simple tableau T with no constants in the summary,
although constants may appear in the rows. Let A be a column in which rows and/"
have the same nondistinguished variable, and k a row with a distinguished variable in
column A 1. If T comes from an expression, consider the parse tree P of that expression.
Each leaf of P corresponds to an operand relation scheme associated with some row of
the tableau.

Suppose that in P (i, ]) is not a proper descendant of (i, k). Since (i, j) and (i, k)
cannot be independent, it follows that (i, k) must be a descendant of (i,/’). Then consider
the tableau constructed for the subexpression rooted at the node (i, k) of P. In
particular, which rows have the distinguished variable in column A? Surely k does, as
the distinguished variable appears there in tableau T, and in the tableau construction
algorithm a nondistinguished variable is never changed into a distinguished variable. If
row does not also have the distinguished variable in column A, then the variables in

In a simple tableau, k will be unique, but we can relax the "simple" constraint to the point that a column
with a repeated nondistinguished variable can have a repeated distinguished variable or constant, but not

another repeated nondistinguished variable.
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rows and /" cannot be equated when we create the tableau for the expression
represented by node (i,f). However, if both rows and k have the distinguished
variable, then they must have the same variable in T, a contradiction. We can therefore
infer that (i, f) < (i, k). Arguing similarly, we can show that (i, j) < (j, k). From these two
observations we are led to the conclusion"

(*) Suppose P is the parse tree of an expression yielding tableau T. If rows and j
of T have the same nondistinguished variable in column A, and row k has a
distinguished variable in column A, then we must have (i,/’) < (i, k) and hence
(i, j) < (j, k) in P.

That this is sufficient for simple tableaux is expressed in the next theorem.
THEOREM 5. Let Tbe a tableau having no constants in the summary and no column

with two or more repeated nondistinguished variables. Then Tcomesfrom an expression if
and only if the set of constraints defined in (*) determines a tree.

Proof. Only if. We argued above that if T comes from an expression, the
constraints (*) must be satisfied.

If. Using the algorithm of 2, suppose (*) determines a tree P. We shall show how
to convert this tree into an expression for T. This expression may use join as an n-ary
operator. But since binary join is associative and commutative, nothing is lost by doing
so, and the n-ary joins can be replaced by binary joins in any order.

The construction proceeds by induction on the height of a node in the tree P. For
the inductive hypothesis we shall construct for each subtree an expression yielding a
tableau whose rows are the rows of T that are leaves of the subtree, but with repeated
nondistinguished variables, all of whose occurrences do not appear among these rows,
replaced by distinguished variables. The conditions on T guarantee that no conflicts
arise, that is, no column needs more than one distinguished variable.

Basis. Height O. The node is a leaf labeled by a relation scheme R, and identified
with some row i. Row cannot have a constant or distinguished variable in columns
other than those for attributes in R. (We assume the relation scheme R containing all
attributes in which row has a distinguished variable, constant, or repeated nondistin-
guished variable is a legitimate operand. If not all relation schemes are permissible, then
it is easy to check for tableaux with illegal rows.)

If row has constant c in column A, then apply rA--c to R. Then project onto those
attributes in whose column row has either a distinguished variable or a repeated
nondistinguished variable. The result is an expression whose tableau has one row, which
is row with repeated nondistinguished variables replaced by distinguished variable,s.

Induction. We construct the expression for node n from the expressions
El, E2, E, representing the children of node n. Begin by joining El, E2, E.
Then project onto those attributes A in whose columns either

(1) some descendant leaf of n is a row with a distinguished variable in column A, or
(2) some, but not all, of the occurrences of the repeated nondistinguished variable

in column A are found in rows which are descendants of n.
The result is easily seen to satisfy the inductive hypothesis, as in each column A,

variables that appear in two or more of the E’s and that must become the repeated
nondistinguished variable for column A are distinguished in the tableaux for the Ei’s
and are therefore equated in the join.

Finally, the inductive hypothesis applied to the root implies that the constructed
expression has tableau T.

The proof of Theorem 5 contains the algorithm to construct an expression from a
tableau. The following example illustrates the procedure.
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Example 6. Consider the tableau

A B C D

al a2 a3

0 bl b2 b3
b4 bl a2 b5
b6 b7 a2 a3
b8 al a2 b9

We assume that rows 1, 2, 3 and 4 come from relation schemes (AB), (BC), (CD) and
(BC), respectively. Since bl is the only repeated nondistinguished variable in the
tableau, the only constraints are (1, 2)< (1, 4) and (1, 2)< (2, 4). Applying the pro-
cedure BUILD to these constraints we obtain the tree shown in Fig. 6.

nl

i,l n

15 16
I(AB) 2(BC)

n4
4(BC)

FIG. 6. Initial tree.

Using the construction in the basis for node n5 we obtain the expression
zrB(crA=o(AB)), while for the leaves//6,//3 and//4, the expressions (BC), (CD) and (BC)
suffice. Using the construction in the inductive step for node n2 we obtain the expression
zrc(zrB(rA=o(AB))N(BC)). We project onto column C because only column C has a
distinguished variable in rows 1 or 2, and all occurrences of the repeated nondistin-
guished variable b are found in these rows. The expression for n is obtained by joining
the above expression with (CD) and (BC) in any order. We should then project onto
BCD, but this projection is seen to be superfluous, since the final join produces a
relation over only those attributes. The parse tree for the final expression is shown in
Fig. 7. fi

(mc)

(CD)

(BC)

(AB)

FIG. 7. Synthesized expression.
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Extension to the case where constants appear in the summary. If there is a
constant c in column A of the summary of a tableau, then c must appear in some row of
column A, else the tableau can be shown not to come from an expression. If c appears in
only one row k of column A, we may treat c as a distinguished variable, introducing the
constraints (i, f)< (i, k) and (i, f)< (f, k) for each pair of rows and f having a repeated
nondistinguished variable in column A.

If c appears in more than one row of column A, we have choices. For all but one of
these rows we can select A c and then project A out. But for one row we must treat c
as if it were distinguished, and introduce the appropriate constraints. Since we may have
a choice for each column that has a constant in the summary, we apparently have a
combinatorial problem. However, we may adopt the simple expedient of permitting a
new operator augment, defined by CeA=c (r) {/z ]/ (A)= c and there exists v in r such
that for all attributes B on which r is defined,/x (B) v(B)}. Note that we may assume
that r is not defined on A; otherwise augment is the same as select. Then we may
synthesize an expression from a tableau with constants in the summary by"

(1) deleting constants from the summary,
(2) synthesizing an expression for the resulting tableau, if it exists, and then
(3) using the augment operator to introduce the constants into the tuples of the

relation resulting from application of the expression from (2).

6. Finding a minimal expression equivalent to a given tableau. We should also
consider a variant of the problem of finding an expression that yields a given tableau. In
most circumstances it will be sufficient to find an expression that yields an equivalent
tableau, that is, an expression defining the same mapping from universal instances to
target relations as the tableau.

It turns out that this question is no harder than the original problem, as we can show
that a tableau comes from an expression only if its minimal equivalent tableau
does. Thus, if we minimize the number of rows in a tableau, then we can obtain an
expression with the fewest joins equivalent to a given tableau since the number of rows
in the tableau is one more than the number of joins in the resulting expression.

THEOREM 6. If a tableau comes from an expression, then its minimal equivalent
tableau comes from an expression.

Proof. It follows from [4] that any given tableau T has a minimal equivalent
tableau T’ (one with the fewest number of rows) such that each row of T’ is a row of T.
Given an expression E yielding tableau T, we can delete the operands of E correspond-
ing to rows of T that are not in T’.

Nodes that apply unary operators (select and project) to a deleted operand, and
nodes that join two deleted operands are themselves deleted. Nodes that join a deleted
operand with one that is not deleted are identified with the nondeleted operand. The
resulting expression will yield tableau T’. We may prove by an easy induction on the

A B C D

al a; a3

al bl b:z b3
b4 bl b5 b6
al a: b7 b6
b8 a:z a3 b9

FIG. 8. A tableau.
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height of a node remaining in the expression that the tableau for this node is the same as
the tableau for the corresponding node in E, with rows that do not eventually become
rows in T’ deleted. [3

Example 7. The tableau in Fig. 8 implies constraints (1, 2) < (1, 3), (1, 2) < (2, 3),
(1, 2)< (1, 4), and (1, 2)< (2, 4), so we may synthesize the expression of Fig. 9. The
minimal equivalent tableau for Fig. 8 has only rows 3 and 4. To synthesize an expression
for the minimal tableau, we delete nodes n8 and n9, which correspond to rows 1 and 2.
This causes nodes n7 and n5 to be deleted and node n4 to be merged with r/6. The
resulting expression is shown in Fig. 10.

/
(AB)

nl

n2 n3

n4

n5 6
rAO (ABD)

3
n7

i’19
(BD)
2

(BC)

FIG. 9. An expression for the tableau of Fig. 8.

’II’AB BC

FIG. 10. Expression for minimal tableau.

7. Summary. In this paper we have presented an 0(/,/2 log n) algorithm that will
construct, whenever possible, a tree to satisfy n given constraints on common ancestors
of a set of nodes. The constraints specify lineage restrictions on lowest common
ancestors of pairs of nodes. We have also shown that the tree construction algorithm can
be used as part of a process to minimize the number of joins in a certain class of rela-
tional algebra expressions containing only select, project and join operators.
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OPTIMAL MULTI-WAY SEARCH TREES*

L. GOTLIEBf

Abstract. Given a set of N weighted keys, N + missing-key weights and a page capacity m, we describe
an algorithm for constructing a multi-way lexicographic search tree with minimum cost. The program runs in
time O(N3m) and requires O(N2m) storage locations. If the missing-key weights are zero, the time can be
reduced to O(N2m). A further refinement enables the factor m in the above costs to be replaced by log m.

Key words, algorithms, optimal weighted search trees, dynamic programming

1. Introduction. In this paper, we consider the problem of constructing a search
tree for use in secondary storage. Because the access cost of the external memory is high
compared to internal processing speeds, keys are grouped for searching into storage
units called pages. Given a set of N keys with weights {Pi}, N + 1 missing-key weights
{q.}, and a page capacity m, we show how to construct a multi-way search tree which
minimizes the expected number of pages accessed during a search. Section 2 sets up the
problem and reviews Knuth’s dynamic programming technique for finding optimal
binary search trees [1]. Section 3 extends this method to produce an algorithm for
constructing optimal multi-way trees. The running time is O(N3m), and O(N2m)
storage locations required. If the q weights are absent, a "monotonicity" property
(expressed by Theorem 2, which is proved in 6) enables the running time to be reduced
to O(N2m); however a counterexample presented in 5 shows that this property need
not hold if any of the q’s are positive. 4 outlines a refinement whereby the factor m in
the above time and storage costs can be replaced by log m.

Variants of the problem considered here have been addressed by Itai [4] and by
Wood et al. [6]. Itai shows how to construct optimal multi-way code trees, that is, trees
in which the weights are confined to appear at the leaves only. Recently, Wood and his
colleagues have shown how to construct optimal multi-way search trees with a height
constraint, and also how to optimize multi-way trees when the cost of searching is
defined as a combination of page accesses and the time required to search within a page.
Their results have been derived independently of this work.

2. The problem. We are given keys K1 < K2 <"" <K, a page capacity m => 1,
and nonnegative weights {pl,"’", pv, qo,""", qN}, where

pi/W is the probability that Ki is the search argument,
qj/W is the probability of a search between Kj and Ki/l, 1 <= < N, and
W is the total weight, pl +" + pN + qo +’ + qv.
(qo/W is the probability that the search argument precedes K1, qlv/W that it
follows KN).
The problem is to construct an m + 1-way search tree (an example of which is

illustrated in Fig. 1), which minimizes the cost

N N., Pi level (pi)+ qi (level (qi)-1).
i=1 1=0

Fig. 1 shows an optimal 4-way tree (m 3) for the 15 most common names in the
Canadian census. The number accompanying each name (the p-weight) is the number of

* Received by the editors November 24, 1977, and in final revised form June 6, 1980.
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2433 3885 "
1948691 1 87601 12578-11i053151 !e5388] 145811[

FIG. 1. Optimal 4-way search tree on 15 most common names in Canadian census.

times it occurred in a list of over a million names, while the numbers in the leaves (the q
weights) represent those list members falling alphabetically between pairs from the top
15; thus there were 309,686 names (with repetitions) between "Campbell" and
"Johnson", and 12, 127 preceeding "Anderson". Thus Level (pi) is actually the level of
Ki, while level (qj) is the level of a node representing a missing-key range.

Two points about Fig. 1 should be noted. First, each page which has pages (i.e.,
nodes with names) as descendants must be filled, or the cost could be reduced by
promoting names up to the unfilled pages. In other words, in an optimal tree, only leaf
pages may be unfilled. Second, the search cost of a q-weight is not the level of the leaf
labeled with that weight, but rather the level of the page which is the father of that
weight; for example, the cos.t of the leaf weighted 309,686 is 309,686 times the level of
the root, since the search for a name between "Campbell" and "Johnson" would stop at
the root page. Thus one is subtracted from level (qj) in the expresssion for the cost of the
tree. The level of the root is taken to be one, since we want the level of a page to reflect
its access cost.

For rn 1 (binary branching), a dynamic programming approach, employing the
principle that subtrees of an optimal tree must also be optimal, yields an O(N2)
construction algorithm [1]. Let t(i,f) denote an optimal tree on weights (q, p+l,

qi+l, , p, qi) (henceforth abbreviated (i,/’)), c(i, j) be the cost of this tree, and w(i, f)
be its weight, pi/x, +" + pi + qi +" + q. The idea is to compute c(0, N), starting with

c(i,i)=O, O<-i<-N,
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and using

(1) c(i,j)=w(i,j)+ min {c(i,h-1)+c(h,j)}, O<=i<j<-N.
i<hj

Each time (1) is performed, the key corresponding to an h which gives a minimum
is selected as r(i, j), the root of t(i, ]). The computational cost is proportional to

N j-1

2 (j-i),
i=1 i=0

which is roughly N3/6, and N2 storage locations are needed for the c(i, j)’s and r(i, j)’s.
The running time can be further reduced by using Knuth’s observation [1] that

r(i, ]- 1) -< r(i, j) <= r(i + 1,/);

that is, one need not move left in the key set, looking for a new root when a key is added
following the rightmost key in the tree, and vice-versa. This makes it possible to restrict
the range of h in (1), thereby reducing the running time to

N i-1
(2) Y. (r(i + 1, j)-r(i, j- 1)+ 1)

i=1 i=0

(To make this summation correct when ] 1, we adopt the convention that r(i, i) 0,
O<-_iNN; in fact, (1) is not needed when f-i= 1, since by definition, c(i,i+l)=
w(i, + 1), and r(i, + 1)= + 1.) After cancelling terms, the sum reduces to

N(N+ 1) N

+ E (r(i, N)- r(O, N- i))Nz,

since r(i, N)<-N and r(0, N-i):> 0, so the time is O(N2).
The algorithm for optimal m + 1-way trees, m > 1, is basically an extension of the

above technique. Let

i<r(i,], 1)<...<r(i,j,m) <-]

be the (indices of the) keys on the root page of the optimal m + 1-way tree t(i, ]) with
cost c(i, ]) and weight w(i, ]). We have

c(i,i)=O, O<-i<-N,

c(i; ])= w(i, j), 1 <-j-i <= m,
and for rn <j-i <-N, we must find an assignment for r(i, j, k) such that

c(i,j)-w(i,j)+c(i,r(i,j, 1)-1)
m--1

+ Y c(r(i,j,k),r(i,],k+l)-l)+c(r(i,j,m),j)
k=l

is a minimum.
The problem is carrying out this minimization. For each r(i, ]), there are (2,i)

choices for the root page, and when j- d, there are N- d + 1 c(i, j)’s and r(i, j)’s to
determine, namely for (i, j) ((0, d), (1, d + 1),. , (N- d, N)). Since j ranges from
m + 1 to N, a brute force approach which considers each possible candidate for the root
page of t(i, j) would take on the order of (N) steps. This cost is too large to be practical, so
a way of reducing the number of potential root pages per subtree is needed.
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3. A dynamic programming solution. Let T(i,/’, k), 1 <- k -<_ m, denote the set of
optimal k-rooted trees on weights (i, f), that is, optimal trees in which

i) there are exactly k keys on the root page,
and

ii) the k + 1 subtrees of the root page are (optimal) m + 1-way trees.
The basis for our construction algorithm is an observation similar to that made by

Itai for code trees [4]. We note that the cost of a search tree, expressed iteratively as Y iPi
level (pi) + lqJ (level (q.) 1), can also be expressed recursively, in aform which makes
it clear how to carry out minimization. For example, the cost of the tree in Fig. 1 can be
written

Cost (2-rooted tree on ("Anderson",..., "Martin"))

+ Weight ("Miller") + Weight (Right Subtree of "Miller")

+ Cost (Right Subtree of "Miller").

Now for the tree to be optimal, the right subtree of "Miller" must be optimal, as,

must the 2-rooted tree to the left; otherwise the total cost could be reduced by finding
better trees on the same key sets. Moreover, the choice of "Miller" as the rightmost key
on the root page must produce a cost no greater than any other (optimal 2-rooted tree,
rightmost root key, optimal 4-way subtree) combination. Therefore, given all optimal
4-way and 2-rooted trees for proper subsequences of ("Anderson",.. , "Williams"),
the problem of finding the optimal 4-way tree on the whole sequence is reduced to that
of choosing the rightmost key of the root page (i.e., that which gives the smallest cost
when substituted into the above formula).

More generally, let c(i,L k) be the cost of t(i, f, k)T(i,], k). Then for ]-i>-m,

c(i,],m)= min {c(i,h-l,m-1)+ph+W(h,f)+c(h,f,m)}.
i+rnhj

in other words, t(i, ], m) is the smallest cost concatenation of an optimal m 1-
rooted tree on the left, together with a single root and its (right) m + 1-way subtree.
(The weight of the right subtree, w(h, ]), must be added in because the tree starts at level
two, and therefore its stand-alone cost, c(h, j, m), does not reflect its access cost as a
subtree.) Similarly, t(i,j, m-l) can be determined from optimal m-2-rooted and
m-rooted subtrees, and in general, for 2 -<_ k -<_ m, f- ->_ k,

(3) c(i,,hk)= min {c(i,h-l,k-1)+ph+W(h,f)+c(h, Lm)}.
i+khj

(Note that + k is the lower bound, since the set of candidates for the rightmost root of a
k-rooted tree starts at the kth key from the left.)

The computation of c(i, ], 1) is slightly different since no concatenation of trees is
involved; rather a single root is chosen to minimize the cost of left and right subtrees.
We have, for < j,

(4) c(i,j, 1)=w(i,j)+ min {c(i,h-l,m)+c(h,j,m)}
i<hj

which is similar to (1), except that the subtrees are m + 1-way, rather than binary.
(The equivalence of the recursive formulation of cost, given by (3) and (4), with the

iterative expression iPi" level (pi)"" etc.) is easy to show. For trees with maximum
height one, (4) is trivially correct, and (3) is established by induction on k. Then,
assuming the equivalence for trees with maximum height less than h, (4) is proved for
trees with maximum height h, and (3) follows, again by induction on k.)
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Assuming then, that c(i, ], k) has been computed for 1 <_- k <- m and/"- < d, we can
compute c(i, ], k) for 1-<k-<m and ]-i =d, starting with (4) to get c(i, j, 1), and
followed by successive applications of (3) with k 2, 3,. ., m. (In the final step when
c(0, N, m) is to be determined, it is only necessary to use (3) once, since at this point
optimal trees with fewer than m keys on the root page are not needed; however the
savings are negligible.) The timing analysis is essentially the same as for the binary
algorithm: the cost of (4) is proportional to

Y E (J-i)=N3/6,
i=1 i=0

while for 2 -< k <- m, (3) takes

v i-k (N-k + 1)3
E Y. (J- i- k + 1) steps.
j=k i=0 6

The total cost is therefore approximately

E
(N-k + 1)3

k=l 6

which is O(N3m).
For 2 -< k -< m, let r(i, j, k) be the largest value of h that gives a minimum in (3), and

define r(i, j, 1) similarly for (4); r(i, j, k) is simply the largest possible key on a root page
of T(i, j, k). In 5 and 6, we show two facts about r(i, j, k):

1) During construction of an optimal k-rooted tree, the rightmost key in the root
can move left when a key is added at the right (alphabetically high) end of the key set. In
particular, r(i, j, k) may be less than r(i, ]- 1, k) ( 5).

2) If the missing-key weights (q’s) are all zero, then the following monotonicity
property holds (Theorem 2, 6):

r(i, ]- 1, k) <- r(i, j, k) <- r(i + 1, j, k).

Point (1) means that, in contrast with the situation for binary trees, r(i, f, k) can lie
outside [r(i, - 1, k), r(i + 1, , k)] and therefore, when q’s are present, the speed up in
running time from N3 to N2 cannot be applied. When the q’s are absent, (2) restricts the
search for the minimum in (3) and (4), making the total cost proportional to

Y E Y (r(i+l,j,k)-r(i,j-l,k)+l).
k=l ]=k i=o

(Again, it is convenient to let r(i, ], k) 1 if ] < k.) For each k, the inner double sum is

equivalent to (2) above (in fact, slightly smaller when k > 1), which is bounded by N2;
hence the running time is O(N2m).

The storage requirement is O(N2m) locations, since r(i, ], k) and c(i, ], k) are N by
N by m arrays. To see how the desired tree, t(0, N, m), is reconstructed from the
information in r, note that the keys on the root page of t(0, N, m) are given by the
following sequence:

r r(0, N, m)

r r(O, rk-1-1, m k + 1), for 2 <-_ k <- m.
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In other words, the rightmost key rl is r(0, N, m), the key second from the right is the
rightmost root key for the weights (0, rl 1 and so on. The root pages of the subtrees of
the root page, and hence ultimately the whole tree, are similarly determined.

An algorithm which uses (3) and (4) to compute optimal rn + 1-way search trees on
weights (qo, pt,""", pr, qr) is presented in [5].

4.. refinement. The time and space costs of the above algorithm can be reduced
using a technique employed by Itai for the construction of optimal multi-way code trees
[4, 7]. He observed that an optimal m-way code tree is the concatenation of an optimal
collection of s m-way trees, together with an optimal collection of m-s trees. Here we
cannot concatenate trees in the same way code trees are combined (there would be one
subtree too many), lut we can join them with a middle root; for example the tree of Fig.
1 can be regarded as the join of two optimal 1-rooted trees (with roots "Campbell",
"Miller"), together with the key "Johnson". Thus, for u + v k 1, k > 2,

(5) c(i,/’, k) min {c(i, h 1, u) + Ph + c(h, L v)}.
i+u<h<--j-v

This makes it possible to determine c(i, j, m) without computing all the intermediate
costs, c(i, j, 1), c(i, j, 2),. , c(i, , m 1). For example, suppose c(i, j, k) are available
for k =(1, 3, 7, 11, 12) and j-i <d; then for ]-i =d, c(i,], k) can be derived for the
same set of k’s by the following steps:

(1) use (4) to get c(i, j, 1),
(2) use (5) with u v 1 to get c(i, j, 3),
(3) use (5) with u v 3 to get c(i, j, 7),
(4) use (5) with u 7, v 3 to get c(i, , 11)
(5) use (3) with k 12 to get c(i, , 12).
More generally, let So, sl, ., st be any sequence which satisfies

(6) So 0, sl m,

and

(7) Sh 1 4- S 4- O<_i<__j<_h<_l.

For 1 -<_ h <- l, let left (h) and right (h) be, respectively, the and/" for which (7) holds,
that is, Sh "-Sleft(h)4-Sright(h) 4- 1. Finally, suppose c(i,],Sh) has been computed for
h e (1, 2, , l} and ] < d. Then the following rule is used to decide which of (3), (4)
or (5) to apply when computing c(i, j, Sh) for ]-- d and h 1 to

if left (h)= 0 then use (4)
else if right (h)= 0 then use (3) with k s(h)

else use (5) with u left (h) and v =right (h).

Sequences for which (6) and (7) hold are closely related to addition chains. An
addition chain of length for n > 1 is a sequence of integers 1 ao, a 1, , at n, such
that ah ai + aj, 0 <- <= j < h <- I. Given an addition chain for n rn + 1, note that the
sequence (a0- 1, a- 1,..., at- 1) satisfies (6) and (7), since

and

ao- 1 0, at- 1 m,

ah 1 (ai + aj) 1 14- (ai 1) +(ai 1), l<_h<_l.
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Let l(n) be the length of the shortest possible addition chain for n > 1. Given such a
chain, it is possible to construct an optimal m + 1-way tree in time O(N3l(m + 1)). As it
turns out, neither a minimal chain nor l(n) are easy to compute efficiently for n in
general [2, 4.6.3]; however the binary addition chain for n is easily derived from the
binary representation of that number, and has at most 2[logn] terms
((1, 2,.. , 2 tlogn]) plus a term for each "one" bit except the high order one). Thus the
sequence of k’s for which c(i,], k) must be computed need be no longer than
2 [log m + 1], which makes possible an O(N3 log m) construction algorithm (or
O(N2 log n), when the q’s are absent).

$. Failure ot monotonidty property in the general ease. In this section we show
that, during construction of an optimal multi-way search tree, the rightmost key in the
root can move left when a key is added at the right. Consider a set of 8 keys,
{A, B, ., H}, each weighted one, together with 9 missing-key weights q, all equal to
one except for q(8) (between G and H), which is 4. For convenience, these weights are
unnormalized; to get the actual probabilities, it is necessary to divide each weight by the
total. Thus the probability of a search for A is .

Fig. 2(b) shows a 3-way (m 2) tree which is optimal for these weights. The
rightmost key in the root is F; it is also r(0, 8, 2), the largest possible rightmost root,
since no other 3-way tree costs as little for this data. Now the algorithm outlined in 3
requires an optimal tree on (A, G) before it can determine one on (A, H), and such a
tree is illustrated in Fig. 2(a). This tree is also uniquely optimal for the weights given,
which makes G, the rightmost key in the root, equal to r(0, 7, 2). Thus the rightmost
root key shifts left from G, on keys (A, G), to F, on keys (A, H), and in particular,
r(0, 8, 2) _<- r(0, 7, 2), which shows that r(i, j, k) may lie outside the interval Jr(i, j- 1, k),
r(i + 1, j, k)]. (The number of keys in the root of the tree in Fig. 2 is not critical to the
example, and thus the result is true for optimal k-rooted trees as defined at the
beginning of 3.)

Cost 33

(a)

Cost 38

(b)

FIG. 2. Optimal trees on (A, G) and (A, H).

The example just presented affects an assumption made by Itai regarding the time
needed to construct optimal multi-way code trees [4, 7]. To see how, observe that if
the internal weights are ignored, the trees in Fig. 2 are 3-way code trees. The one in (a) is
the join of two 3-way trees together with the leaf weighted "4", while (b) is formed by
concatenating two 3-way trees with a rightmost tree consisting of weights (1, 4, 1). The
last weight before the rightmost tree in the least-cost concatenation is called the
breakpoint. For code trees, Itai assumed the equivalent of the monotonicity property,
namely that when a weight is added at the right, a breakpoint greater than or equal to
the previous one can always be found. But Fig. 2 shows that this need not be true, since
the breakpoint in (a) is the 7th leaf weight (following F), while it is the 6th (after E) in
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(b). Hence the dynamic programming construction procedure which he outlined is
O(N3 log m), not O(N2 log m) as claimed.

In [7-1 it is shown that, during construction, the rightmost root in a multi-way search
tree or code tree can shift the maximum possible number of keys away from the added
key. Thus the dependence on key set size of dynamic programming methods for
multi-way tree construction pi’esented so far is O(N3). However our counterexamples
to the monotonicity property rely on the existence of nonzero leaf (q) weights; in the
next section we show that when these weights are absent, the addition of a key at the
right cannot force the rightmost key in the root to move left.

6. Proof of monotonicity property when q’s absent. The purpose of this section is
to show that when qh 0, 0 <= h <- N, r(i,/, k), the largest key on the root page of all trees
in T(i,/, k), satisfies

r(i, j- 1, k)<-r(i, ], k)<-r(i + 1, ], k), k<j-i<_N, l<-k<-m.

The proof is a generalization of the one for binary trees outlined in [3, 6.2.2]; however
it should be noted that for binary trees, the result holds whether the q’s are zero or not.
Note also that to stay consistent with the general case, we will use (i, j) to denote the
weights (p/+l, P/), even though the absence of the q’s makes (i + 1, ]) more natural.
The following definitions are needed:

DEFINITION 1. Define AB to hold between nonempty sets of integers A, B if
a e A, b e B and b < a =), a e B and b A. Informally, if A, regarded as a sequence, is
"left" of B in terms of position, then AB holds if "overlapping" members are
common to both sets. The relation has the following property, which we state without
proof:

LEMMA 1. is transitive.
DEFINITION 2. R(i, , k), 1 <= k <= m, is the set of rightmost keys (henceforth called

rightmost roots) on the root pages of trees in T(i, j, k); in other words, it is the set of
+ k -<_ h -< for which (3) is minimized if k > 1, or (4) is minimized if k 1.

DEFINITIOr 3. L(i, , k) 1 <- k <= m, is the set of leftmost keys (leftmost roots) on the
root pages of trees in T(i,j, k). We have L(i,j, 1)=R(i,j, 1) for l<-j-i<=N, and for
2<-k<-m,k<j-i<-N,

L(i, ], k)={i<h <=]-k + llc(i, h-l, m)+ w(i, h-l)

+Ph + C (h, ], k 1) is a minimum}

Proofoutline. We first show that except for possible addition of the new key, the set
of rightmost roots does not change when the existing key set is augmented at its right
(alphabetically high) end by a key with weight zero (Lemma 2). The main theorem
(Theorem 1) is proven in two parts. In Lemma 4, weights (i, , j- 1) are fixed while Pi
is increased from x to y; in this case it is shown that there will always be a rightmost
root-> any key which is a rightmost root when pi x. Together with Lemma 2, this
shows that R (i, ]- 1, k)R (i, ], k), or, informally, that we need never move left in the
key set to look for a new rightmost root when a key is added at the right. The equivalent
result for leftmost roots is then used to show that the rightmost root does not have to
move right when a key is added at the left, thus completing the proof. Finally, Theorem
1 is used to prove Theorem 2, the desired result.

LEMMA 2. Let qh O, 0 <= h <= N. If Pi O, then R (i, ] 1, k) R (i, j, k) {j}, k <
j-iN.
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Proof. Since pj 0, adding it to a tree in T(i,/’- 1, k) cannot increase the cost, but
cannot lead to a better rearrangement either, or removing it would then leave a better
tree than the original, which was optimal. Therefore any tree in T(i, j- 1, k) can be
converted to one in T(i, ], k) by straight insertion of pj, which does not change the
rightmost key in the root. A similar argument shows that any tree in T(i, ], k) in which pj
is not the rightmost root must also be in T(i,/’- 1, k) when pj is removed.

The main theorem to be proved is
THEOREM 1. If qh O, 0 h <-N, then

and

R(i,i-1, k)R(i,j, k)R(i + 1,], k),

L(i, j- 1, k) L(i, /, k) L(i + 1,/’, k),

k<j-i<-N,l<-k<__m.

Proof. By induction on ]- > k.
Basis. If ]-i=k+l, then R(i,f-l,k)={]-l}, R(i+l,f,k)={]}, and

R(i, Lk)c_{]-l,.i}. Similarly L(i,]-l,k)={i+l}, L(i+l,Lk)={i+2}, and
L(i, ], k)

_
{i + 1, + 2}; hence the theorem holds trivially.

Induction. Assuming that the theorem holds for k < ] < d < N, 1 <_- k -<_ m, we
will show that it remains true for ]- -d.

LEMMA 3. It" u-w<d, and u<v<w, then R(u,w,k)R(v,w,k), and
L(u, v, k) L{u, w, k).

Proof. By the induction hypothesis and Lemma 1.

LEMMA 4. Let Rx(i,], k) denote the set o]’ rightmost roots when p=x >-0, and
Ry(i, ], k) be the corresponding set when p y > x, while weights (i, , ]- 1) remain
fixed; then Rx(i, ], k)Ry(i, ], k).

Proof. Let r Rx(i, ], k), T, be an optimal k-rooted tree with rightmost root r and
p x, and I, be the level of pi in Tx; similarly for s Rv(i, ], k), Tr, y and lv. Suppose
s < r. The lemma will be proved if we can modify Tx without changing its rightmost root
so that it is optimal for y, and similarly for Tr with respect to x.

The cost of Tx can be expressed as a linear function of Pi, mamely a + lx p, and
similarly, cost (Ty) b + ly p. Of the nine possible outcomes for a compared to b, lx
compared to ly, all contradict the definitions of T, and Ty except a b, lx ly, in which
case the Lemma is proved, and a < b, Ix > ly.

When a < b and I, > Iv, cost (T,) meets cost (Tr) at z > 0, and Fig. 3 shows the two
basic situations possible at this point. In 3(a), Tx is optimal for Pi <- z, while Tr is
optimal for p >-z. In 3(b), neither is optimal at z, because for x < p. < y, there are
intermediate trees (two in the figure) which are optimal and cost less than either T, or

Tr. We consider the case of (a) first.
In tree T,, let rl, r2, , fix be the sequence of rightmost roots along the path from

the root page down to the page containing p, and let sl,. ., st,, be the corresponding
sequence for T. Now s s < r r by assumption, and r, < st, ], since lx > l, and
rt,,- ], the index of the last key; thus there must be a level h such that rh > Sh and
rh+x < Sh+a. Both Tx and Ty are optimal at z, so rh+x Rz(rh, f, m) and Sh/l Rz(Sh, f, m).
Since Sh < rh <], and ] Sh <]-- d, we can apply Lemma 3 to get
Rz(Sh, ], m) R(rh, ], m). But rh+x <Sh+, SO by definition of , it follows that Sh+
Rz(rh), j, m) and rh+l Rz(Sh, f, m).
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cost

0
0

(a) Tx, Ty optimal
where costs intersect

b

cost

a2

al

st(Ty) b + l p
ca

0 x xl z x2 x3 Y pj

(b) Tx, T not optimal
where costs intersect

FIG. 3. Cost of Tx, Ty as functions of Pi.

In other words, there is a rearrangement of Tx, call it T’, which is optimal for Pi z,
and has Sh+l (at level h + 1) as the rightmost root of the subtree for keys to the right of rh.
Now the subtree to the right of Sh/l, containing pj, can remain unchanged from Ty, since
Ty is also optimal at z, and this subtree starts at the same level as it did in Ty. Thus the
level of pj in T’ is l, and cost (T’x)= a’+ ly p. But cost (Ty)= b + ly Pi and both
agree at z; therefore a’ b, and T’, with rightmost root r, is optimal for y. Similarly we
can rearrange Ty, without changing its rightmost root s, to T, which has the same cost at
Tx. Thus r Ry(i, , k) and s R(i, , k).

If cost (T) meets cost (Ty) at a point where neither is optimal, then there is a
sequence of.trees T To, T1, ’, T Ty, and values x x 1, , Xl/l y, such that Tt
is optimal on [x, Xt+l], 0 _-< I =< I. (Fig. 3(b) illustrates the situation for 3.) Let rt(I) be
the rightmost root of Tt; for the sequence of roots (rt(O),.. , rt(1)), we have r rt(O)
and rt(l) s. If s < r, an induction argument shows that the sequence can be transformed
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so that s is the first term (i.e., s Rx(i, L k)), and r is the last (r Ry(i, L k)). The basis for
sequences of length two was established above, and the induction step is straightfor-
ward.

From Lemma 2, R(i,f-l,k)=Rx(i, Lk)-{f} if x=0, and from Lemma 4,
Rx(i,L k)Ry(i,L k) for x <y; hence R(i,f-l,k)R(i,L k), as desired. By sym-
metry, the equivalent of Lemmas 2 and 4 for leftmost roots can be used to show that
L(i, L k) L(i + 1, L k), 1 <= k <= m. Thus it remains to show

R(i, Lk)R(i+l,Lk) and L(i,]-l,k)L(i, Lk).

For k=l these are immediate, since R(i, L1)=L(i, L1). We will show
R(i,L k)R(i+l,L k) for k>l.

Let T1 e T(i, ], k) with rightmost root rl and leftmost root 11, and similarly for
T2 e T(i + 1, ], k), r2 and 12. Assume r2 <rl; 11 may be equal to, less than, or greater
than 12, and Fig. 4 illustrates the three cases.

(i + 12 r2

(i, + ll rl i)

(i, i+1 ll rl i)

(i, + 1 ll rl ])

T2

TI,/1 =/2

Tl, ll>12

T1, ll < t2

FIG. 4. ProvingR(i, Lk)R(i+l,Lk).

If ll 12, then since r2 and rl are both in R (/1, ], k 1), the subtrees on (/1, j) in
T1 and T2 can be switched; thus r2eR(i, j, k) and rl eR(i + 1, j, k). Suppose ll > 12.
Since from above, L(i,], k)L(i + l, j, k), there is a re-arrangement of T2 which is
optimal but has l as its leftmost root. In this tree, the keys to the right of ll can be
arranged as they are in T1, giving r i as the rightmost root. Thus r 1 R (i + 1, j, k) and a
similar re-arrangement of T1 gives r2eR(i,j, k). Finally, suppose 11</2; then
R(ll, j,k-1)R(12, j,k-1) by Lemma 3, and since r2<rl, r2 must also be in
R (/1, j, k 1) and rl in R (/2, ], k 1) by definition of . Therefore the k-1 rooted tree
to the right of 1, with rightmost root r 1, can be replaced by one with the same cost and
rightmost root r2, i.e., r2eR(i,j,k); a similar replacement in T2 gives rle
R(i+l,i,k).

A symmetric argument shows that L(i,]-l, k)L(i,], k), k> 1, and thus
completes the proof of the theorem. [3

The needed result is expressed by"
THEOREM 2. If qh 0, 0 <= h <= N, then r(i, , k), the largest possible rightmost root,

satisfies
r(i, ]- 1, k)<-r(i, L k)<-r( + 1, j, k), k<]-i<-N, l<-_k<-m.

Pro@ By induction on ]- > k.
If/" k + 1, then r(i, ] 1, k) ] 1, r(i + 1, L k) L and the only two possi-

bilities for r(i, ], k) are ] 1 or ], so the theorem holds. Assuming that the theorem holds
for k < ] < d < N, 1 _-< k <_- m, we will show that it remains true for ] d.

First, observe that from the induction hypothesis, r(i, ] 1, k) <- r(i + 1, ] 1, k) <
r(i + 1, ], k). To show the left inequality, suppose r e R (i, ], k)< r(i, ]- 1, k). Then since
r(i,]-l,k)eR(i,]-l,k) and R(i, ]-l, k)R(i, ], k) by Theorem 1, r(i,]-l,k)e
R(i, ], k), that is, the rightmost possible root in T(i, ], k)is >-r(i, ]- 1, k).
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To show r(i, L k)<=r( + 1, L k), suppose rR(i, L k)> r(i + 1, L k)R(i + 1, j, k).
By Theorem I we have R (i,/’, k) R (i + 1, L k), so r R (i + 1, j, k). But r is greater than
r(i + 1, L k), which by definition is the largest rightmost root, a contradiction. Therefore
any member of R(i, L k), and in particular, r(i, L k), is <=r(i + 1, L k). [3

7. Conclusion. The algorithm outlined in 3 employs "double" dynamic pro-
grammingmbuilding optimal trees on increasingly larger key sets, and at the same time
building trees with successively more keys on the root page. The technique is powerful"
even when the monotonicity property does not hold, it reduces the number of possible
root pages from () to N, which is independent of page capacity. In [5], the method is
used to construct optimal weighted B-trees. Since these have the property that a page
may have anywhere from the minimum number of keys allowable to the maximum, the
basic O(Nam) algorithm is not completely supplanted by the refinement of 4.
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PARTIAL AND TOTAL MATRIX MULTIPLICATION*
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Abstract. In 1979 considerable progress was made in estimating the complexity of matrix multiplication.
Here the new techniques and recent results are presented, based upon the notion of approximate rank and the
observation that certain patterns of partial matrix multiplication (some of the entries of the matrices may be
zero) can efficiently be utilized to perform multiplication of large total matrices. By combining Pan’s trilinear
technique with a strong version of our compression theorem for the case of several disjoint matrix
multiplications it is shown that multiplication of N x N matrices (over arbitrary fields) is possible in time
O(N), where/3 is a bit smaller than 3 In 52/ln 110 2.522.

Key words, computational complexity, matrix multiplication, tensor rank, trilinear aggregating,
exponent

Introduction. In our model of computation for the multiplication of matrices
A (a.,), B (b,.v) we consider the a’s and b’s as indeterminates over some scalar
field F. Let mam(NlF) denote the total number of arithmetic operations +, -, in
F[a , b. .] needed in a minimal straight-line program for the computation of the
elements of AB, where A and B are N xN matrices. Then

to(F) inf {/l mam (N[F)= O(N)}
is called the exponent of matrix multiplication over F.

We will also need the noncommutative bilinear model, where m*(NIF) denotes
the minimal number of products [linear combination of the a’s] [linear combination of
the b’s] sufficient for the computation of AB. It is well known that rn*(nlF) n for a
particular value of n implies mam (NIF)= O(Nt), hence

(0.2) to(F)-< In m*(n[F)/ln n.

For nearly ten years all attempts to improve Strassen’s famous result m*(21F) -< 7,
to(F)<2.808 (cf. [10]) failed, but recently some progress was made. Pan [71, [8]
obtained m*(nlF) -< 1/2n 3 + O(n 2) with such constants that he could show (using n 48)
the new bound to(F)<2.781 for any field F. In [1], [2] Bini, Capovani, Lotti and
Romani found the slightly better bound to(F)-<In 1000/ln 12 < 2.780, but much more
significant is their new approach. They exhibit an approximating algorithm which shows
that 12 x 12 matrix multiplication has approximate rank -< 1000, and in [2] Bini shows
that this implies m*(12klF) -< (1 +6k). 1000k. We will present these new notions in

2, where we also give the smaller example of approximate rank-< 21 for the case of
3 x 3 matrices.

Actually, there is a rather striking example of even smaller size. The results in [1
are based upon a clever construction (cf. Example 2.2) which shows how to multiply two
2 x 2 matrices A and B with one element vanishing, say a2,2 0, approximately by
means of only 5 multiplications instead of the trivial number 6.

In 3 and 4 of this paper we describe a general method for exploiting such a small
partial matrix multiplication for the construction of algorithms for the total multi-
plication of large matrices such that full efficiency is maintained: whenever the trivial
number [ of multiplications in a partial matrix multiplication over some field F can be
replaced by multiplications in an approximating algorithm the exponent of (total)
matrix multiplication over F will be bounded (cf. Theorem 4.1) by 3 In I/In f, for

* Received by the editors March 3, 1980, and in revised form June 16, 1980.
f Mathematisches Institut, UniversiRit Tiibingen, Tiibingen, Germany.
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instance by 3 In 5/In 6<2.695. Other more favorable examples of partial matrix
multiplication with comparatively few multiplications are given in 5, for instance with
l, 17 instead of f 26, which implies to(F)-< 3 In 17/In 26 < 2.609.

So far we don’t have any deeper insight why some patterns of partial matrix
multiplication lead to small exponents while others do not. The special structure of our
examples seems to indicate, however, that this question is closely related to the
additivity confecture about tensor ranks (see [11, p. 194]). In 6 we show that this
conjecture cannot hold for approximate ranks, since there exist certain pairs of matrix
multiplication problems AB and UV with completely disjoint sets of variables which
can be done faster in one compound computation than separately (as far as approximate
algorithms are concerned). Such configurations can be used to set up some kind of
economical mass production. In pursuing these ideas we have established a strong
generalization (Theorem 7.1) of our previous result. Let us demonstrate its effective-
ness by an example, where two disjoint matrix multiplications of size fl 16 and f2 9
can be performed approximately by means of 17 multiplications (see 6): in this case
the previous bound 3 In 17/ln 25 2.640 can be replaced by to(F)_-<3a <2.548,
where 16 + 9 17.

Again the problem arises of finding more favorable patterns, and in fact, soon after
the presentation of our general theorem at the Oberwolfach conference on complexity
theory in October 1979, V. Pan found an instance of three disjoint matrix multi-
plications which lead to the bound to(F)-< 3 In 52/ln 110<2.522. In 8 we present a
variant of his ingenious design and some tiny improvements.

Finally it must be stressed, however, that so far all these new results are mainly of
theoretical interest. The point of intersection with Strassen’s method lies beyond any
practical matrix size, and with respect to m*(nlF) Pan’s estimates for moderate values
of n are still unbeaten. Furthermore, it will be seenthat the constants in our estimations
may also depend on the size of the field F. On the other hand we will show to (F) to (F0),
where F0 denotes the prime field of F (Theorem 2.8). Thus the exponent of matrix
multiplication over F can only depend on the characteristic of F.

1. Tensors. In this section we give an outline of the tensor machinery needed
below. It will be sufficient to consider 3-dimensional tensors (ti,j,k), where (i,/’, k)
varies over some finite index cube. With multi-indices i=(il, i2), f--(h, f2),
k (kl, k2) the tensorial product t’ (R) t" has the elements

(1.1) tij, k tll,h,k ti2,]2,k2

and (R)s (R) (R) (R) denotes the s-fold tensorial power of formed correspond-
ingly. Sometimes it will be convenient to describe a tensor (ti.i.k) by means of its
associated trilinear form

4’ Y ti,i,kabiCk,
i,j,k

where the a’s, b’s and c’s are considered as indeterminates over the underlying field F.
In the case of matrix multiplication we need triples of double indices: the product

of a K xM matrix A with an M N matrix B is a K xN matrix D; its elements form a
set of bilinear forms in the a’s and b’s expressed by the formula
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thus inducing the tensor elements

(1.3) t,,;a,;, =,C,, ,.
The corresponding trilinear form is

(1.4) g= E a,,b,,c,,

which equals the trace of the product ABC of three matrices (observe the transposed
indices of the c’s). We call this a matrix multiplication of type (K, M, N); its tensor, as
given by (1.3), will be denoted by the special symbol (K, M, N). Hence, in particular,
(K, M, 1) is a tensor of size KM xM xK describing the multiplication of a K xM
matrix A with a column vector B, (1, M, 1) expresses a scalar product of length M, and
(1, 1, N) stands for the product of a single variable a1,1 with a row vector B.

Combining (1.1) with (1.3) leads to the well-known process of nested matrix
multiplications, namely

(1.5) (K’, M’, N’) (R) (K", M", N")= (K’K", M’M", N’N")

and its s-fold version

(1.6) (K, M, N)(R)s (K, M, N).
Another special case is that of symmetrization,

(1.7) (K, M, N) (R) (M, N, K) (R) (N, K, M)= (P, P, P),

where P KMN.
In the noncommutative model the rank of a tensor denoted by rk(t) is defined as

the minimal length r of a decomposition into triads

(1.8) t= (xo (R) Yo (R) zo),
p=l

or equivalently,

k o ( xo,,ai) ( yo,,bi) ( Zo,kCk),
ti,j,k xo,iYo,jzo, for all i, ], k,

0----1

where the xo, i, Yo,i, zo,k are suitable elements of F. By virtue of (1.1) we have the
submultiplicativity

(1.9) rk(t’ (R) t") <- rk(t’) rk(t"), rk(t(R)s) <- (rk(t)),
which will need refined consideration in the case of approximate rank (see 2).

With regard to the tensors of matrix multiplication we have, first of all, the basic
equation (cf. [11 ])

(1.10) m*(PlF) rk <P, P, P>.

Furthermore it is well known 15] (and can immediately be understood from (1.3) or
(1.4)) that rk(K, M, N) is symmetric in K, M, N. Hence symmetrization and (1.9), (1.10)
yield

m*(KMNIF) <- (rk(K, M, N))3,
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and (0.2) gives the important bound

In rk(K, M, N)
(1.11) to(F) <= 3

In (KMN)

Let us mention here what is known for the small cases" in addition to rk (2, 2, 2) 7 and
rk(4,4,4)<-49 from [10] we have rk(3,2,2)=11, rk(3,2,3)=15 (see [4]) and
rk(3, 3, 3) <- 23 (see [6]). Among these, 3 In 7/ln 8 is still the best.

Finally, we want to add some explanations about the disjoint sum of tensors. For
matrices G, H (regarded as 2-dimensional tensors) of arbitrary rectangular size the
disjoint sum is simply obtained by forming the block matrix

0

Hence also G O) G will make sense and will, of course, be different from 2G G + G. In
the same way the disjoint sum of 3-dimensional tensors t’, t" may be formed by packing
a copy of t’ and a copy of t" into opposite corners of a cube of appropriate size while the
other positions are filled with zeros. As a matter of fact, t’(R) t" then will usually be
different from t"q)t’, but in the context of this paper it will suffice to have the existence
of suitable isomorphic mappings. In such cases we make free use of the equality sign, for
instance in stating the distributivity laws

(R) (t’t")= (t (R) t’)O)(t (R) t"),
(1.12)

(t’@t") (R) t=(t’ (R) t)(t" (R) t).

For matrices we have the additivity ol rk when applied to disjoint sums: rk(G (R) H)
rk(G)+ rk(H). For 3-dimensional tensors one can easily prove that always

(1.13) rk(t’@ t") <= rk(t’) + rk(t"),

but Strassen’s additivity conjecture (c. [11]) that =< can be replaced by here is still an
open problem.

2. Aplroxime rnk. In order to motivate the notion of approximate rank let F
be the real number eld. Then it can happen that the limit o a converging sequence o
tensors has higher rank than all its approximants. Such a phenomenon could be
described by means of a variable e representing "small" numbers. We preer, however,
to use purely algebraic notions suitable or any field F (in particular or nite elds). In
this setting e is an extra indeterminate over F.

By an approximate decomposition o order h >= 0 and length r of a tensor or its
trilinear form -sometimes also called an approximate algorithm for we mean a
representation

(2.1) i (xo(e) (R) Yo(e) (R) zo(e))= e ht + O(e h+l),
0=1

where xo(e)= x hxho + exo +" + e o, Yo(e) zo (e) are of degree <=h in e, the, h+l
xo, yo,zo are vectors over F, and O(eh+) stands for a multiple of e The minimal r of
this kind denoted by rh(t) is called the approximate rank of order h. Obviously
rk(t) to(t) >= r(t) >=. .; the minimum rk(t) of these numbers is called the border rank
of t.

The decomposition (2.1) may also be written as

-h 2 d(2.2) e Y(...)=t+eu+e uz+’’’+e ua;
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the minimal number d ->_ 0 of this kind is called the error degree of this decomposition (or
algorithm). Apparently we always have

(2.3) d<-2h.

Example 2.1. Let denote the tensor for

4’ alblCl + ab2c2 + a2blC2.
Then ro(t) 3, but rl(t) 2, since

albl(-C2 + ecl) + (al + ea2)(bl + eb2)c2 e q- e2a2b2c2;
this decomposition is of order h 1 and has the error degree d 1.

Example 2.2. (Bini et al. [1]). With respect to the multiplication of partial 2x2
matrices mentioned in the introduction, let be the tensor for the trace as given in (1.4)
for three 2 2 matrices, where a2.2 0, i.e.,

0 al,l(b,Cl,1 + bl,2C2,1)+ al,2(b2,c., + b2,2c2,1)+ a2,.(b,lC.,2 + bl,2C2,2).

The approximate decomposition

(a 1,2 "- ea 1,1) (b,2 + eb2,2)c2, + (a2, + ea 1,1)b1,1(c 1,1 dr" EC 1,2)

-al,2bl,2(cl,1 + c2,1-1- c2,2) a2,1(bl,1 + bl,2 + eb2,1)C,l
+(a,2 + a2,) (bl,2 + eb2,1)(Cl,1 + ec2,2) e + O(e 2)

shows that r(t) <- 5, whereas rk(t) 6 (by [3, Corollary 4.4]); again we have h d 1.
Example 2.3. For the multiplication of (total) 3 x 3 matrices we want to show

r2(3, 3, 3) <- 21, which compares rather favorably with the best upper bound 23 known
for the exact rank. Here we present the corresponding approximate decomposition of
the tensor (3, 3, 3) more directly as an algorithm for approximate matrix multiplication:
Given two 3 x 3 matrices A, B and a "small" e 0 first compute, for i,/" {1, 2, 3}, the
21 products

Ui, (ai,1 + e
2ai,2)(e2bl,i -t- b2,i),

vi, (ai,1 + e
2ai,a)b3,i

then recombine

Wi ai,(b2,i + b3,i),

ui,i (ai, + e 2ai,2)(b2,i ebx,i),

laid (ai,1 + E
2aL3)(b3,i + ebb.j),

(i

(i :j),

d,i ---(ui,] @ ui,j wi) ---(l)],i 1)j,]), (i /).

This constitutes a matrix D’ which differs from D AB by not more than O(e).
Translation into the shape of (2.1) or (2.2) shows that this decomposition has order
h 2 and error degree d 2.

Example 2.4. Any simple transcendental field extension of F can be represented
as the field F(e) of quolynomials over F, which is contained in the field F of all formal
power series e-"(yo + yle + y2e 2q-" ’) with arbitrary integers n ->_ 0 and y’s in F. Let
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be any tensor over F with border rank rk(t) and let f(t) denote its rank with respect to/6.
Then we have rk(t)<= f(t) (the proof is left to the reader).

Frequently we will need a refinement of (1.9) for approximate ranks. Given tensors
t’, t" with approximate decompositions of length and order r’, h’ or r", h", respectively,
the tensor product of the corresponding formulae (2.1) is

e h’+h"(t’ @ t") -I-O(e h’+h"+l),

The elements of these vectors [. .] are polynomials of degree <-h’ + h" in e. That proves
(see also [2]) the following lemma.

LEMMA 2.5. Approximate ranks are subrnultiplicative according to the ]:ollowing
rules:

(2.4) rh,+h,,(t’ () t") <= rh’(t’) rh,,(t"),

(2.5) rsh (t(R)s <---- (rh (t)) s.

An immediate corollary is the submultiplicativity of the border rank; i.e.,
rk( t’ (R) t") <-_ rk(t’) rk(t").

Next we discuss estimations of the exact rank rk(t) by means of approximate ranks.
In [2] Bini uses evaluation of the left-hand side of (2.2) at d + 1 different values ej F,
ej 0, and interpolation to prove the next lemma.

LEMMA 2.6. I[ a tensor has an approximate decomposition of length r with error
degree d, then the estimate

(2.6) rk(t) <-_ (1 + d)r

holds, provided the underlying field F contins at least d + 2 elements.
By means of (2.3) this implies (for : F-> 2h + 2)

(2.7) rk(t) <- (1 + 2h)rh(t).

In order to get results for all fields F we use a different approach, which
independently was also applied by S. Winograd for proving an inequality of the same
kind. Formula (2.1) becomes an exact identity without error term if it is read as an
equation over the extended scalar domain F’= F[e]/(eh+l). With respect to a second
quite analogous situation we deal with a slightly more general case.

THEOREM 2.7. Let g F[O] be a polynomial of degree d over F, and 0 <- k < d. Let
rk’ denote the rank oftensors with respect to F’ F[O]/ (g). Then the F-rank ofany tensor
(with elements on F) is bounded by

(2.8) rk(t) <-M(F’/F) rk’(okt),

where M(F’/F) denotes the number o]’ multiplications (noncomrnutative) necessary to
multiply two polynomials over F modulo g.

Proof. By definition ot rk’(okt) there exists a decomposition

(2.9) okt (Xo (R) Yo (R) Zp), r rk’(okt)



440 A. SCHONHAGE

into triads of F’-vectors which, by means of suitable F-vectors x, yo, have represen-
tations

d-1 d-1

(2.10) xo= Y Ox, yo= Y. 0yo.
=0 / =0

According to the definition of M(F’/F) there are scalars i,, r/i,a, sri,8 F (1 _-<i _<-

M(F’/F)) such that (2.10) gives

d-1

(R) (R)

d-1 8 F’with i==0(i,0
Similar to (2.10), the F’-vectors zo have representations

d-1

izo Oz TMi,O, mod g.
=0

Since the tensor on the left-hand side of (2.9) has all its elements in F, we finally get, by
comparing coefficients,

This decomposition of proves (2.8).
By replacing 0 by e we now return to the case of approximate ranks. Then we have

h+lto choose g e k h, and rk (eht) becomes rh(t). In this way (2.7) is obtained as a
corollary of (2.8) with M(F’/F) 1 + 2h for : F 2h. For smaller fields F we will be
content with the crude bound M(F’/F) <= (1 + h)2, hence:

(2.11) rk(t) <- (1 + h)2rh(t) for all fields.

Now we are ready to give a paradigmatic application of these methods by deriving
from our Example 2.3 the bound

(2.12) to(F)-< In 21/ln 3<2.772.

Proof. By means of (1.6) and (2.5) r2(3, 3, 3) <= 21 implies r2s(3 s, 3, 3 <- 21. Then
(2.11) with h 2s and (1.10) yield m*(3lF) =< (1 + 2s)2. 21 , hence

to(F) -<_ (2 In (1 + 2s)+ s In 21)/(s In 3).

By s this finally gives (2.12).
The last step. is the crucial point with respect to all practical applications of the

method. Of course, we can assume that F is infinite and use Lemma 2.6, which gives the
better bound m * (3 IF) <_- (1 + 2s)21, but even then the minimal value of s for which
this becomes smaller than the trivial bound 27 is s 14, and 3TM 4,782,969. The same
will apply for all other bounds given in this paper.

By combining the foregoing method of proof with Example 2.4 we can show that a
simple transcendental field extension of F cannot result in a reduction of to(F).
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Consider any fixed /3 >to(/). Then there is some q with m*(q115)<-q, and by the
statement in Example 2.4 we get

rh(q, q, q)= rk(q, q, q)<-P(q, q, q)<-q

for some h sufficiently large. The further steps are

rh(q, q’, q) <

m.(qlF) rk(qS, qS qS) < (1 + 2sh)2qs

to(F) _-< (2 In (1 + 2sh) + sO In q)/(s In q);

now s oo gives to (F) -< /, hence to (F) -< to (t6).
Similarly, no simple algebraic field extension F’= F(O) can reduce to(F). In this

case we can use Theorem 2.7 with k 0 and choose g as the minimal polynomial of 0
over F.

THEOREM 2.8. The exponent of matrix multiplication overFcan only depend on the
characteristic ofF; in other words, if Fo is the prime field of F, then to (F) co (Fo).

Proof. For arbitrary />to(F) there is again some q with m*(qlF)<-q and a
corresponding decomposition of the tensor (q, q, q) in which only a finite number of
elements of F can occur. Hence there is a finite chain of simple field extensions
FocF ." "F such that also m*(qlFk)<--_q. That implies to(Fk)<=, and from the
preceding proofs we already know (by induction) that to(Fo)<_-to(Fk). Putting all this
together we get to (Fo)_-< to(F), but trivially also to(F)_-< to (Fo).

3. Partial matrix multiplication. More precisely the heading of this section should
be" multiplication of matrices which are partially filled. Since we will study tensorial
products of such matrices, this subject requires a careful description. Let us begin with a
"small" matrix multiplication of type (k, m, n): D(1) is the product of a k m matrix
A(I) with an m n matrix B(. Some of the positions in these factors are occupied by
variables a.,, b,,v, while others may be filled with zeros. The variable-positions in A
and B( constitute subsets of index pairs,

(3.1)
I_c{1, ...,k}x{1,...,m},

J{1,..., m}{1,... ,n}.

In case of the pattern g/01 we have, for instance, I {(1, 1), (1, 2), (2, 1)} (see Example
2.2). Later we will need the characteristic functions of these sets; i.e., ,Vz(x,/x) 1 iff
(,/x) ! (=0 otherwise), and similarly ,VJ.

Next we form the s-fold tensorial power of the patterns; i.e., by blockwise nesting
we obtain a (k s, m s, n s) type partial matrix multiplication AS)Bs =Ds) with its
variable-positions belonging to 1(s and J(), respectively, where

(3.2)

I(S)= {(x,/x)s{1,..., k}Sx{1, .,m}S II ,g,(, )= 1},
cr=l

In the example mentioned above, I(3), for instance, describes the pattern shown in Fig.
3.1.
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WAoogoV./Ao

NoN0
0,

FIG. 3.1. 3-fold tensorial power of .
The multi-indexed elements of the tensor (’) associated with these partial matrix

multiplications are obtained by adequate modification of (1.3); for all s -_> 1 we get

(3.3) t(s),.;a,;, 8,,, ,a,, ,%,,. (I (x(x.,. ttr) X.r(,. "r))
cr=l

fit()
"o-,go- t.2o., v,,. 3o.,

o-=1

With respect to ranks, Lemma 2.5 has the following corollary.
LEMMA 3.1. If the tensort(1) ofa partial matrix multiplication A(I)B(1 D() has an

(s)(approximate) decomposition oforder h >- 0 and length l, then its s-fold tensorialpower
has an (approximate) decomposition of order hs and length s.

Given a tensor or its trilinear form tO, a tensor t’ is called a subtensor of if the
corresponding 0’ is obtained from 0 by replacing some of the a’s, b’s or c’s by zero.
Application of such a homomorphism to approximate decompositions of immediately
yields the following lemma.

LEMMA 3.2. If t’ is a subtensor of t, then

(3.4) rh (t’) <-_ rh (t) for all h >= O.

In the next section we will describe how from any given partial matrix multi-
plication A(I)B(=D( with tensor (x) by compression of the sparse matrix multi-
plications A(s)B( =D(S) algorithms for the multiplications of relatively large total
matrices can be constructed. Their efficiency will decisely depend on the relation
between the number of ones in the tensor (1) and its border rank rk(t() minh rh(t()).
Therefore let us analyse the subsets/, J of such a partial multiplication more precisely.

There are k, variable-positions in the /zth column of A(1), and n, variable-
positions in the/th row of B(), where

k Z x(, ),
(3.5) (1 <=/. <= m).

n, 2 X,(/x, v).

In order to avoid confusing redundancies we will always assume that all these numbers
are greater than zero. The number of ones in the corresponding tensor ( is given by

(3.6) f kn + k2n2 +" + k,n,.

This quantity can also be interpreted as the trivial number of multiplications needed in a
straightforward algorithm.

4. Total matrix multilflieation by compression. The bound In 21/In 3 in (2.12) and
the bound 3 In 10/ln 12 in [1] are examples of the general fact that the inequality (1.11)
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remains true, if rk is replaced by the border rank r__k. Its generalization to tensors of
partial matrix multiplication is one of our main results.

THEOREM 4.1. Let be a tensor of partial matrix multiplication which contains

fones and has border rank <-_ over the field 1::. Then the exponent of matrix multiplication
over F is bounded by

(4.1) to (F) <_- A (l, f) 3 In I/In f.
Strassen’s exponent is A (7, 8). Example 2.2 yields A (5, 6) <= 2.695. In 5 we shall derive
even better bounds.

The proof of this theorem is rather complicated, it will be given stepwise in the
following subsections. In view of Theorem 2.8 it is no restriction to assume the field F to
be infinite.

4.1. Opening. By definition of the border rank the given tensor (1) has some
approximate decomposition of length and order h, which will be held fixed in our
further analysis. In addition we choose some value s > 1 and a fixed partition

(4.2) s o’1 -+- 0"2 +’ + O’m, (O’tz 0).

Variation of these parameters will be discussed in 4.4. Now consider the partial
matrix multiplication A(S)B (s) D (s) associated with (1) as described in 3. In view of
(3.3) its tensor (s) will contain exactly

(4.3) .fs (klnl + k2n2 +" + kmn,,)

ones. The multinomial expansion of this expression is closely related to the distribution
of the variable-positions in A (s) and Bs). Let Y denote the set of all multi-indices
/x (/x 1, ’,/xs) with exactly tri of the entries/xj being equal to i, for 1 _-< -< m. Then
the number of elements in g is

(4.4) M
s

Combining (3.2) with (3.5) we see that for any /x there are exactly K
variable-positions in column/. of A(s and N variable-positions in row of B(s, where
(4.5) K kl’k
(4.6) O’rrN nn2 .nm

Our goal is to accomplish a total matrix multiplication of type (K, M, N). Therefore we
h (s)s 0, .... 0 for allnow cancel all other columns of A(s and rows of Bs by setting a..

/x 6 and all x, v. This reduces ASBs D(s to a partial matrix multiplication AB D
of type (k s, M, nS). Its tensor is a subtensor of s. Hence Lemma 3.1 and Lemma 3.2
yield the bound

(4.7) rhs(t) <- s.

4.2. Compression. By construction there are K variables in each column of A and
N variables in each row of B. The main idea is now to apply a transformation that
converts AB -D into a total matrix multiplication UV W of type (K, M, N). This
compression is achieved by sandwiching with suitable scalar matrices G and Q of size
K x k and n x N, respectively:

(4.8) GA U, BQ V, W GABQ GDQ.
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Now the question is how to choose G and Q. For any f(1 f _-<M) let a.j denote the flh
column of A, and bj. the jth row of B. Correspondingly we consider the fth column of U
and the/’th row of V. Then (4.8) becomes

(4.9a) Ga.
(1 <_-]_-<M).

(4.9b) b.O v.,

For fixed j we can select K indices < i2 <’’" < ic such that all the pairs i,, ]) are
variable-positions of A. Let us choose G as a scalar K x kS matrix with all its K xK
minors different from zero (the details are given below). Then there exists a K xK
inverse/-/, such that

(ai,,, ai,i)r Hju.i,
(4.10)

a,=O foriil,...,ir

is consistent with (4.9a). Similarly we choose Q as a scalar n x N matrix with none of its
N xN minors vanishing. Then there are certain N xN inverses Ri such that vi.Rj
contains the variable b’s that (together with additional zeros) fulfill condition (4.9b).

Let us summarize what we have achieved by this construction: For given matrices
U and V the a’s are expressed as linear forms of the u’s by (4.10), and the b’s are linear
forms of the v’s. Inequality (4.7) implies that there exists an approximate algorithm of
order hs and length <_-I for the partial matrix multiplication AB D. Finally the w’s are
obtained as linear combinations of the d’s according to W- GDQ. Putting all this
together we get" Total matrix multiplication of type (K, M, N) has an approximate
algorithm of order hs and length <=l s.

We have to supplement the technicalities of choosing G and Q as mentioned
above. Here we use that F is infinite and construct a matrix G of the required kind
simply by choosing k different elements ai F. Then

(4.11) G=(3,q,i=aT-1ll <-q<-g, l <-i<-_k s)

will work. The matrix Q can be constructed in the same way.

4.3. Symmetrization. It is rather unlikely that the preceding constructions will
yield equal numbers K, M, N. Therefore we insert a step of balancing for square size by
symmetrization (see (1.7)). From (1.3) and the definition of approximate rank it follows
that also rhs(K,M,N) is symmetric in K, M and N. By means of the bound
rhs(K, M, N) <- found in 4.2 and Lemma 2.5 we therefore obtain r3hs(P, P, P) <- 13s,
which implies (cf. (2.7)):

(4.12) rk(P, P, P)<-(1 +6hs)l3s.

Here P KMN can be computed from (4.4)-(4.6) explicitly,

s!
(4.13) P= (klnl)l(k.n2). (kmnm).

4.4. Optimal parameters. Now we are ready to discuss the optimal choice of
o"1, , o-,, under the constraint (4.2). Apparently, the best we can do is to maximize P
as given by (4.13) by choosing a maximal term in the multinomial expansion of (4.3).
This determines the o-’s implicitly, and we could now work out a rather precise lower
bound for the corresponding value of P by using Stirling’s formula. For the present
proof, however, a much simpler bound is sufficient. Since the multinomial expansion of
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is+m--1(4.3) contains exactly 0,-1 terms, we get immediately

p>=f,/(s+,,,,_-).
Finally we have to combine this with (4.12). Then

In m*(PIF). In (1 + 6hs)+s Inw(F)=<
In P s In f-(m 1) In (s + m 1)

and s oo completes our proof of Theorem 4.1.

5. Patterns and exponents. In the vast variety of partial matrix multiplications we
have found two general designs which, by proper choice of the parameters, lead to
patterns with particularly favorable exponents h (l, f). At first we describe a family of
flag-shaped patterns (see Fig. 5.1). Depending on one parameter q->_ 2 the data of 3
are specified in the following way:

(5.1) k n q + 1, m 2q,

I {(x, tz)[q + 1 <-/z 5- 2q or k},
(5.2)

J {(, v)]l <_-m _-<q or v k}.

According to (1.4) the tensor (1) of this partial matrix multiplication induces the
trilinear form

q q+l q+l q

(5.3) , ak,ibi,iCi,k + ai,i+qbi+q,kCk, i.
i=1 /=1 i=1 ]=1

It has an approximate decomposition of order 3 and length (q + 1)2, namely
q q

Y Y’. (ak, + e2ai,j+q)(bi+q,k + e bi4)(eGk + eCk,i--Ck,k)
i=11=1

) )+ ak,i" e bi,k + Y’. (bi+q,k +e bi4) (Ck,k--eCk,i)
i=1 1=1

+ e ak4+,+ Y. (ak,+e au+) bi+.(c,-eci,)
1=1 =I

,a, =b,+,c, e$, +O(e4).
i=1

FIG. 5.1. Flag-shaped pattern for q 3.

FIG. 5.2. Pattern from the second design ]’or k 4, q 3.
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From (5.3) we get f=2q2+2q; thus Theorem 4.1 yields the exponents (for q
2,3,4,5):

(9, 12) 2.6526 ,
(5.4)

,(16, 24) 2.6172 .,
(25, 40)=2.6177...,

(36, 60) 2.6257....

Even without Theorem 4.1 the patterns (5.2) can be utilized to derive quite
reasonable bounds for total matrix multiplication: For any p -<_ q we can exchange rows
p and k of A1) and, simultaneously, columns p and k of B1). Then we obtain q other
isomorphic patterns. The sum of all such trilinear forms then equals the trace of a
product ABC of total matrices. The corresponding total matrix multiplication AB D
is of type (k, 2k- 2, k); it has an approximate algorithm of order 3 and length k 3. In the
case q 2, for instance, we get r3(3, 4, 3) _-< 27, which would still give an exponent of
A (27, 36) < 2.76.

Slightly better bounds are obtainable by our second design (see Fig. 5.2) depending
on two parameters k and q. Here the specifications are

(5.5) m q + 1, n 1 + (k 1)(q 1), k as given,

(5.6)
I {(, tx)[g 1 or Ix > 1},

J {(/z, v)[/z 1 or v 1}.

The corresponding trilinear form is

k

(5.7) = E al,lbl,,,c,,,l+ Y’. E aab,lcl,i.
v=l i=1 ]=2

It contains f= 1 +(k-1)(q- 1)+ kq terms and has the following approximate decom-
position of order 2 and length 1 + kq, where the summation indices and/" shall
control the row index v such that a 1-1 map (i, )-- v,

{2,..., kIx{3,..., m}(2,... ,n},

is accomplished (e.g., v + (]-3)(k 1) will do). Then
2 2b(al.l+e al.2)(b2.1+e 1.1)c1,1

+ z (ec.(a1,1 + e ala)bi,1 c1,1 ,1

(5.8) + (al,l+e ai,2) b:z,1-E (ebl,)
i=2

+ (al,1 + e2aid)(bi,1 + ebl,)(Cl,i + eCv,1)

-a1,l(b2,1 + b3,1 +" + bm,1)(Cl,1 + c1,2 -[--" "-- Cl,k) 620 + 0(63).
Here Theorem 4.1 leads to exponents

(5.9) X (/, f) 3 In (1 + kq)/ln (2 + 2kq k -q),

symmetric in k and q. The minimal value is attained for k q 4, namely h (17, 26)
2.6087 .
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Also the patterns (5.6) can be used to compose efficient approximate algorithms for
total matrix multiplication directly. In fact, our Example 2.3 has been constructed from
three copies of such a pattern with k 3, q 2, 7, f 9. In a similar way (yet more
involved) we could obtain rk(4, 4, 4) <= 47. In the case of 2 2 matrices it is still an open
problem whether rk(2, 2, 2) equals 6 or 7. Altogether it seems to be rather difficult to get
any nontrivial lower bounds for the border rank of a tensor.

6. Disjoint matrix multiplications. A careful analysis of the patterns given in 5
reveals that they are built up from smaller total matrix multiplications somehow linked
together. The example in Fig. 5.2, for instance, contains two total matrix multiplications
of types (4, 3, I) and (i, I, 7), respectively. Their small overlap can be removed by
setting bi.1 0, thus leading to two disjoint problems of types (4, 3, i), (I, I, 6), and the
same can be done for general parameters. Let us represent the approximate decom-
position (5.8) here in a modified way. In particular, we like to apply symmetry for
getting a permutation of the parameters such that we are dealing with the disjoint tensor
sum (k, I, n)(l, m, i), where m (k l)(n I). This tensor describes the problem of
evaluating the following two special matrix products

(6.1)
al k-1 n-1

(bl,"’, b,) and Y Y. Ui,jl)i,
i=1 i=1

in disjoint sets of variables (the u’s and v’s in the inner product of length m have double
indices for technical reasons). The corresponding trilinear form has a rather elegant
approximate decomposition of order 2 and length kn + 1, if we introduce the
additional quantities

(6.2)
Ui, O, Vi, E Vi,] for all =< k,

]<n

Uk,] E Uid, l)k, 0 for all / -<_ n.
i<k

Then we obtain (by cancellation of all e-terms)

(6.3)
(ai + euij)(bi + elAij)(e2cj, + w)- a b w

i=l j=l

2e (aibjci, + uidl.)i,]w @ O(e3).
i,j

Let us summarize and state that this result is sharp.
LEMMA 6.1. If k, n >- 2, and m k 1) n 1), then

r2((k, 1, n)(1, m, 1))= kn + 1.

Proof. By (6.3) and the observation that the border rank of any tensor which
describes q linearly independent bilinear forms cannot be less than q; here we have
q kn + 1 by counting the different results in (6.1).

The same argument shows rk(k, 1, n) >- kn. Since rk(k, 1, n) <- rk (k, 1, n) kn, we
get precisely rk(k, 1, n) kn, and by means of symmetry also rk(1, m, 1) rk(1, 1, m)
m, hence rk(k, 1, n) + rk(1, rn, 1) kn + m. Now we choose k 2, n > 2, rn n 1 and
obtain
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COROLLARY 6.2. For 3-dimensional tensors the border rank is only subadditive: the
difference rk(t’) + rk(t")- rk(t’ t") can assume any nonnegative integer value.

How can the bound in Lemma 6.1 be used for speeding up matrix multiplication?
Theorem 4.1 gives only o(F)=< 3 In (kn + 1)/ln (kn + m), worse than (5.9), but can we
do better by exploiting the additional feature of disjointness given here? An affirmative
answer will be given by our main result in Theorem 7.1. In order to motivate the rather
intricate analysis of 7, let us assume for the remainder of this section that the additivity
conjecture for the exact rank is true (there is no obvious way to infer something about it
from Corollary 6.2). Then we can derive a better bound in the following way.

Since and (R) behave distributively (cf. (1.12)), tensorial powers of disjoint sums
can be expressed by some kind of binomial expansion. By observing (1.5) we get

(6.4) ((k, 1, n)(1, m, 1))(R)s= + (s) (k,, mS_,n),
or--0 O"

where E) denotes multiple use of . Then Lemma 6.1 and the inequalities (2.5), (2.11)
yield

rk(? (;)(D (k, m-, n}) <-_ (l + 2s)Z(kn + l).

At this point we use the additivity of rk, hence

(;)rk(k,m-,n)<-(l+2s)2(kn+l).
o’=0

Next we apply (1.11) rewritten as

(KMN)’/3 <- rk(K, M, N) for all K, M, N

and obtain

i (S)(kn)’’/3.m
o----0 O"

(s-)o,/3 <= (1 + 2s)2(kn + 1),
(kn)’/3+m’/3<=(1 +2s)2/(kn + 1).

Finally s m proves the next theorem.
THEOREM 6.3. Assume that the additivity conjecture for the exact rank is true. Then

o (F) <= 3a, where

(6.5) (kn)" +((k- 1)(n 1)) kn + 1.

As announced, the same bound will be obtained in the next section without any
unproved hypothesis. It is a remarkable fact that the preceding argument has led to an
upper bound for the complexity of matrix multiplication though no algorithm has been
specified, not even implicitly.

Table 6.1 shows that k n 4, i.e., 16 + 9 17, gives the best bound w (F)=<
2.548. We have also tabulated the case r2((2, 1, 3)(1, 2, 1)) 7. Theorem 4.1 would
give nothing better than Strassen’s exponent h (7, 8), but here we get a considerably
smaller value due to disjointness.
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TA3LE 6.1.
Some exponents obtained from Theorem 6.3

k n kn m 3a

2 3 6 2 2.7341...
2 4 8 3 2.6657...
3 3 9 4 2.5938...
3 4 12 6 2.5653...
3 5 15 8 2.5614...
4 4 16 9 2.5479..
4 5 20 12 2.5486..
4 6 24 15 2.5543..
5 5 25 16 2.5506..
5 6 30 20 2.5568..
6 6 36 25 2.5629..
10 10 100 81 2.6119..

7. Multiple compression. Now we come to the following generalization of
Theorem 4.1, which gives better results whenever the partial matrix multiplication
splits up into several disjoint pieces, including also those cases where the pieces
themselves may be partial again.

THEOREM 7.1. Let tl, t2, tp be tensors of partial matrix multiplication with fg
ones in ti (1--<i<-p) and border rank rk(tt2. .tp)<-_l over the field F. Then the
exponent of matrix multiplication over F is bounded by to (F) <- 3a, where

(7.1) f? +f +...+fo l.

The proof is organized in two stages. Since at present the most favorable appli-
cations can be obtained from the special case in which all pieces are total, i.e.,

(7.2) ti (ki, mi, hi), fi kimini
we will first (in subsections 7.1-3) give a self-contained proof for this version. It is only
the extension to the case of partial pieces in 7.4 where we have to refer to the rather
involved proof methods of 4 (and for which again infinite F is assumed).

The special case p 1 is already covered by Theorem 4.1 (or by (1.11) in the total
case). Furthermore we can ignore the trivial case a 1. In view of rk(tl...O)tp)>= p
we therefore may assume

(7.3) f +rE +" "+fo > l>--p >-_2.

7.1. An iterative procedure. We start by describing a method for the approximate
computation of the solution a of the equation (7.1). Consider the function q defined on
0_-<r_-<l by

Since (7.3) implies f > 1 for some i, its derivative i greater than some positive constant,
say

(7.4) ’(r) N yo>0.

In view of o (0) In p/ln - 1 < (1) there exists a unique olution [0, 1) such
that ,() 1. Given any - > we have .’ > l; let 0 < 1 be such that (f;)0 l, i.e.,
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0= 1/(-). By the general inequality (Y.iui) <,iu for 0<1 and ui=f’[>=l we get
<,if’[, hence also z0 > a. This can be used for the construction of an iterative

algorithm.
LEMMA 7.2. The sequence 1 ’o, rl, z, recursively defined by

+=0, where 0= 1/(z)=ln I/ln(f),(7.5)

is strictly decreasing and converges to the solution a of (7.1).
Proof. Let zi a + 6 with 6 > 0. Then (7.4) yields (zi) 1 + To6 and we obtain

i+l--a=iOi--(7i--)=--i 1- 8-(a+8)1+7o8.

Hence zi a 8 implies

(7.6) zi+-a 8(1- 7a)-78,
with some constant ’]1 > 0. Since a -> 0, this proves convergence ’i - a at least in the
qualitative sense which will be sufficient for the final proof of Theorem 7.1 in 7.3,
where we will show to(F)-<_ 3-j for all by an induction argument.

Of course, a posteriori we then induce from to(F) ->_ 2 that, in all applications of the
theorem, a cannot be smaller than , hence (7.6) guarantees linear convergence. Thus
the recursion (7.5) represents a simple and numerically stable iterative procedure for
the computation of such a’s. In case of the equation 6 / 2 7 mentioned at the end of
6 we have, for instance, 3zo=3.0, 3z1=2.8073..., 3z2=2.7555 3,r3
2.7405..., etc.

7.2. How to use disjointness. By definition of rk and the assumptions of Theorem
7.1 there exists an integer c >_-0 such that (in the total case, see (7.2))"

rc((kl, m, n}(. .((kp, mp, no})<-_l.

The s-fold tensorial power can be expressed by a multinomial expansion similar to (6.4),
and Lemma 2.5 then yields

srs( ++Sl. s,"sl+
i,Hmi, n N

This inequality can be read as a statement about economic mass production. In order to
simplify the further analysis we restrict everything to just one product type by selecting
a particular partition s s +’" + sp. (An optimal choice of these parameters will be
discussed in 7.3.) Then we are left with E disjoint copies of (K, M, N), where

s!
(7.7) E= K=k[’, M=l-Im’, N=IIn s’.

Sl Sp!

Since t’ is always a subtensor of t’)t", Lemma 3.2 shows that the above bound
holds also for the restricted disjoint sum, i.e.,

(7.8) rcs(E 0 (K, M, N)) <- s.
By symmetrization and Lemma 2.5 we get

r3cs(E3 Q) (P, P, P)) <- 13s,
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where P KMN is given explicitly (see (7.2)) as

(7.9) P i-l fi ’.

Finally (2.11) yields

(7.10) rk(E3 (D (P, "P, P)) <= (1 + 3cs)2l3s.
Now we have arrived at the crucial point of the whole proof: Inequality (7.10) means
that it is possible to perform E3 disjoint multiplications of P x P matrices by not more
than (1 + 3cs)213s multiplications. Then this number of multiplications will also suffice to
carry out any sample of at most E3 multiplications of P x P matrices (this could be
proved in a formal way by introducing suitable homomorphisms). We could exploit this,
for instance, in one big multiplication of two EP x EP matrices, which certainly does not
require more than E3 block multiplications of size P x P, but as we already know
exponents smaller than 3 we should do better. The best we can achieve by such an
argument is the following assertion.

LEMMA 7.3. Let E and P be given by (7.7), (7.9). Then m*(qlF)<=E3 implies
m*(qPIF) <-(1 + 3cs)2l3s.

The idea is to use this result for the construction of better and better algorithms
recursively.

"/.3. The induction argument. Our goal is to prove to(F)-< 3-j by induction on j,
where we refer to the sequence of Lemma 7.2; for ] 0 this simply means to (F) -< 3. An
equivalent version of the induction hypothesis is

Prop (/’): For every r > ri there is a number No(r) such that

(7.11) m*(NIF) _-< N3" for all N >- No(r).

In order to prove Prop (j + 1) we consider an arbitrary -’> r/l ’fl and choose
r > r such that ’8i < r’, say - (-. + r’/O). These numbers are held fixed in the sequel.
Now consider any s >-2. By choosing the partition s s +... + s, used in 7.2 such
that (see (7.7), (7.9))

s!
EP ji

$1! Sp!

becomes maximal among all terms of the multinomial expansion of (,if) we obtain

p-1

With regard to Lemma 7.3 consider the maximal integer q with m*(qlF)<=E3.
Certainly m*(qlF)>E3, for otherwise q could be replaced by 2q. Large values of s
will induce large E’s and q’s such that q >-No(r) holds, and (7.11) may be used. Thus we
get q3r>E3, (qP)>1/2EP; this can be combined with (7.12) and the bound
m*(qPIF) < (1 + 3cs):Zl3 from Lemma 7.3 such that, after taking logarithms,

(7.13)
In m*(qPIF)

<=,
3s In + O(ln s)

In (qP) s In (Y.i/’)-O(ln s)

is obtained. For s oo the right-hand side tends to 3rOi (see (7.5)), and - was chosen suchthat 3-0i <3-’. Therefore we can choose some interpolating exponent /3, say fl
(rOi+r’), and specify some s sufficiently large such that (7.13) yields m*(qP[F) <-
(qP)O for the corresponding number qP. This finally implies m*(NIF) O(N), and in
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view of/3 <3z’ there is some No(r’)with m*(N[F)<-N3’ for N>=No(,r’). Hereby we
have finished the induction argument which completes the proof of Theorem 7.1 in the
case of total pieces.

7.4. Partial pieces. If the tensors tg describe arbitrary partial matrix multi-
plications, then we have to study the analogue of (3.6) for each fg. There are numbers
and kg,,, ng,, for 1 <_-/x -<_ mg counting variable-positions, such that

fi Y ki,gni,,.
=1

The tensorial power (t...t)(R) is a huge disjoint sum of partial matrix multi-
plication tensors t t (R) t (R). t, with multi-indices (1, , v)
{1, , p}. Observe that in general such partial tensor factors do not commute; t t2
and t2 t, for instance, need not show the same pattern of variable-positions.
Nevertheless we can again choose one partition s s +... + so and then select just
those products t with multi-indices (, , ) which, for each i, contain exactly s
of the ’s equal to i. The set F of such ’s has E s t/(s s ) elements, and each such
t contains exactly f fo ones.

Instead of the inequality (7.8) obtained in the total case we now get

(7.14) rc(r t) .
This bounds the number of multiplications necessary to perform (approximately) a
collection of E disjoint partial matrix multiplications AB. The distribution of the
variable-positions in these matrices A and B will usually depend on , but if we
choose (similar to (4.2)) p individual partitions

(7.15) s gi,1 +" + gi,m,, (1 p),

then for any F there are at least

P Si[
(7.16) M=

i= gi, gi.

columns in A each having K variable-positions, and corresponding rows in B each
having N variable-positions, where

P mi P

(7.17) K= ’ki,, N=
i=1 =1 i=1 =1

Therefore we can apply the compression argument of 4.2 to each of these pairs A,B
individually, thereby obtaining E disjoint total matrix multiplications UV of size
(K, M, N).

Correspondingly (7.14) yields

r.(E (K, M, N)) ,
which is now the same as (7.8), with other values for K, M, N, however. Hence the only
further point where our previous proof of Theorem 7.1 needs modification is the lower
bound for P KMN. As in 4.4 we choose the partitions (7.15) such that maximal
terms of the multinomial expansions of
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are obtained. Then (7.16) and (7.17) give

i= O’i,1 O’i, t

> H (f’/’+-kmi21 1)) fi (S + g)g,
i=1 i=

where g (rag- 1) is constant. Comparison with (7.9) shows that this can cause only
an extra factor (s + g)gzi in the denominator of the right-hand side of (7.12), which does
not affect the further steps of our proof in 7.3 except for the increase of an O-term in
(7.3).

8. Further improvements. The theoretical insight gained so far is incomplete with
respect to the following points. We were unable to generalize Theorem 4.1 to the
evaluation of trace(ABC) in the case where A, B and C are partial, or equivalently, to
admit that matrix multiplication may be partial also in the sense that only some of the
elements of the product matrix are to be computed. Furthermore, there is an odd
discontinuity in passing from partialness to disjointness which became obvious in 6
with the example in Fig. 5.2’ border rank 13 for 19 ones in one partial tensor leads to
h (13, 19)= 2.613. , while setting b,x =0 (that is, application of a homomorphism)
gives two disjoint pieces with fx= 12, f:=6 and the bound (F)2.565... by
Theorem 7.1. This indicates that there must be some interpolating result.

Of course, the most provoking lack of knowledge still is about the true value of
(F), say for the field of rationals. As mentioned in the introduction, V. Pan was able to

derive the smaller bound (F)<2.522 by combining our Theorem 7.1 with his
techniques. In the remainder we present his design (which in particular is based upon [9,
Table 11.1]) in a modified version which has the advantage of working for all fields F
and which enables us toget some further tiny improvements.

Consider I x k matrices A, B,C k x n matrices X, Y, Z and n x I matrices U, V,
W. They can be used to set up three disjoint matrix multiplications as given by means of
the trilinear form

(8.1)
trace(A YW UBZ XVC)

(aiyi,iwi + uibizi,i + xi.ivici),

where summation now always runs over 1 k, 1 f n. The corresponding tensor is
(1, k,n)(n, 1, k)(k,n, 1). We hope the reader will appreciate the alphabetic
heuristics in our choice of letters and the abbreviations

a E ai, yi E yi.i, w E wi, etc.,

which are used to write down the rather formidable identity
12 4 6 5 4

e (a + e ui + e x,i)(b + e:v + e y,)(c + e3w + e z,i)

8 8 10 6D 7- E (a + e u + e x)( + e + e9y)(c + e w + e8z)
(8.)

4 8 12u 10) 11
-e E (a + e u)( + e6c)(c + ew) + (a + e )( + (c + w)

:o6 :x) :
e + e aivizi,i + O(e + (ne e E abici + (1 ne4)abc.

i,i
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18In order to cancel the unwanted e -terms we set up a second trilinear form 4’ of the
same kind, which involves the same matrices A, V, Z but now combined with new
matrices B, C, U, W, X, Y built up from other disjoint sets of variables. For

trace (AYW (- U)B(-Z) O)XVC)

the corresponding identity (8.2) will contain the e 8-terms with a minus sign, if the signs
of (-U) and (-Z) are properly observed. Thus addition yields a sum of 2(k + 1)(n + 1)
triads equal to the sum of the right-hand sides, which is

20(i/f 21) 12 8) 4)(8.3) e +g,)+O(e +(he -e Y.(a&c+aie)+(1-ne (abc+a?.).

Subtraction of another 2k + 2 triads finally shows that the trilinear form , + g, has
an approximate decomposition of order 20 and length 2(k + 1)(n +2). The cor-
responding tensor consists of three disjoint pieces

(8.4) tl (1, k, 2n), t2 (n, 2, k), t3 (2k, n, 1}

all having the same volume fl f2--f3 2kn.
Application of Theorem 7.1 now yields the equation 3(2kn) 2(k + 1)(n + 2).

The smallest a is attained for k 5, n 11; from 3 110 156 we obtain

(8.5) to(F) =< 3 In 52/ln 110 2.5218127 .
Although this bound happens to have the same shape as bounds derived from Theorem
4.1 we should keep in mind the iterated construction of algorithms in {} 7.3. The first
step (see (7.5)) would give only 3rl 2.612

Finally we want to point out that the bound (8.5) is certainly not the end of the
story. We give a sketchy argument (also of some interest in itself) which yields another
small improvement. Any sum of triads can be viewed as a homomorphic image of the
trilinear form belonging to the tensor (D (1, 1, 1), but in the case of the foregoing
construction we have a bit more information. The 2k +2 triads which had to be
subtracted from (8.3) are in the shape of the tensor (k + 1)(D (1, 1, 2). Given any
combination d E) (1, 1, 1)ff)e O (1, 1, 2), symmetrization generates the tensor

t* d3 (1, 1, 1)ff)(d2e) (3) ((1, 1, 2)03(1, 2, 1)ff)(2, 1, 1))
(8.6)

t(de2) O ((1, 2, 2)03(2, 1, 2)ff(2, 2, 1)))e30 (2, 2, 2).

Now the point is that Strassen’s bound rk(2, 2, 2) 7 causes a saving of e 3, hence
rk(t*)<-(d +2e)3-e 3. On the Other hand, symmetrization applied to (tl@t2@t3) will
generate a disjoint sum of 27 pieces all having the same volume (2kn)3. In the special
case k 5, n 11 used above we have d 144, e 6. Thus Theorem 7.1 finally yields
to(F) =< 3if, where 27(1103) 1563-63, hence ff <In 52/ln 110. Numerically we get
to (F) <= 2.5218006. .

Obviously, using higher tensorial powers of the tensor t* in (8.6) one can similarly
derive further improvements.
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A T= 0(2n/2), S= 0(2n/4) ALGORITHM FOR CERTAIN
NP-COMPLETE PROBLEMS*

RICHARD SCHROEPPELS" AND ADI SHAMIR/

Abstract. In this paper we develop a general-purpose algorithm that can solve a number of.NP-complete
problems in time T 0(2"/2) and space S O(2n/4). The algorithm can be generalized to a family of
algorithms whose time and space complexities are related by T. S O(2n). The problems it can handle are
characterized by a few decomposition axioms; they include knapsack problems, exact satisfiability problems,
set covering problems, etc. The new algorithm has considerable cryptanalytic significance, since it can break
knapsack-based cryptosystems with up to n 100 generators.

Key words. NP-complete problem, time/space tradeoff, knapsack problem, Merkle-Hellman cryp-
tosystem

1. Introduction. Every NP-complete problem can be solved in O(2n) time by
exhaustive search, but this complexity becomes prohibitive when n exceeds 40 or 50.
Assuming that NP P, we cannot hope to find algorithms whose worst-case complexity
is polynomial, but it is both theoretically interesting and practically important to
determine whether substantially faster algorithms exist. Researchers have so far
discovered a few special-purpose algorithms (most notably a T S O(2n/2) algorithm
for knapsacks by Horowitz and Sahni [1974] and a T O(2"/3), S O(n) algorithm for
cliques by Tarjan and Trojanowski [1977]), but no comprehensive theory of such
subexponential algorithms has been developed. In this paper we describe a general-
purpose algorithm which can solve a fair number of NP-complete problems (including
knapsack, partition, exact satisfiability, set covering, hitting set, disjoint domination in
graphs, etc.) in time and space complexities which are related by the tradeoff curve
T S2= O(2) for II(2/2) _<- T _-< O(2). The novel properties of this algorithm are’

(i) The time/space complexities of the algorithm are considerably better than
those of all the algorithms published so far for these problems. Furthermore, the
algorithm is completely practical in the sense that it is easy to program and its overhead
is small, and thus it can handle problems which are almost twice as big as those handled
by previous algorithms.

(ii) The algorithm demonstrates an interesting tradeoff between time and space--
in order to decrease time by a factor c, it is enough to increase space by a factor of
sqrt (c). Since space is much more expensive than time, this tradeoff has very favorable
economics.

(iii) The problems to which the algorithm can be applied are characterized
axiomatically by their behavior under composition. This approach introduces a natural
subclassification of NP-complete problems and indicates how a problem-independent
theory of subexponential algorithms may be constructed.

One of the most important applications of the new algorithm is in cryptanalysis,
since many of the new public-key cryptosystems are based on large NP-complete
problems (Diffie and Hellman [1976]). With current technology, the practical limit on
the number of operations a cryptanalyst can perform is between 250 and 260 (a parallel
computer with 1000 processors whose cycle time is one microsecond performs 250

* Received by the editors January 22, 1980.
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Throughout this paper, we ignore polynomial multiplicative factors in the O-notation of exponential
functions. These factors are usually of degree 0 or 1, and their practical effect is very small.
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operations in about two weeks), and the practical limit on the number of memory cells
he can use is between 225 and 23. By choosing the point T O(2n/2) and S 0(2"/4) on
the time/space tradeoff curve, instances with n up to 100 are within reach, and thus the
new algorithm can break all the knapsack-based cryptosystems recommended so far in
the literature (e.g., Merkle and Hellman [1978]). This cryptanalytic attack can be foiled
by increasing the minimum recommended size from n 100 to n 200 (at the expense
of tripling the key size and the encryption time), but it is a clear warning against
overconfidence and narrow safety margins in public-key cryptosystems.

The problems our algorithm can handle are described in 2. A T 0(2n/2),
S 0(2"/4) algorithm is presented in 3. In 4 we generalize this algorithm to a family
of algorithms whose time and space complexities are related by the T. S= O(2")
tradeoff curve.

2. A calculus oi problems. To make our basic algorithm as versatile as possible
and to expose the minimum conditions that guarantee its correctness, we define the
notion of a problem in a fairly abstract way.

DEFINITION. A problem ofsize n is a predicate P over n-bit binary strings. A string
x is a solution (or a witness) of the problem if P(x) is true. The goal is to find one such x, if
it exists.

Example. The predicate of the knapsack problem "is there a bit string XIX2X3X4X5
such that Xl 7 /x2" 3+X3 9+X4’ 6+X5 2 117" is of size 5, and its solutions are
01011 and 00101.

Remark. The size IP] of a problem P is defined as the number of bits in its solution
rather than the number of bits in its description, since the O(2) complexity of
exhaustive search (upon which we want to improve) is determined primarily by the size
of the solution space. However, to make our results strictly correct we have to assume
that these two measures are polynomially related, i.e., that we are not given huge
descriptions of problems with very few bits of unknowns.

One of the most useful algorithmic techniques for solving problems is divide-and-
conquer. Given a problem P, we decompose it into a number of subproblems (usually
two of half size each), solve them separately, and then combine their solutions. To
simplify the mathematical analysis of this process, we introduce the following operator.

DEFINITION. A binary operator on problems is a composition operator if
(i) it is additive: for all P’ and P", [P’@P"I IP’I + ]P"I;
(ii) it is sound: for any two solutions x’ of P’ and x" of P", the string concatenation2

x’x" is a solution of P’O)P";
(iii) it is complete: for any solution x of P and for any representation of x as

x x’x", there are problems P’ and P" such that x’ solves P’, x" solves P", and
P p, q)P";

(iv) it is polynomial: the problem P’O)P" can be calculated in time which is
polynomial in the sizes of P’ and P".

Intuitively, @ is sound if any two solutions of the subproblems P’ and P" can be
easily combined in order to get a solution for the original problem P, and complete if any
solution of P can be obtained in such a way"

{xlP(x)}= U {x’x"lP’(x’) and P"(x")}.
P’DP" P

A pair of problems P’, P" is said to be a decomposition of P if P’q)P" P; in general a
problem can have many possible decompositions. To solve P, we can try out all its
possible P’, P" decompositions until we find a pair of solvable subproblems. If P is

The string concatenation can be replaced by any other simple operation which is length-additive.
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solvable and is complete, these subproblems must exist, while if P is unsolvable and
is sound, these subproblems cannot exist (otherwise their concatenated solutions

would have solved P). There are many NP-complete problems for which composition
operators exist; the following examples are typical.

Example. Let (b, a 1," , an) be the knapsack problem in which the target value b
is to be represented as the sum of a subset of the generators ai. For any two problems
e’=(b’,a’,.., a)andP"=(b",a" ) P’ P" ",1,’’’ a wedefine =(b’+b a’,...,a,
a" .., )x," a (i.e. we add the b’s and concatenate the ai s) We claim that this is a
composition operator:

(i) ) is additive, since the number of generators in P’ P" is by definition the sum
of the corresponding numbers in P’ and P".

(ii) @ is sound, since ti=l xiai’ b’ and "i-1- xittai" b" imply that 2i=ll+m xiai--
b’+b" (where the xi are the bits of x’x" and the ai are the generators in
p’@e").

(iii) @ is complete, since for each x x’x" su,ch that Ix’l I? [x"l m, a,nd YI’xiai
b, there are b’ and b" such that x satisfies ,i=lxiai--b, X" satisfies
-,l+rn

a b"Z,i=t+x x and the sum of these two subproblems is the original problem
(b,a, ,a+,,).

(iv) 9 is polynomial, since the only operations involved are numeric addition and
list concatenation.

Example. Let F be a formula in CNF (i.e., a conjunction of clauses which are
disjunctions of literals which are variables xi or their negations ). The satisIiability
problem is to find a truth-value assignment to the variables which makes at least one
literal in each clause true. To decompose this problem, we can partition the list of
variables into two complementary sublists, and try to satisfy by the two partial
assignments two sets of clauses whose union contains all the clauses. In this generalized
formulation, each subproblem corresponds to a sublist of variables and a subset of
clauses in F, and the operator concatenates the sublists (if they are consecutive) and
unions the subsets in P’ and P". This operator is clearly additive and polynomial. It is
sound since by definition P’P" is satisfied by the concatenation of any pair of
assignments that satisfy P’ and P", and it is complete since for any x that solves P we can
use the clauses which are actually satisfied by the prefix and suffix of x to define the
appropriate P’, P" decomposition.

The relationship between problems (especially NP-complete problems) and their
solutions is often asymmetric, since it may be much harder to find a solution for a given
problem than to find a problem which is solved by a given solution. This motivates the
following definition.

DEFINITION. A set of problems is polynomially enumerable if there is a polynomial
time algorithm which finds for each bit string x the subset of problems which are solved
byx.

Examples. (i) The set of all knapsack problems is not polynomially enumerable
since for each x there are infinitely many knapsack problems which are solved by x.

(ii) The set of knapsack problems with a fixed set of a generators (but varying
target values b) is polynomially enumerable, since for each x there is exactly one b such
that b Y.=x xa, and this b can be easily calculated.

(iii) The set of (generalized) satisfiability problems with a fixed formula F is
polynomially enumerable, since the subset of clauses which are satisfied by the
truth-value assignment x is uniquely defined and can be found by simple evaluation.

If a set of problems is polynomially enumerable, then all its solvable instances of
size n can be tabulated (as problem/solution pairs) in 0(2") time and space. Again,



AN ALGORITHM FOR CERTAIN NP-COMPLETE PROBLEMS 459

there are many NP-complete problems whose sets of subproblems are polynomially
enumerable, and they have the curious property that it is almost as difficult to solve a
single instance of size n as it is to solve all the instances of size n--in both cases we have
to enumerate all the possible n-bit solutions.

The most restrictive and least intuitive condition we impose on problems is the
following.

DEFINITION. A composition operator is monotonic if the problems of each size
can be totally ordered in such a way that behaves monotonically: IP’I le"l and
P’ < P" imply that P’P<P" P and PP’ <PP".

Using this notion, we can state the main result of this paper (which is proved in the
next section).

THEOREM 1. If a set ofproblems is polynomially enumerable and has a monotonic
composition operator, then its instances of size n can be solved in time T O(2n/2) and
space S O(2n/4).

Example. The operator on knapsack problems is monotonic if we order
them lexicographically, since (b’,a’,... ,a)<(b",a’,... ,a’) implies that b’+
b, a’,. , a, al," ", a,,,) < (b"+ b, a’,. ., a’[, al," am) and (b + b’, al," ", a,,,
a[,.. , a) < (b + b", a,..., a,,,, a,. ., a[’). (Note that this operator is not
monotonic if P’ and P" are allowed to be of different sizes.) Consequently, our
algorithm can solve knapsack problems.

Composition operators based on set unions are usually nonmonotonic, but they
become monotonic if we replace the set unions by multiset unions:

LEMMA 2. (i) If [SI >-- 3, then the subsets ofS cannot be totally ordered in a way that
makes the set union operator monotonic.

(ii) If S is denumerable, then the multisubsets of S with finite multiplicities can be
totally ordered in a way that makes the multiset union operator monotonic.

Proof. (i) Suppose that such an order exists. Without loss of generality, we can
assume that for a, b, c, S, {a} < {b} < {c}. By taking the set unions of these singletons
with {a, c} and by using the monotonicity of t.J, we get

{a} LI {a, c}< {b} {a, c}< (c} t.J {a, c};

this evaluates to

{a,c}<{a,b,c}<{a,c},

which is a contradiction.
(ii) Let S be {a, a2,...}. The multisubsets of S with finite multiplicities can be

represented by semi-infinite vectors of multiplicities (n, na,...) in which each ni
represents the number of occurrences of a. In this representation, multiset union is
simply a componentwise addition of multiplicity vectors, and it is clearly a monotonic
operator if we order the vectors lexicographically.

Example. By part (i) of the lemma, the (generalized) satisfiability problems cannot
be totally ordered in a way that makes the operator monotonic, and thus our
algorithm cannot be used to solve them.

Example. The exact satisfiability problem is similar to the satisfiability problem,
except that we want to satisfy exactly one literal in each clause. Its subproblems consist
of sublists of variables and multisets of clauses, and the multiplicity of each clause
indicates how many literals are satisfied in it (e.g., the original problem corresponds to
the multiset (1, 1,..., 1, 0, 0,...)). By part (ii) of the lemma, the composition
operator that concatenates the sublists and adds the multiplicities is monotonic, and
thus we can apply our algorithm to this variant of the satisfiability problem.
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We leave it as an exercise for the reader to verify that all the NP-complete
problems listed in the introduction have monotonic composition operators. This list is
not exhaustive, and it is easy to come up with additional examples.

3. The algorithm. The algorithm uses the soundness and completeness of in
order to reduce the general problem to the following combinatorial search problem.

DEFINrrION. Given k problem/solution tables Ti with 0(2n/k) solvable problems
each, a monotonic composition operator , and a problem P, the k-table problem is to
determine whether there are k representatives Pi T such that P P103P2 03" O)Pk
(under a given parenthesization).

Example. To reduce a given knapsack problem P with n 3 rn generators a to the
3-table problem, we

(i) divide the generators into three sublists (al,""’, a,,), (a,,/,..., a2m) and
(a2,,/,""", a3m);

(ii) tabulate in T (i= 1,2, 3) all the O(2n/3) target values bi which can be
generated by summing a subset of the n/3 generators in the ith third of the
problem;

(iii) check whether the original target value b can be represented as b b + b2 + b3
for some bx Ta, b2 G T2, b3 T3;

(iv) concatenate the three solutions x tabulated for these b target values (if they
exist) in order to get a solution x XlXEX3 for the original problem.

Example. To reduce an exact satisfiability problem to the 4-table problem, we
divide the variable list into four quarters, enumerate for each quarter all the O(2"/4)
possible truth-value assignments, tabulate for each assignment the multiset of satisfied
clauses, and determine whether there are four multiplicity vectors in the four tables
whose sum is (1, 1,..... 1, 0, 0,...).

This general technique is a mixture of divide-and-conquer and dynamic pro-
grammingwe repeatedly divide problems into pairs of subproblems until we get.
k problems of sizes n/k each, and then finish by searching k problem/solution
tables. Since we do not assume that 03 is associative, we must fully parenthesize the
PIO)P2" "Pk sum to make it meaningful, but the completeness of 03 implies that
the solvability of this k-table problem does not depend on the parenthesis structure (i.e.,
we can choose the order that makes the search most efficient).

The obvious algorithm for the k-table problem is to try out all the O(2")
combinations of representatives from the k tables, and it is clearly optimal for k 1.
However, for k _>-2, better algorithms exist.

THEOREM 3. The 2-table problem can be solved in 0(2n/2) time and space.
Proof. Consider the following algorithm:
(1) Sort Ta into increasing problem order;

sort T2 into decreasing problem order.
(2) Repeat until either T1 or T2 becomes empty (in which case print "unsolvable"

and halt):
S first (T1))first (T2);
if S P print "solvable" and halt;
if S < P delete first (Tx) from T;
if S > P delete first (TE) from T2.

To prove the correctness of this algorithm, we have to show that whenever a
problem is deleted from Tx or Tz, it cannot possibly participate in any sum which equals
P (and thus the deletion cannot affect the correctness of the rest of the algorithm). Since
T2 is decreasing and is monotonic, first (Tx)0)PE-<_first (Tx)first (T2) for any
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Pz T2. Consequently, the left-hand side cannot be equal to P if the right-hand side is
smaller than P, and the deletion of first (T1) from T1 is justified. Similarly, P1 first
(T2)-> first (T1)first (T2)= $>P justifies the deletion of first (Tz) from T2.

The time complexity of the sorting step is 0(2"/2(n/2))= O(2"/2), and the time
complexity of the search step is O(ITxI/IT21)=O(2 since we delete at least one
element at each iteration.

Remark. This 2-table problem has been posed and solved by a number of authors
under various disguises (e.g., Knuth [1973, p. 9], Horowitz and Sahni [1974]). In the
rest of this paper we refer to this algorithm as the basic algorithm.

The basic algorithm can be easily extended to other values of k:
LEMMA 4. The 3-table problem can be solved in 0(22"/3) time and 0(2"/3) space.
Proo] For each one of the 0(2"/3) problemsP T, use the basic algorithm on the

Tz, T3 tables in order to find a solution for P=P(P@P3) in time O([Til)
O(2"3),

LZMMA 5. The 4-table problem with a nonbalanced parenthesis structure P
(P2(P3P4)) can be solved in 0(23"/4) time and 0(2"/4) space.

Proof. For each one of the 0(2"/4) problems P T1, solve the remaining 3-table
problem in O(IT[2) 0(2"/2) time.

All the time and space complexities considered so far satisfy the invariant relation
T. S’=O(2"), and thus improvements in the space complexity make the time
complexity worse by a similar factor. This trend is broken by the unexpected behavior of
the following case.

THZORZM 6. The 4-table problem with balanced parenthesis structure P=
(P ).P2)) (P3 J94) can be solved in 0(2"/2) time and 0(2"/4) space.

A direct application of the basic algorithm to the two 0(2"/2) supertables
generated by the (PaPz) and (P3P4) combinations leads to a T=$ =0(2"/2)
algorithm. However, the basic algorithm accesses the elements of the sorted supertables
sequentially, and thus there is no need to store all the possible combinations simul-
taneously in memory--all we need is the ability to generate them quickly (on-line, upon
request) in sorted order. To implement this key idea, we use two priority queues:

(i) O’ stores pairs of problems from T and T2, enables arbitrary insertions and
deletions to be done in logarithmic time, and makes the pair with the smallest Pa P2
sum accessible in constant time.

(ii) O" stores pairs of problems from T3 and T4, enables arbitrary insertions and
deletions to be done in logarithmic time, and makes the pairs with the largest P3P4
sum accessible in constant time.

Efficient heap implementations of priority queues are described in Aho, Hopcroft,
Ullman [1974].

The balanced 4-table algorithm.
(1) Sort T2 into increasing problem order;

sort T4 into decreasing problem order;
insert into O’ all the pairs (Pa, first (T2)) for P T;
insert into O" all the pairs (P3, first (T4)) for P3 T3.

(2) Repeat until either O’ or O" becomes empty (in which case print "unsolvable"
and halt):
(PI, Pz)- pair with smallest P1P2 sum in O’;
(P3, P4) pair with largest P3 P4 sum in O";
$ (ea P2)(P3P4)
if 5’ P print "solvable" and stop;
if$<P do
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delete (P1, Pz) from Q’;
if the successor P of P2 in T2 is defined,

insert (P1, P.) into Q’;
if S>P do

delete (P3, e4) from Q";
if the successor P of P4 in T4 is defined,

insert (P3, P) into Q".
LEMMA 7. The space complexity of this algorithm is 0(2n/4).
Proof. It is easy to show by induction that at each stage a Pa Tx can participate in

at most one pair in Q’, and a P3 T3 can participate in at most one pair in Q" (the
number of occurrences of P2 T2 and P4 T4 in Q’ and Q" can be higher). The space
complexity of the priority queues is thus bounded by o(Ir, I)= 0(2n/4).

LEMMA 8. The time complexity of this algorithm is 0(2"/2).
Proof. Each (P, P2) pair can be deleted from Q’ at most once, since it is never

reinserted into Q’. Similarly, each (P3, P4) pair can be deleted from Q" at most once. At
each iteration of step 2, one pair is deleted from Q’ or Q", and thus the number of
iterations cannot exceed the number of possible pairs, which is 0(2"/2). I-I

LEMMA 9. Q’ can become empty only after we consider all the possible (Px, P2) pairs
of problems from Tx, T2 (similarly for Q" and T3, T4).

Proof. Initially Px shares a pair in Q’ with the first element of T2. After each
deletion of a (Px, P2) pair we reinsert P1 together with the next larger element of T2, and
thus the only way Q’ can become empty is if each Px runs out of companions after a
complete first-to-last scan of T2. 1-1

LEMMA 10. The sums of the pairs extracted from Q’ are in nondecreasing sorted
order, and the sums of the pairs extracted from Q" are in nonincreasing sorted order.

Proof. The smallest (Px, P2) pair in Q’ is replaced by a (P1, P) pair whose sum is
larger (since T2 is sorted and is monotonic), and thus the sum of the next pair
extracted from Q’ cannot be smaller than Px P2. The proof for Q" is similar.

Proof of Theorem 6. Lemmas 7, 8, 9 and 10 reduce the 4-table algorithm to the
2-table algorithm whose correctness was proved in Theorem 3. V1

4. Time/space tradeotls.
LEMMA 11. ffa set ofproblems has a monotonic composition operator, then ]’or anyP

and P’ there is at most one P" such that P P’@P".
Proof. If P <P are two different solutions, we get P’@P P’@P which

contradicts the monotonicity of ) (note that [PTI IPl= IPI- IP’I). [3
DEFINITION. The complmentation operator is the partial binary operator

defined by

P"=PP’ iff P=P’O)P".

The problem P" is the complement of P’ with respect to P.
Example. Given two knapsack problems P=(b, ax,. ’,a,) and P’=

(b’, a ,..., a ), P@P’ is defined (as (b- b’, at+,’’’, a,))if and only if < n and for all
l <-i<l ai=ai.

Given two exact satisfiability problems P and P’, P@P’ is defined if and only if they
have the same CNF formula, the list of variables in P’ is a prefix of the list of variables in
P and the componentwise difference between their multiplicity vectors is nonnegative.

In all examples of monotonic 0) operators considered so far, the @ operator is easy
to compute in polynomial time (either directly or by a quick binary search on candidate
problems).
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THEOREM 12. LetQ be a polynomially enumerable set ofproblems with a monotonic
composition operator and a polynomial complementation operator, and let A be an
algorithm that solves these problems in O(2n) time and O(2n) space (for some
0 < a,/ < 1). Then the problems in Q can be solved in any timecombination along
the tradeoff curve T. S(1-)/ O(2"), f(2) -<_ -< O(2").

Proof. For each 0 _-< y <_- 1, let A be the following algorithm:
(1) Enumerate all the bit strings x’ of size (1-3,) n.
(2) For each x’ enumerate all the problems P’ which are solved by x’.
(3) For each P’, find its complement P" with respect to P; if it exists, use algorithm

A to solve it; if it is solvable, concatenate x’ with its solution x", print it out and halt.
Note that for 3’ 0, A0 reduces to a simple exhaustive search, while for 3’ 1, A

reduces to A. A slight technical difficulty is that for each n the set of usable values of 3’ is
discrete. However, for large values of n this set becomes essentially continuous.

The correctness of each A follows from the soundness and completeness of if) in
the usual way. The only new element is the unbalanced decomposition of P into
problems of sizes (l-y). n and y.n, but our definition of completeness is general
enough to handle this case.

Algorithm A is applied at step 3 to a problem of size y.n and thus its time
complexity is O(2v’) and its space complexity is O(2rn). Step 2 multiplies the time
complexity by a polynomial factor, and step 1 multiplies it further by O(2(x-v)"). The
overall time complexity of Av is thus Tv O(2(v-+) and its space complexity is

S O(2).
To find the invariant relation satisfied by the time/space complexities of all the Av

algorithms, we use linear algebra in order to eliminate 3"

T. S(-)/ O(2(v-v+)) O(2vncx-)/a)
O(2(/-v+l)n

=0(2").

THEOREM 13. If a polynomially enumerable set of problems has a monotonic
composition operator and a polynomial complementation operator, then its instances of
size n can be solved in any time/space combination along the tradeoff curve T. S2=
O(2"), I1(2"/2) _-< T _-< O(2").

Proof. By Theorem 6, there exists an algorithm A with time complexity T
O(2n/2) and space complexity S 0(2n/4). By substituting a =1/2 and/3 =1/4 into the
general formula, we get the tradeoff curve T. S2= O(2"). l-I

While we conjecture that T O(2"/2) is optimal for all the k-table problems, we do
not have any reason to believe that S 0(2n/4) is optimal. If S can be reduced to
S 0(2n/6) or S 0(2n/8) without worsening T, we can get even better tradeoff curves
such as T. S3= 0(2") or T. S4"- O(2").

5. Open problems for further research.
(i) Are there other axiomatically characterizable subsets of NP-complete prob-

lems which can be solved in o(2") time?
(ii) Can we use other properties of if) (besides monotonicity) in order to reduce the

complexity of the k-table problem?
(iii) What are the best search strategies for k > 4 tables?
(iv) Is T f(2"/:) a lower bound for all k ?
(v) Is there an algorithm with T 0(2/:) but S o(2/4)?
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(vi) Are there easy ways to determine whether a set of problems has a monotonic
composition operator?
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PARALLEL SORTING WITH CONSTANT TIME
FOR COMPARISONS*

ROLAND H/GGKVIST’ AND PAVOL HELL’:

Abstract. We prove that there exist graphs with n vertices and at most 2n 5/3 log n edges for which every
acyclic orientation has in its transitive closure at least (.)- 10n 5/3 arcs. We conclude that with 2n 5/3 log n
parallel processors n items may be sorted with all comparisons arranged in two time intervals. We also show
that n/2 processors are not sufficient to achieve the same end. These results are extended to parallel sorting
in k time intervals, and related to other work on parallel sorting. The existence of sorting algorithms achieving
the bounds is proved by nonconstructive methods. (The constants quoted in the abstract are somewhat
improved in the paper.)

Key words, graph, acyclic orientation, transitive closure, sorting, parallel algorithm

1. Motivation and informal statement of the problem. Consider a game of the
following variety. Player 1 chooses a linear order on the set {1, 2, .., n} and player 2 is
to discover this order by making as few binary comparisons as possible, i.e., by asking
player 1 the smallest number of questions of the type "is </’?". (Player 1 must answer
truthfully.)

There are several alternate rules for such a game. Player 2 may be required to
formulate all the questions in advance. In this case the only strategy player 2 can adopt is
to ask all () questions. If the comparison "is </’?" has not been explicitly made, player
2 would be unable to decide which of the elements i, j is larger, in case player 1 had
chosen a linear order in which and/" are consecutive. In the other extreme, player 2
may be allowed to formulate each question separately, on the basis of all previous
answers. This is, of course, precisely the case of sorting by binary comparisons,
[1], [4], [5]. Player 1 is "nature" and player 2 is a computer programmed to sort an
arbitrary n-element linearly ordered set. In other words, a strategy for player 2 is a
sorting algorithm. It is well known [4], [5] that the best strategy player 2 can adopt will
guarantee the completion of the sorting after fewer than n log n comparisons.

We are interested in games that lie between these two extremes. A positive integer
k is given, and player 2 must complete the sorting (i.e., discover the linear order chosen
by player 1) in k rounds. Within each round a set of questions is formulated on the basis
of the answers to questions of all previous rounds; all comparisons within a round are
made together. We note that for k 1 this game is identical to our first example, and for
k > n log n it coincides with the second example.

In practice, sorting of a large set on a computer is typically done as in our second
example, i.e., formulating each question on the basis of all previous answers. This is
impractical when, say, the comparisons are being performed by correspondence. Such a
situation arises, for example, in testing consumer preferences [7]. Our game (with a
fairly small k) is a better model of the situation. Several questions are formulated
simultaneously and the resulting questionnaire is evaluated by the subject; on the basis
of the answers a new set of questions is formed.

When a set is being sorted by several parallel processors, the comparisons are also
arranged in rounds, consisting of all comparisons performed by the processors during
one time interval. Consider the following model of a multiprocessor computer. Within

* Received by the editors March 21, 1980, and in revised form July 28, 1980.
5" University College, Department of Mathematics, Rutgers University, New Brunswick, NJ 08903.
t The work of this author was supported in part by the National Science Foundation under grant MCS
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one time interval, each processor is capable of completing one binary comparison. One
item may take part in several comparisons during the same time interval. At the
beginning of the interval, comparisons are assigned to processors, and at the end of the
interval, the results of all these comparisons are known. (There are no restrictions on
communication among the processors.)

Clearly, with m =() processors, the sorting can be arranged so that all
comparisons are completed in one time interval--simply assign each of the (.)
comparisons to a different processor. Moreover, it is easy to see that this cannot be
accomplished with m < (.) processors; cf. 1. Our results may be interpreted in this
spirit--we estimate the number of processors necessary to sort n items so that all
comparisons are completed in k time intervals. We shall do this in 6. It should be
emphasized that we are only concerned with the cost of making comparisons, and our
model ignores many important costs connected with storage, movement of data,
deciding on the next comparisons, etc. Nevertheless, the negative results are valid in any
model of parallel sorting by binary comparisons, and the positive results, in addition to
their theoretical interest, may have practical implications in situations where the cost of
performing a comparison dominates all other costs.

We shall call a strategy for player 2 in our game, a k-round sorting algorithm. We
shall show that with the best k-round sorting algorithm it may be necessary to ask as
many as C1" n 1/1/k questions. On the other hand, we shall prove that there exist
k-round sorting algorithms guaranteed to complete the sorting with C2" nk log n
questions, where a2--’-, a3 04 =, and lim ak In particular, there exists a
2-round sorting algorithm which never makes more than c (n) comparisons, where

C1 H
3/2 C(FI) C2"/,/5/3 log n.

(It is worth emphasizing that we do not exhibit such an algorithm.)

2. Definitions and notation. Let D be an acyclic digraph and G its underlying
graph; we shall refer to D as an acyclic orientation of G. The s,t-closure of D is the
symmetric closure (underlying graph) of the transitive closure of D. We denote the
s,t-closure of D by D*, and the complement of D* by/). Note that both/) and D* are
(undirected) graphs.

Let V be a set with n elements. Let G be a graph on V and < a linear order on V.
We denote by G< the digraph on V with the arcs {(i, j)’[i,/’] is an edge of G and < j}.
(If < is the order chosen by player 1, and the edges of G represent the questions asked
by player 2, then G< represents the answers given by player 1.) Note that each G< is an
acyclic digraph.

A tower on V is a sequence of acyclic digraphs Do, D1, ", Dt on V, such that each
Oi-1 is a subgraph of Di, 1, , t. (We intend Di to represent all the answers given
by player 1 by the end of the ith round.) A k-round algorithm for sorting V (k-round
sorting algorithm) is a mapping b which assigns to each tower (on V) Do, D1, , Dr,
with < k, a subgraph G 49(Do, D1,’" ,Dr) of/t. (Here G represents the set of
questions to be asked in the (t + 1)st round; since G is a subgraph of Dt, questions whose
answers can be deduced by transitivity are not asked.) A k-round algorithm b for
sorting V and a linear order < on V together determine a unique tower
Do, D1, , Dk on V as follows’

D0 (V, b),

D, Oi-1 U (oh(Do,..., Di-1))<, i=1,2,...,k.

The k-round sorting algorithm & is legitimate if, for any linear order <, the tower
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determined by b and < terminates with Dk for which D Kn. (Thus a legitimate
k-round sorting algorithm completes the sorting in k rounds; all comparisons have
either been made or deduced by transitivity.) It is easy to see that a k-round sorting
algorithm b is legitimate if and only if c(Do, D1," ", Dk-1)=/k-1 (cf. the argument
for k 1 described informally in 1). We shall assume that every k-round sorting
algorithm has this property, and will only define b for towers Do" , Dt with =< k 2.
Thus every algorithm is legitimate and we shall not state so explicitly.

The (worst case) complexity c() of a k-round sorting algorithm b is the maximum,
k-1

over all linear orders <, of the sum i--o e(4(Do,’", Di)), where Do,"’, Dk is the
tower determined by & and <, and e((Do,"’, Di)) is the number of edges of the
graph b (Do, , Di). Let c(k, n) be the minimum c(&) among all k-round algorithms b
for sorting a set of n elements. We have already observed that c (1, n) (.).

3. Auxiliary results. Throughout this paper log n logz n. Let a be a real number,
<a <2. Let N= (.), p [nE-a], q [n4-21, and r= [2n4a-61og n]. Note that
2p <=q, andpqr<-2n logn.

LEMMA. For each sufficiently large n, there exists a graph G with n vertices and pqr
edges, whose complement G does not contain Kp,q.

Proof. We shall show that the number A of (labeled) graphs with n vertices and pqr
edges, is greater than number B of (labeled) graphs with n vertices, pqr edges and Kp,q
in the complement (provided n is large enough).

Clearly, A (pqN3. Moreover, B <=,(N-pq]0pqr C, where C is the number of different
K.,q’S in Kn. Therefore,

A.C pqr N N-1 N-pqr+l / N \
)B -{N-pq] N-pq N-pq-1 N-pq-pqr+l N-pq

\ pqr /

1 N/pq] p2q2r/N

N/pq-1)
We observe the following facts:

N
(a) lim- pc/

Indeed,

N n2-n 1 3-5 1 n- 1
--_>-= -.n (n-l)>-.
pq 2n6-3 2 2 n

( 1)(b) lim 1+ =e>2.

2 2

(c) P q "r>(p+q) logn,
N

pqr

for all sufficiently large n. We have
2 2 2-c )2(n4-2a )2 n4O-6p .q .r>-(n -1 -1 (2 logn-1)

2n6-2 log n -o(n6-2 log n)

> r/6-2 log n
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for all large n. Hence

2 2 2(/p .q .r>n logn>

By (a), (b), (c)

On the other hand,

2q log n >_-N (p +q) log n

A.C
>2P2q2r/N> 2(O+q)logn= np+q
B

C=( n ).(p+q)=n.(n-1) (n-p-q+l)
P+q P p!q!

so that A > B.
Let Ptn denote the graph on {1,..., n} in which distinct vertices i, are adjacent if

and only if li -/’l =< t. We note that ptn has at most tn edges, and that each edge is entirely
contained within one of the [n/tl sets

{jr+ 1,jr+2,. ., (j + 2)t},

f=0, 1,..., [ J-2 and {n-2t+l,n-2t+2,. ,n}.

THEOREM 1. Let p2 <= q, and let G be a graph with n vertices whose complement
does not contain Kp.q. IfD is any acyclic orientation of G, then 1 Wis a subgraph ofp7,,q

for some set W offewer than 2n p/q vertices.

Proof. Since D is acyclic, we may assume that the vertex-set is V {1, , n} and
< j for any arc (i, j) of D. We shall identify a set W of vertices such that/- W is a

7qsubgraph of P,. Let Mi+l ={iq + 1, iq +2,..., (i + 1)q}, i_-->0, and let z [n/qJ. The
sets M1, M2, , Mz, M’z+ Mz+ f3 V form a partition of V.

First we shall study the structure of G. Any set of p vertices has (in G) more than
n -q neighbors. A vertex in Mi is good upwards (downwards), if it has, in G, at least p
neighbors in M+x UM+2 (in M_ U M-2). A vertex which is not good upwards
(downwards) is bad upwards (downwards). For <- z 2, the set Mi contains fewer than
p vertices which are bad upwards. Otherwise, some set S

_
Mi of p vertices bad upwards

would have fewer than p2__<q neighbors in M/lt.JM/2 and thus fewer than n-q
neighbors in G. A similar contradiction establishes that, for j >= 3, the set M., contains
fewer than p vertices bad downwards. Let W consist of all vertices bad upwards in
/=IM/ or bad downwards in LIZ+IM.j=8 Note that wl<(z 6) p/(z 6) p<

2n p/q.
Next we consider the s,t-closure D* of D. We claim that any two vertices

v, v’ V- W with v v’ > 7q are adjacent in D*. Clearly, v is a vertex of M. with j ->_ 8
and hence is good downwards; similarly, v’ is a vertex of M with -<_ z -6 and hence is
good upwards; furthermore, j-i>=7. Vertex v has (in G) at least p neighbors in
M._I U NI._2, which have (in G) more than (j-i-6)q neighbors in the’set M-3U
Mi+4 U ’M/’-4 _J M/’-3 (of (/’-i-5)q >= 2q elements). Vertex v’ has (in G) at least p
neighbors in Mi+ t.J M+2, which have more than (j-i-6)q neighbors in the same set
M+3 U U M-3. Consequently, there is a vertex u M+3 U U M/-3 adjacent in
G to a neighbor x M._I LI M_z of v M., and to a neighbor y Mi+ U Mi+z of v’ Mi.
Since v’ < y < u < x < v, v and v’ are adjacent in D*.

By taking complements we conclude that if v, v’ V- W satisfy v-v’> 7q, then
v, v’ are not adjacent in J0. Hence/- W is a subgraph of p7.
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COROLLARY. For each sufficiently large n, there exists a graph G with n vertices and
at most 2n 5/3 log n edges, such that for any acyclic orientation D of G, the transitive
closure old has at least (.)-10n 5/3 arcs.

Proof. Let a =- and let G be a graph whose existence is assured by the lemma.
Recall that pqr <= 2n log n. According to the theorem,/ W is a subgraph of pT,,, for
some W, [W] < 2n p/q. Hence 5 has fewer than

7qn +2n 2 -P< 10n 5/3

q

edges (for all large n), and the conclusion follows.
It should be clear from the above corollary that c(2, n) O(rt 5/3 log n). That fact

also follows from Theorem 2 in the next section. In fact, the corollary implies that, for
large n, c(2, n) _-< 3n 5/3 log n, and it is easy to see that the constant 3 may be replaced by
any C > 1. (One can take r [(1 + e/2)n 4’-6 log n in the statement of the lemma, thus
obtaining pqr <- (1 + e/2) n" log n moreover, 10n 5/3 < (e/2)n 5/3 log n, for large n.)

4. An upper bound on the complexity of k-round sorting. We define ak

(3 2-1 1)/(2 1), k-> 1. Note that c1 2, t2 35-, O3-" --, O4 =,23 and lim a =.
THEOREM 2. For any k >- 1, c(k, n)= O(n "k log n).
Proof. When k 1, c(1, n) (.) O(n1 log n) and we proceed by induction on k.

Let a c and let G be a graph whose existence is implied by the lemma. We shall
define a k-round algorithm for sorting the vertex-set V of G. First, define b (Do) G for
any Do. Second, to define c (Do, D1, , Dt) for 1 -< <- k 2, we let m be the smallest
integer such that V admits subsets W, V1, V2," ", V,, satisfying

(i) W is disjoint from V1, V2," ’, V,;
(ii) [WI -< 4n-"
(iii) [Vii- Iv21--," , -lEvi- 14q;
(iv) each edge of/)1 lies within some V/or is incident to a vertex of W.
By the induction hypothesis, there exists a (k 1)-round algorithm 6 for sorting a

set of 14q elements, with complexity c(6) O((14q) "k-1 log 14q) O(q- log q). We
define qb(Do, D1,’",Dt), l<=t<-k-2, to consist of all edges of the gr,aphs
4,(D[V.],’’’ ,D,[V.]), j= 1..., m. (Here Di[Vi] denotes the subdigraph of De
induced on V.) As observed earlier, &(Do, D1, ’, D-I) 5-1; for the purposes of
counting we not,e that the edge-set of b (D0, D1, , Dk-1) is a subset of the edge-set of
LI.%lD-l[V.]) together with the set {[w, v]" w W, v V}.

Consider the tower Do, D1, ,D determined by b and some linear order < on
V. Since Do=(V, ), D1 G< is an acyclic orientation of G, and by Theorem 1,
/1-W is a subgraph of p7,o for some W, [WI <2n(p/q)<_-4n -1. According to the
remark immediately preceding the statement of Theorem 1, V- W admits rn [n/7qJ
sets V, V2," , V,, satisfying (iii), (iv); furthermore, (i), (ii) are also satisfied. Hence,
the complexity of b is at most the sum of the number of edges of G, n/7q times the
complexity of , and the number of edges [w, v], w W, v s V. Thus

n
c(4)<-pqr +q O(q- logq)+4n-1 n O(n logn)

because pqr O(n log n) and

n
q-’ logq =<n

q
l+(4--2ck)(ak_l--1)

(Observe that 1 + (4 2c)(c_1 1) ak.)

(4- 2ca) log n O(n log n).
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5. A lower bound on the complexity of k-round sorting.
THEOREM 3. For any k >= 1, c(k, n)= lq(nl+l/k).
Proof. We shall show that, for any k ->_ 1 and all n,

1 l+l/k 1
c k, n)>--f n - n.

Clearly, c(1, n)=1/2nZ-1/2n, and we proceed by induction on k. Assume that some
k-round algorithm for sorting an n-element set V satisfies

1 l+a/k 1 1 1+1/-1 1
c()_-< n

2
n, whilec(k-l,s)>-- s

2
s

for all s. Let Do (V, ) and G (D0). Since G has fewer than (1/2+) n +1/

edges, its average degree is d -< [(1/2) nl/k]. Some induced subgraph G’ of G with at
1least 2n vertices has maximum degree A < 2d. (If every such G’ had A_>_ 2d, G would

contain more than n vertices of degree at least 2d, and the average degree would be
greater than n. 2d. (1/n)=d.) Thus A< [(1/2-a). n 1/] m, and G’ can be m-
colored. The color-classes $1, $2, ’, $, are disjoint independent subsets of G, with
1/2n <_- 2= [SI =< n. There exist linear orders on V in which, for all < ], any vertex of S
preceeds any vertex of S.. Let < be such an order, and let D1 G<. Then each $ is an
independent set in D*. Therefore, by the induction assumption, the complexity of
exceeds

Ex ISil 1+1/t’-
i=

1
ISi E Is,

2 i=1

=>2’m 2
n

1 l+l/k-1 -l/k-1>- n (2m)
1

1 1+1/k 1
_->- n

2
n,

contrary to our assumption on c(4).
COROLLARY. If G is a graph with n vertices and no more than n 3/2 n edges,

than there is an acyclic orientation D of G whose transitive closure has fewer than
() ( n 3/z 1/2. n) arcs.

6. Comments, To interpret our results for parallel sorting algorithms, we
consider, for example, the corollary of Theorem 3. Suppose that there is an algorithm
for multiprocessor sorting of an n-element set by binary comparisons which uses

3/2n -n processors and always terminates in two time intervals. The comparisons
performed during the first time interval define a graph G with n vertices and at most

-n edges; by the corollary, in the worst case, more than n3/- 1/2n comparisons
will remain to be made during the second time interval. We conclude that there is no
algorithm to sort n items by n3/- 1/2n parallel processors in two time intervals.

Valiant [8] investigated parallelism in comparison problems, and our model is
largely drawn from [8]. Valient uses Sort, (n) to denote the maximum number of time
intervals needed by the best algorithm to sort n items with m parallel processors. In the
spirit of the above example of two time intervals, we may interpret our results to imply
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that for
l+l/k

g/ n

Sort,, (n)> k; otherwise a parallel algorithm for sorting an n-element set with m
processors in k time intervals would yield a k-round sorting algorithm of complexity at
most ink, contrary to Theorem 3.

On the other hand, an algorithm for sorting an n-element set with m parallel
processors in two time intervals (by binary comparisons), is essentially a graph G (the
comparisons made during the first interval) with n vertices and at most m edges, such
that for any acyclic orientation D of G, the number of arcs in the transitive closure of D
is at least ()- m. Therefore, such an algorithm exists provided n is large enough and
m _>-2n5/3 log n; i.e., if m >-2n5/31ogn and n is sufficiently large, Sort,, (n)-<2. The
corollary to Theorem 1, which justifies the statement, also implies that the algorithm
results in approximately equal order of magnitude (except for the log term) of the
numbers of comparisons made in the first and second time intervals; thus we would be
making a relatively efficient use of the m processors. (Similar comments apply to sorting
in k time intervals; with a slight abuse of notation, Sort., (n)<=k provided m >=
O(n ’" log n), and the corresponding algorithms perform about the same number of
comparisons during each time interval; cf. Theorem 2 and its proof.)

Conversely, the results of [1], [6], [8] have an interpretation for c(k, n) with a
variable k. We state these without further discussion:

c (C log n, n) _-< n log2 n,

c(2 logn log log n +O(logn),n)<-n logn log log n,

c(n,n)<=logn.

c(k, n)>=n log n.

We have stressed earlier that we do not explicitly construct the multiprocessor
algorithms guaranteed to complete the sorting in k time intervals with the stated
number of processors (or the k-round sorting algorithms of the stated complexity). In all
such algorithms we use directly, or recursively, the graphs described in the lemma of 3.
A constructive proof of our bounds would require us to find a graph G with n vertices
and 2n 5/3 log n edges for which the transitive closure of each acyclic orientation has at
least (.)- 2n 5/3 log n arcs. We note that the proofs in 3 imply that a random graph G
with n vertices and 2n 5/3 log n edges (each such graph being chosen equally likely) has
the property that, with probability tending to 1, the transitive closure of each acyclic
orientation has at least (.)-10n 5/3 arcs. We paraphrase this by saying (somewhat
imprecisely) that the Random graph G will work. (In other words, assigning random
2n 5/3 log n comparisons to the processors will almost surely result in fewer than 10n 5/3

comparisons left for the second time interval.)
It is instructive to try to construct G when n is small. Every graph G with fewer

than 5 vertices admits a transitive orientation. The pentagon C5 admits an orientation in
which only one arc is implied by transitivity, i.e., it defines a 2-round algorithm for
sorting a 5-element set of complexity 9. The Petersen graph defines one of complexity
39. Taking balanced incomplete block designs and imposing the structure of G on each
block, these observations can be extended to higher n. For instance, for all sufficiently
large n 1 or 10 (mod 90), there is [9] a BIBD with k 10, )t 1, v n, and making
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each block a copy of the Peterson graph, we obtain a 2-round sorting algorithm of
39 [n’complexity 45t2). The contrast with Theorem 2 is obvious.

Addendum. Lately, we have considered other k-round problems for linearly
ordered sets [3]. In two rounds, both merging and selecting the ith smallest element (i
fixed) takes between Cn 4/3 and C’n4/3 comparisons; finding the median takes between
C n4/3 and C’. n 8/5 log n comparisons. We have extended these results to k rounds,
[3]. The merging and selection algorithms do not depend on the non-constructive
method, and we were able to use repeated merging to construct a sorting algorithm
which will sort a set of n items in k->3 rounds with O(n ;’) comparisons, where

23-lim c , 1 (Recall that lim Ck As a very rough illustration, in 50 rounds, n items
may be sorted with about O(n 11) comparisons. These results will be published at a later
date.

Bollobis and Rosenfeld [2], studied the problem of almost-sorting a set in one
round. That is, after the first round, all but o(n 2) pairs have had their order discovered.
Their results are independent of ours, and provide an interesting comparison with the
two-round sorting problem considered here.

Acknowledgments. We wish to acknowledge inspiring discussions with B. Als-
pach, D. Kirkpatrick, I. Rabinovitch, F. Roberts and M. Rosenfeld.
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A NEW APPROACH TO PLANAR POINT LOCATION*
FRANCO P. PREPARATA

Abstract. Given a planar straight line graph G with n vertices and a point P0, locating Po means to find
the region of the planar subdivision induced by G which contains P0. Recently, Lipton and Tarjan presented a
brilliant but extremely complex point location algorithm which runs in time O (log n) on a data structure using
O(n) storage. This paper presents a practical algorithm which runs in less than 6 [log2 n] comparisons on a

data structure which uses O(n log n) storage, in the worst case. The method rests crucially on a simple
partition of each edge of G into O (log n) segments.

Key words, computational geometry, analysis of algorithms, point location, planar graphs

1. Introduction. The problem of locating a point in a planar subdivisionmbriefly
called "point location"mis quite important in computational geometry and has
received considerable attention in the recent past. It is stated as follows" Given a
connected planar straight-line graph G on n vertices and a point P0, find which region of
the planar subdivision induced by G contains P0.

An early solution to this problem was proposed by Dobkin and Lipton [1], whose
location algorithm runs in time O(log n) on a data structure which uses O(n 2) space
and can be built in O(n 2) time. More recently Lee and Preparata [2] [3] developed an
O(log2 n) time location algorithm on a data structure constructed in O(n log n) time
and using O(n) space. Observing the trade-off between space/preprocessing on one
side and search time on the other, Shamos [4] raised the question of whether O(log n)
search time was achievable with less than quadratic storage. This issue was definitively
settled by Lipton and Tarjan [5] who showed that the point location problem--called by
them "triangle problem"Ncould be solved in O(log n) time on a data structure which
uses O(n) space and can be constructed in time O(n log n). Their brilliant method,
which is based on a theoretically far-reaching planar separator theorem [6], is, however,
algorithmically extremely complicated; to quote Lipton and Tarjan themselves,
". this algorithm [is not advocated] as a practical one, but its existence suggests that
there may be a practical algorithm with O(log n) time bound and O(n) space bound".

The result presented in this paper comes very close to providing a complete
substantiation of the above conjecture; specifically, we shall exhibit a practical point
location algorithm which runs in O(log n) time on a data structure, which can be
constructed in O(n log n) time, but which uses O(n log n) space rather than just O(n).2

Our method could be viewed as an evolution of the original technique of Dobkin
and Lipton [1], which we now briefly review. A horizontal line is drawn through each
vertex of G, thereby slicing the plane into horizontal strips called "slabs"; each slab
contains no vertex of G and is subdivided by the transversal edges into an ordered set of
O(n) regions. Point location is accomplished by first searching the horizontal lines to

* Received by the editors November 21, 1978, and in final form December, 1980. This work was
supported in part by the National Science Foundation under grants MCS76-17321 and MCS78-13642 and
the Joint Services Electronics Program under contract DAAB-07-72-C-0259.

" Coordinated Science Laboratory and Departments of Electrical Engineering and of Computer
Science, University of Illinois at Urbana, Urbana, Illinois 61801.

All logarithms in this paper are to the base 2.
Subsequent to the original writing of this paper, D. Kirkpatrick [17] found an entirely new point

location algorithm, with the same orders of complexity as Lipton-Tarjan’s. A careful analysis as to the
practicality of Kirkpatrick’s method, however, has to my knowledge not yet been done.
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locate a slab and next searching the segments crossing the slab to locate a region. Clearly
this search is carried out in O(log n) comparisons, but since an edge is partitioned by
O(n) horizontal lines, O(n 2) storage is used. In contrast, our method interleaves tests
against horizontal lines and tests against edges; thus it will not be necessary to
decompose the edges into O(n) portions. In particular, the method rests crucially on the
observation that each edge of G can Ire decomposed uniquely into O(log n) fragments.

2. Preliminaries. Let G (V, E) be a planar graph embedded in the plane. A
vertex v of G is a point of the plane given as a pair of coordinates x(v) and y(v), and an
edge of G is a straight line segment. Letting V {vl, , v,}, we assume that y(vl) -<

y(v2) =<" =< y(v,). (In the sequel we shall assume for simplicity that these ordinates
are distinct; the details of the general case are straightforward.) For additional
simplification, and without loss of generality, we may assume that y(vi) i; so, when we
say that the ordinate of a point u in the (x, y)-plane is we mean y(u)= y(vi).

The graph G is represented as a doubly-connected edge list (DCEL) [8], where each
edge e in E is described by a 6-field node (V1, V2, F1, F2, P1, P2), and: (i) the edge e is
directed from vertex V1 to vertex V2; (ii) F1 and F2 are the names of plane regions
(faces) lying to the right and to the left of the directed edge e, respectively; (iii) P1 and
P2 point, respectively, to the edges which follow V1V2 counterclockwise around V1
and V2 (Fig. 1). In this representation, clearly the counterclockwise sequence of edges

FIG. 1. Illustration of node of DCEL.

incident to a vertex and the clockwise sequence of edges bordering a face can each be
obtained in time proportional to their cardinality.

Our preliminary objective is to obtain from G a partial ordering relation < on E
defined as follows: for el, e2E, e <e2 means that there is a horizontal line l,
intersecting both e and e2 such that the intersection of with e is to the left of that with
e2. A topological sorting 5 of < will be called a consistent ordering of the edge of set E.
(For any horizontal line l, the left-to-right sequence of the edges intersected by is a
subsequence of 5.)

The relation < can be obtained by a procedure analogous to "regularization", as
described in [2]. This procedure maintains a representation of the intersections of a
horizontal line with the planar embedding of G (a left-to-right sequence of edges of G,
stored as a dictionary). The vertices of G are scannedmsay, in order of decreasing
ordinatemand, for each scanned vertex v, the horizontal intersection of G with the line
y y(v) is obtained, by updating the previous intersection in a straightforward manner
(by deleting the "upwards" edges and inserting the "downwards" edges issuing from v).
In addition, for each edge e inserted at this point two relation pairs, e’ < e and e < e", are
generated, where e’ and e" are respectively the (left) predecessor and (right) successor
of e in the updated intersection at y y(v)- (Fig. 2). In this fashion, all pairs defining the

e e"
e

FIG. 2. Pairs e’ < e and e < e" are contributed to the relation <.
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relation < are obtained; the running time is clearly O(n log n), since that is the time
used by the initial sorting of the vertex ordinates, and for each of the O(n) edges of G
we have a bounded number of dictionary operations, each costing time O(log n).3 Note
also that the relation < can be defined (and is correctly found by the above procedure) in
a more general case than that of rectilinear edge planar embeddings, that is, as long as
each embedded edge is intersected at most once by an arbitrary horizontal line (for an
application of this remark, see 6).

Once < is available, the consistent ordering can be obtained in time O(n) by a
standard topological sorting technique (see [16 p. 262]). One such consistent ordering
of a graph given in Fig. 3a is shown by labeling each edge with its index in the list .

12
5

11

10

9

8 26

7

6

5

4

Ordinates (a) (b)

FIG. 3. (a) A graph G and a corresponding consistent ordering (indices in are shown as labels); (b) edge
segmentation as induced by the segment tree T(1, 12).

3. Definition and construction of the search structure. We now describe the search
data structure (a tree) which can be produced for graph G. In the construction of
we shall make use of the list previously obtained, and of an auxiliary structure, a
"segment tree", which we now recall. A segment tree T(a, b [9], [10], for an integer
interval [a, b] (a < b), consists of a root v with B[v a, E[v ] b, and, if b a > 1, of a
left subtree T(a, [(a + b)/2]) and a right subtree T([(a + b)/2], b), pointed to respec-
tively by LSON [v] and RSON Iv]; if b a 1, then LSON Iv] RSON Iv] A. In Fig.
4 we illustrate the tree T(1, 12), where each node is labeled with the pair (B[v], Ely]).
We now explicitly recall how an interval [i,/’] (i <]) can be segmented into O(log n)
fragments by means of a segment tree. Let l(i, ]) be the node u of T(a, b) with B[u]
and such that E[u]<=] be maximum; similarly, let r(i, ]) be the node v of T(a, b) with
E[v]=] and such that B[v]>-i be minimum. Let Pt and Pr be the sets of nodes on the
paths from the root of T to l(i, j) and r(i, ]), respectively (Fig. 4). It is easily seen that the
segmentation of the interval [i,/’] is given by the intervals associated with l(i, ]) and
r(i, ]), and with the right sons of Pt- Pr not in P, and the left sons of P,-P not in P,.
Since T(a, b) is nearly balanced and has (n- 1) leaves, it follows that each edge is
segmented into O(log n) pieces. If we segment each edge of G by partitioning the

In the special case when the graph G is a triangulation, the relation < is readily obtained as follows:
each triangle contributes two pairs to < and < is completely described by this set of pairs.
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2(7,11) r(711)

FIG 4. Illustration of the segment tree T(1, 12). Shown are also /(7, 11), r(7, 11), Pt, Pr and the
segmentation of [7, 11] (boldface nodes).

y-interval defined by the ordinates of its extremes, tree T(1, 12) (Fig. 4) induces on the
given G the segmentation shown in the Fig. 3b.

In the sequel, we let T(1, n). For a node v of 5F, we let M[v] =
[(B[v]+E[v])/2J, and call slab (v) the plane strip comprised between y =B[v] and
y E[v]; a segment e, with extreme ordinate r and s(r < s), is said to span slab (v) if
r B[v] and s Ely]; slab (vl) and slab (v2) are said to be companion if Vl and v2 are
siblings in 5F. Notice that a segment spans a given slab if and only if the edge to which it
belongs has one extreme in the companion slab.

In we have two types of nodes, with different graphical representations" V, a
V-node or "horizontal node", is associated with a horizontal line and has an ordinate
Y[. as discriminator; O, an O-node or "segment node", is associated with a straight-
line segment e and has as a discriminator a linear function f[e] of x and y such that
f[e] 0 is the equation of the line containing e. A subtree of whose root is a V-node is
briefly called a V-tree.

Each call of the algorithm which constructs processes one slab. Specifically, for
some node v in , it accepts the left-to-right sequences S of the segments which either
span or are contained in slab (v) and organizes them in a search tree. This is done by
recursively processing all the segments in S which are inside the trapeze lying between
two consecutive spanning segments (or the open trapezes lying respectively either to the
left of the first or to the right of the last spanning segments) and proceeding until S has
been completely scanned. Thus is built by TREE (5, root ()) where 5 is the
previously defined consistent ordering of the edges of G, structured as a queue, and
TREE (S, v) is the following recursive procedure (where S, $1, $2 and U are queues):4

procedure TREE (S, v)
1 begin if (S ) then U <- else S <- S2 <- U <-

2 while S do
3 begin e S
4 if((B[v]<B[e])or(E[e]<E[v]))then(*e does not span slab (v)*)
5 begin if B[e] < M[v] then Sx <:: e
6 if M[v]<E[e] then S2e

end (*queues Sx and $2 are being built*)

4 In compliance with fairly standard notation, "S <::" and "S" denote respectively the operations
"add to" and "remove from" a queue S [11].
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8
9

10
11
12

13

if ((B[e]<=B([v])) and [EEv]<-E[e])) or (S ) then
(*e either spans slab (v) or is last term in $*)

begin if ($1 U $2 # ) then (*the trapeze is nonempty*)
begin w new horizontal node of Y(

Y[w]M[v]
LTREE[w] TREE (S, LSON Iv])
RTREE[w] TREE(Sz, RSON [v])
(*the segments in a trapeze are organized
by joining together the structures
corresponding to companion slabs*)
Uw

end
14 U @:e

end
end

15 q/ BALANCE(U)
16 return o//

end

The procedure BALANCE, to be discussed in the next section, takes a sequence of
terms, which are either trees or segments, and arranges them in a conveniently balanced
tree.

We now analyze the performance of the procedure TREE with the exception of
that portion of the computational work done by BALANCE. It is convenient to charge
the work to the individual edges of G.

Specifically, we interpret the previously discussed segmentation as induced by
within the framework of the procedure TREE. The visit of each node of P U Pr in "(see discussion at the beginning of this section) corresponds to a subsequence of the
sequence of steps (3, 4, 5, 6, 14) in procedure TREE, which globally use time bounded
by a constant. Since there are O(n) edges in G (by Euler’s theorem on planar graphs)
and each edge--as we have just seenmis charged O(log n) work, the generation of all
"segment nodes" of uses work O(n log n), globally.

Turning now our attention to the V-nodes of , each such node is produced and
processed in steps 9 and 13, again using work bounded by a constant. We now exhibit a
simple argument to show that the number of V-nodes is O(n log n). Let l(v)= E[v]-
B[v] denote the width of slab (v), for some v e ; clearly /(v)-I is the number of
vertices of G contained in slab (v)..Notice that a V-node pertaining to slab (v) (steps 9-13
of TREE) is created if and only if $1U $2 , that is, there is at least one vertex in the
trapeze; thus there are at most (v)- 1 trapezes in slab (v); i.e., a V-node with Y M[v
can occur at most l(v)-1 times. It is therefore immediate that for each level of
if’--starting from the root--we have less than n V-nodes, and since ff has O(log n)
levels, the claim follows.

Thus we conclude that the total work used by the procedure TREE to produce the
tree , except for the work attributable to subroutine BALANCE, is O(n log n).

4. The BALANCE procedure: description and performance analysis. We have
just seen that has O(n log n).nodes. If were balanced, it would have depth
O(log n). However, there is no explicit provision in algorithm TREE to achieve
such property; as a matter of fact, the depth of critically depends on the subroutine
BALANCE. Indeed, suppose that in step 15 of TREE, the set U contains O(n) V-trees.
The increase in depth produced by BALANCE (U) could be O(log n), thereby
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resulting in an O(log2 n) depth for . However, we shall now describe a procedure
BALANCE which produces a global O(log n) depth . The procedure is based on the
following lemmas (the first of which is a variant of another lemma presented in [12]).

LEMMA 1. Let 4 al,a2 ap be a string with p > 1 and let the positive integer

lail denote the weight of ai; also, let 141 =Y7=1 lail and M =max= lail. Then for any
number M _-< m < I 1, the string eg can be algorithmically partitioned in time O(p) as
,S 621,S2d3324, SO that I421 <- m, 1131 <- m, and Is421 + Is431 > m.

Proof. Arrange the terms of 4 as the leaves of a balanced binary tree t(), and for
each node V of this tree t() compute the weight wl as ILEFTSON
IRIGHTSON (V)I; obviously IROOT (t())l I 1, if we trace a path from the root of
t(4) following at each node the branch of larger weight, the weights of the traversed
nodes form a decreasing sequence whose minimum is guaranteed to be no larger than
M. Thus there is a unique node V* on this path such that V*[ > m, ILEFTSON (V*)I
m, IRIGHTSON (V*)] <-m. We then let 42 := string of leaves of LEFTSON (V*),
s43 := string of leaves of RIGHTSON (V*), while 41 and 4 are the (possibly empty)
prefix and suffix of s4. The time bound O(p) is immediate.

In terms of our discussion in the preceding section, in any given slab a trapeze
betweeen two consecutive spanning segments is nonempty, i.e., it gives rise to a V-tree,
if and only if there is at least one vertex in its interior (an appropriately modified
statement holds for each of the two terminal open trapezes in the slab). Thus, for any
V-tree H we define its weight [HI as the number of vertices of G properly contained in
the plane trapeze associated with H; obviously, IHI--> 1.

We make at this point the simplifying assumption that (n 1) is a power of 2; the
details for the general case can be easily supplied, while this assumption greatly
simplifies the following discussion, since the width l(v) of slab (v), for any v in the
segment tree 3-, is itself a power of 2. A V-tree H pertains to slab (v) if and only if M[v
is the discriminator of the root of H; we define the level of H, level (H), as log (l(v)).

As we noted earlier, the argument U of the procedure BALANCE is a string of
segments and V-trees; specifically, U has the general form roHr rr-lHrT"r, where
the H’s are all nonempty ’-trees of identical level, and the r ’s are (possibly empty)
strings of segments. We define the weight IUI of U as [Ul=i= [Hi[, and level
(U) level(/-/i). If level (U) l, U is called an l-string. Below, the notation H q/’7q/"

means that the V-tree H is obtained by joining via a V-node a left subtree R’ and a right
subtree ".

LEMMA 2. Let U be an l-string and let R be the tree produced by BALANCE (U).
We claim

depth (a//) < log (n 1) + 2 log [UI + 3 level (U) + 1.

Proof. For simplicity, let 8(.)--a depth(. )-log (n-l). We make the following
inductive hypothesis:

P. If U is a j-string with [UI <K and j _-< l, then 8 (R) < 2 log UI + 3j + 1.
The induction can be started with j 1. In this case U pertains to a slab of width at most
2, whence Igl a. So g is of the form "toil’r1, where H 172 and 0/1 and 0/2 each
consists of. O(n) O-nodes. It follows that 6(-lli)<-O (i 1, 2); whence 6(H)_-< 1 and
6(?/) <_- 3 < 4 (see Fig. 5a).

To prove P, let U "roH’rx "rr-xHr’r,. with [U] K and ] I. Notice that depth
(Zx) _-< log (n 1) (i.e., 6(’ri) <-_ O, for 1 -<_ _-< r). The proof explicitly exhibits the procedure
BALANCE.

Step 1. If U consists of segments, then arrange them in a balanced tree of
O-nodes, else find in U tree Hs such that [Hs] max=lHi[.
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ro=-rt o
(o) (b)

FIG. 5. Illustration for the proof ofLemma 2.

3 (c) 4

Step 2. If [H]<K/2, apply Lemma 1 to U with m=K/2 and obtain
Ult U2t2U3t3U4, where tl, t2, t3 are segments and the U.’s are/-strings.
Apply the algorithm recursively to U to obtain a tree ’lli(i 1," ,4)
and structure the q/’s as in Fig. 5b.

Comment. By Lemma 1, lUll, [U3[ K/2 and u21 /lull >g/2, which implies
IUI/IUI<K/2, i.e., lull, IUI<K/2, By the inductive hypothesis, 8(q/a), 6(2),
(//3), 8(g4)<2 log (K/2)+ 31 + 1 2 log K + 31-1, whence clearly (Fig. 5b) (//) <

2 logK+3/+ 1.
Step 3. ([H,I>=K/2). In this case 07/ has the form UatlHst2U2, where tl, t2 are

segments and U, U2 are/-strings. Apply the algorithm recursively to U1
and U2 to obtain o?/a and ?/2, and structure a//,H, and ?/2 as in Fig. 5c
(where H ?/3V 0//4).

Comment. We distinguish two cases.
(1) ]H[<K. Since In l>-g/2, then lull, [U=I<-K/2, whence, by the inductive

hypothesis, (ql)<21oglUl+31+l<-21ogK+31-1 (i=1,2). As regards H, we
have H a//37?/4, with lull, since 3 and 04 are (/-1)-strings, we
have 3(a//3), 6(?14)<21ogK+3(l-1)+l=21ogK+31-2 and obviously 3(H)<
2 log K + 31- 1 (Fig. 5c).

(2) IH[ K. Again, H a//3XT//4. If lull, lull< K, then we argue as in case (2).
Suppose instead that, say, IU31=K (IUal-0). We then set H(t) a---H and U3-" U(/-1)"

denoting by H(i the heaviest term of U(i), if IH(i)[ K and the heavier of its subtrees
has also weight K, the corresponding (/’- 1)-string is defined as U(i-a). Thus we obtain a
sequence H(), H(-a), ,H( such that IHt)l-IH(t-l’ I  /l l-g and
IH(O)[ < K. It follows that U() is a p-string (p < l), which falls in the cases discussed
either in step 2 or in step 3 case (1) above, whence 8 (07/() < 2 log K + 3p + 1. Now notice
that5 8(q/(i)-6(?/(-)) <_- 3; thus, t(a//3) t((t-x)) <2 logK +3p+ 1 +3(l-I-p)
2 log K + 31- 2, thus extending the inductive hypothesis (Fig. 5c).

In conclusion we have"
THEOREM. The depth of the tree Y( is less than 6 log (n 1) 2.
Proof. If the root of Y( is a V-node, then Y q/xV //2 where U and U2 are/-strings,

with /=log(n-1)-I and lUll, IU2[ <= (n -1)/2. Thus by Lemma 2, depth (Yg)<
log (n-l)+2 log (n- 1)+3 log (n- 1)-4+ 1 6 log (n-l)-3. If the root of is an
O-node, then there is an edge in G spanning the slab [1, n ]. In this case G appears as
GtG2, where both G and G2 are graphs with no more than n vertices; G1 and G2 can
be structured into V-trees 1 and 2, respectively, of depth less than 6 log (n 1) 3, as
we have just seen. Thus depth () < 6 log (n 1) 2.

Indeed, it can be shown that 6(?/(i)- 6(q/i-1)) 1.
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When (n 1) is not a power of 2, it can be easily shown that 6 [log n is a (generous)
bound to depth (). The search tree for the graph of Fig. 3 is shown in Fig. 6.

FIG. 6. The search data structure for the graph o[ Fig. 3. Leaves with region identifiers are not
explicitly shown.

We now estimate the running time of BALANCE. If U contains r V-trees, the call
BALANCE (U) runs in time O(r log r), by a result of [13]. To estimate the number of
V-trees involved in balancing operations, we consider a tree yg(v) obtained from by
deleting and bypassing all O-nodes of ; i.e., (1) replace each O-node path between
two V-nodes by a single edge, and (2) delete each O-node path terminating in a O-node
leaf. The nodes of (v) are (V-nodes) of three types: regular, with two or more
"children"; singular, with just one child; leaves, with no child. Clearly (v) has at most
(n 2) leaves, since a leaf corresponds to a vertex of G; also, it is easy to realize that only
the children of regular nodes participate in the balancing process, and their number is
less than twice the number of leaves; i.e., it is O(n). Thus the global running time of
BALANCE is O(n log n).

5. Point location. To locate a point Po (x0, yo) in the planar subdivision induced
by G, we use as a binary search tree. With each O-node of which has one or no
descendant we append one or two leaves (Fig. 6), respectively, and with each such leaf
we associate the identifier of a plane region (bordering with the edge associated with the
parent O-node). The point location proceeds as follows: at each node V of we choose
a branch: if V is a V-node, by comparing y0 with Y[ V]; if V is an O-node, by testing the
sign of f(Xo, y0), where f(x, y) is the discriminant function of V. Thus we trace a unique
path from the root to a leaf, at which stage the point location is completed. By the
preceding discussion this process uses a number of comparisons bounded by the depth
of , i.e., 6 [log n ].

6. Comments and applications. As the previous analysis indicates, planar point
location is simply done in time O(log n) using a search structure which can be stored in
O(n log n) space. Specifically, less than 6 [log n comparisons are ever needed, although
the analysis which establishes the upper-bound on the depth of ’ is overly generous
and multiplicative constants for [log n substantially lower than 6 can be expected.

As to the storage requirement, the analysis refers to the case in which each of O(n)
edges is partitioned into O(log n) segments; this intuitively corresponds to a large
fraction of long edges, which presumably is not the average case; however, graphs can
be constructed for which this situation occurs. It is conceivable that the simple approach
presented in this paper could be further refined to achieve O(n) storage while
maintaining O(log n) search time.
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Notice that the described point location method is not restricted to triangulations,
nor to planar subdivisions induced by straight-line graphs. Indeed the straight-line
segments may be replaced by other curves if the following two properties hold: (i) the
curves are single-valued in one selected coordinate (say, y), and (ii) the discrimination
of a point with respect to any of the curves can be done in constant time. For example,
these conditions are clearly met by arcs of circles or of other conics, if they have no
horizontal tangent except possibly at their extremes. We can now mention two
applications of the given method. Both problems have recently received consideration
in the literature [14], [15].

1. Fixed-radius near neighbor searching. This problem involves finding all points of
a set F in the plane which are within some fixed radius r of a "query point" 14]. Bentley
and Maurer have recently proposedwamong other methodsma locus approach, which
consists in subdividing the plane into regions each of which is the locus of the points
within distance r from a given subset F’ of F (this region is clearly the intersection of all
the circles with radius r centered at the points in F’). Let F -{pl,’ ’, pn}, and let Ci
be the circle of radius r with center in pi E F. For each Ci, let ui and li be the two points
on the circle C with largest and smallest ordinates, respectively, and let I denote the
set of intersections of pairs of circles in {Cili-1,...,n}. If we define V A
I {uli 1,. , n}U{lili 1,. ., n}, the circumference of each Ci is partitioned into
a set of arcs which have properties (i) and (ii) given above. Therefore V is the vertex set
of a planar graph G whose edges are the arcs just described. To this planar graph
the method of this paper is applicable. Since Vl-IIl+l{ugli= 1,. , n}l+
I{lili- 1,..., n}l_-< 2(.)+ n + n n(n + 1), graph G is planar with O(n 2) vertices. Thus
fixed-radius near-neighbor searching can be solved in O(log n) time with a data
structure using O(n 2 log n) space and constructible in O(n 2 log n) time; in [14] the
latter two quantities are both O(r/3).

2. Maxima testing in three dimensions. For points u and v in three-dimensional
Euclidean space R3, u is said to dominate v if xu]>-x[v] (i 1, 2, 3). Given a finite set
F of points R3, u E F is a maximum of F if it is not dominated by any other point in F.
Suppose now that F is a set of maxima of F; testing a target point p for maximum in F
means to determine if there is at least a point u F which dominates p.

Letting IFI n, Bentley [15] solves this problem in O(log2 n) time on a search data
structure that is stored in O(n log n) space and is constructed in O(n log n) time. We
now show that the same storage and preprocessing time can be maintained while
reducing the test time to O(log n).

Let F {Ul, Un}, Let v be the point such that xi[v] min% xi[ug] (/" 1, 2, 3);
for convenience we may assume that v be the origin of 3, so that all points ofF lie in the
positive orthant 3+. Let M be the domain of points of 3+ dominated by ui F, and let
M tO ’=M. Consider now the surface of M and suppose it projected on one of the
coordinate planes, say (x 1, x2). This projection appears as a planar straight-line graph
G, each finite region of which is the projection of a portion of the surface of M, for some
(Fig. 7); it follows that if the (x, xz)-projection of the target point p falls in the region

of G associated with ui F, then the maxima testing reduces to comparing x3[p] with
x3[u]. Thus maxima testing is done via point-location in G. Notice now that G has two
edgesrespectively parallel to the x and x2 axes-issuing from the (xl, x2)-projection
of each u F. It is easy to realize that the point-location procedure can be applied to the
graph consisting of the n edges parallel to, say, the x2-axis, and the positive x2-axis itself
(see Fig. 7). Obviously the search data structure can be stored in O(n log n) space and is
constructible in O(n log n) time. Referring to the arguments of Bentley [15] shows that
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FIG. 7. Typical projection of the surface of M on the plane (xl, x2). The vertical edges are shown as
thick lines.

the time for worst-case maxima testing in k dimensions can be reduced from
O(logk-1 n) to O(logk-2 n) for k _-> 3.
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UNIFORM INTERPRETATIONS OF GRAMMAR FORMS*
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Abstract. Encouraged by positive experiences with so-called uniform-interpretations of L-forms, we
investigate in this paper a suitable analogous definition of uniform interpretations of grammar forms.
Concerning CF grammar forms it is shown that a rich variety of language families can be obtained. CF
grammar forms with a single variable are extensively examined both with regard to generative capacity
(including a characterization of subregular, sublinear and subfinite index families) and with regard to the
notion of goodness and badness. Concerning non-CF grammar forms it is shown that each of the families of
EOL-, ETOL-, matrix-, scattered context-, context sensitive, type 0-languages (and many others) can be
obtained by using interpretations of one form specific to this family.

Key words, grammar form, EOL form, Chomsky hierarchy, uniform interpretation, generative
capacity

1. Introduction. In the (albeit brief) history of grammar forms one important
problem raised in the initial paper of Cremers and Ginsburg [CG] has remained
unanswered. This problem can be formulated as"

Are there grammar form characterizations of the various well-known non-
context-free language families?

For example, are there grammar form characterizations of the ETOL or matrix
language families?

In [CG] and in [W] this question, under the g-interpretations of [CG], can be stated
in its original manner as:

Are there any g-grammatical families lying strictly between the context-free
and recursively enumerable language famileis?

It is conjectured that there are no such families, and some preliminary evidence to
support this conjecture is given in [MPSW]. Because of this conjecture many other
interpretation mechanisms were studied in [MPSW], and of these the s-interpretation
was singled out for particular study. It was demonstrated that this interpretation
mechanism, together with a further restriction upon it, indeed enabled many of the
sought-for language families to be generated.

However, these results, while pleasing, did not completely satisfy us. The major
reason for this fact was that the additional restriction, while simple, destroyed the
transitivity of interpretation. Hence when in [MSW3] the notion of a "constant
context" interpretation was discovered, it was felt this would also serve in the general
grammar form situation. While, unfortunately, this turned out not to be the case, our
investigations led to the interpretation mechanism discussed in this paper.

Under uniform interpretation, given a production

(1.1) A ABcB,

then

D DCaE

* Received by the editors March 13, 1979, and in revised form August 14, 1980. This work was partially
supported by the Natural Sciences and Engineering Research Council of Canada under grant A-7700, and by
the Austrian Federal Ministry for Science and Research.

5" Institut fiir Informationsverarbeitung, TU Graz, Steyrergasse 17, A-8010 Graz, Austria.
Department of Mathematics, University of Turku, SF-20500 Turku 50, Finland.
Unit for Computer Science, McMaster University, Hamilton, Ontario, L8S 4K1, Canada,

483



484 H.A. MAURER, A. SALOMAA, D. WOOD

is a uniform interpretation of (1.1), while

F - GHbNis not. A uniform interpretation is an s-interpretation with the further constraint that the
substitution be uniform upon all symbols appearing on both sides of a production.

Up until now uniform interpretations have only been studied for EOL forms (see
[MSW1] and [MSW4], where only terminals have been uniformly interpreted). We feel
that uniformly interpreting grammars is a natural mechanism" for example, in van
Wijngaarten two-level grammars a similar technique is used. Also in logic the notion of
a uniform substitution is widely applied.

The results given in the remainder of the paper serve to establish the viability of
uniform interpretations of general grammar forms. We show that there are grammar
forms whose families are the EOL, ETOL, matrix, scattered context and context-
sensitive language families, this is seen in 4. However, we obtain, for example, not
only the ETOL languages and the matrix languages but also many others of this ilk.
Hence, in particular, many of the controlled-context-free language families are
obtained.

In 3 we exhibit many nonreduction results and also exhibit a grammatical family
which is an anti-AFL. It is also shown that every s-interpretation family is a uniform
interpretation family and that the converse is not true.

In 5 forms with one variable are examined with regard to generative capacity, and
a characterization is given of when forms with a single variable generate families which
are subregular, sublinear and sub-finite-index. Two-variable sequential forms are also
studied, in which case it is shown how to obtain the context-free languages and the
recursively enumerable languages. Finally in 6 the notions of goodness and badness
for single variable forms are investigated.

We now turn in 2 to the basic terminology and notation used throughout the
paper.

2. Definitions. We first need the definition of general grammars used in this
paper.

We say G (V, E, P, S) is a general grammar if V is a finite alphabet, E _c V is a
finite terminal alphabet, V 5; is the nonterminal alphabet, P c_ V*(V E) V* x V* is a
finite set of productions and S in V-E is the sentence symbol. Productions are usually
written a /3. As usual we write alaa2 a lflt2 in G to mean, "aaa2 is rewritten by G
using the production a /3 in P", and this usage is extended to ::/ and =),* in the
standard manner. The language generated by G, denoted L(G), is defined as

L(G) {x: x in ,E* and S =) /x}.
We say G (V, E, P, S) is context-free if a /3 in P implies
We say L ___,v_,* is a context-free language if L =L(G) for some context-free

grammar G.
Let G (V, E, P, S) be a context-free grammar. We say a production A a is

recurrent (nonrecurrent) if a contains an A (a does not contain an A). Similarly we say A
in V-Y_, is recurrent (nonrecurrent) if A has a recurrent production (has no recurrent
production). A derivation in G

A+a
is nonrecurrent if no recurrent production is used in the derivation. We write this as

q-
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A production A --> a in P is separated if a is in * 12 (V )*. A context-free grammar is
separated if all its productions are separated.

A nonterminal A is said to be finite if the set {x: A ::>+x in E*} is finite; otherwise A
is said to be infinite. A context-free grammar is infinite if it is reduced and has an infinite
nonterminal; otherwise it is finite.

We now turn to the definition of a grammar form and its interpretations.
Let M, N

_
V*, where V is an alphabet;M-N denotes the set {a -/3: a inM and

/ in N}.
A disjoint finite letter substitution (dfl-substitution) tx defined on an alphabet V

satisfies the following properties"
(i) /x (X) is finite for each X in V.

(ii) /x (X) consists only of symbols.
(iii) /x (X) f)/x (Y) , for all X, r in V, X Y.
A general grammarform or context-free grammarform is a general grammar or a

context-free grammar, respectively.
DEFINITION. Let Gi (Vi, E, P, S), 1, 2, be two general grammar forms. We

say G1 is an interpretation of q2 modulo Ix, denoted G "<1G2(/.,), where /z is a
dfl-substitution on V2, if the following conditions hold:

(i) /x(A)___ Va-Y_,a, for all A in V2-E2.
(ii) /z(a)_ Y-.a, for all a in Y-.2.
(iii) P1 -/x (P2), where/z (P2) I,.J --/3 inP2 (O) -- ().
(iv) $1 is in/x(S2).
Note that/ has a well-defined inverse/x -1. If we replace (iii) by
(iii)’ P1 ---/x, (P2), where ,(P2) /x (P2) and a’ - fl’ is in/x, (P2) iff a’ XI" X,,

/3’=Y1... Yn and for all Xi, Y., l<-_i<-_m, l<-_<-n, I (Xi)=t.t (Y.)
implies Xi

then we say that G1 is a uniform interpretation of G2 modulo/z, denoted G1 <au G2(/x).
We often write simply G <:1G2 or G1 <% G2, when/x is understood.
In the literature, [GLMW], [MPSW] and [MSW5] for example, < is said to be a

strict interpretation. The notion of uniform interpretation for terminals was first intro-
duced in [MSW1]. Our uniform interpretation could in the terminology of [MSW1] be
called a weak uniform interpretation.

The family of general grammarforms obtained from a general grammar form G is
defined by

and the uniform family is defined by

Clearly u(G) (G) for all G.
The family of languages defined by a general grammar form G is

(O) {L(G’): O’ <a O},

and the uniform family is

&’u(O) {L(O’): O’ <, O}.

Clearly u(G)
_
(G).

Throughout this paper we use the following A- convention.
Convention. Two languages L1 and L2 are said to be equal modulo A (the empty

word) if LI-{A} L2-{A}. Two language families 1 and2 are said to be equal if for
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every nonempty language in1 (modulo A) there is an equal language (modulo A in2
and conversely.

Two general grammar forms G1 and G2 are termed form equivalent if

and uniform form equivalent (u-form equivalent) if

3fu(G) ’u(G2).

If G (V, E, P, S) is a general grammar form, we say G is a (V- E, E)-form. If either
V-E or E is a singleton set we represent it by its single element. Thus we speak of
(S, a)-forms in the sequel.

For a word a and a symbol X, la Ix denotes the number of occurrences ofX in a. By
]cl we mean .xinlalx.

In the following section there are a number of examples illustrating the differences
between strict and uniform interpretations; hence we conclude the present section with
a single example.

Let G be defined by the productions

Z -AS AS AB AS - aA AB -ASS A A.

Then u(G)= (CF), the family of context-free languages. Let F be an arbitrary
context-free grammar in Chomsky normal form; then it has productions only of the
types

C-DE and C-a.

Letting F (V, E, P, S), we construct a uniform interpretation G’ of G as follows:
G’ (V’, E, P’, Z), where V’ V kJ {Z, A} kJ {B" B in V Z} and P’ contains:

(i) Z AS; A - A,
(ii) AC -AC and AC -ADE if C -DE is in P,
(iii) AC aA if C - a is in P.

Then G’ simulates each left derivation of F; hence L(G’)- L(F).
Conversely, consider an arbitrary G’<uG(/x). Because of uniformity, once a

particular A’ in/x (A) is introduced via Z A’S’, then A’ is preserved in the continuing
derivation until it is erased. Since (CF) is closed under union we need only show that a

particular choice of A’ and S’ gives a context-free language. Hence, assume Z AS is
the only Z-production in G’. If A - A is not in G’ then L(G’)= . Now construct a
corresponding context-free grammar F which contains a production C a only if
AC aA is in G’ and a production C DE only if AC - AB’ and AB’ ADE are in
G’. It should now be clear that L(F) L(G’). Thus we have demonstrated that (CF) is
obtained as ’u(G) where G and its interpretations left derivation simulate the cor-
responding context-free grammar.

3. Preliminary results. We discuss some implications of the choice of the uniform
interpretation mechanism as compared with the use of the usual interpretation.

First, observe that every family (F) is also a uniform family; hence under uniform
interpretations we can do at least as much as under the usual interpretation. Let
F (V, E, P, S) be a general grammar form and construct a new grammar form
G (V t_J {[a fl ]: a -/3 in P}, Z, {a - [a fl ], [a - fl - fl" a /3 in P}, S). We say G
is the stretched version of F. It should be clear that ’(G) ’(F), since the stretching
has prevented uniformity from having an effect. Furthermore, the stretched derivation
in G corresponding to a production in F is unique.
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We will see that there are many more uniform families than strict families. Before
demonstrating this fact it is appropriate to compare the closure properties of uniform
and strict families.

It is well known [MPSW] and [MSW5] that each strict family is closed under
intersection with regular sets. Moreover if such a family is generated by a unary form,
that is, a form with one terminal letter, it is also closed under union. However, for
uniform families neither of these closure results holds true in general.

Consider

(3.1) H:S->aS; S--> h

then each uniform interpretation of H is of the type

H’ S aiS, l <- <- m S ,
for m >-0. Hence L(H[)={al,..., a,,}*. Therefore u(H1)={E*: E is an alphabet} (_J

{{h}}. Obviously u(H) is closed neither under union nor under intersection with
regular sets, and is therefore not a strict family.

However, u(H1) is closed under star (since (E*)* E*, under reversal and also
under inverse homomorphism.

Secondly, consider

(3.2) H2:SSS; Sa;

then each uniform interpretation of H2 is either of the type

H "SSS; Sai, l<=i<=m,

or of the type

H’Sai, l <=i<=m,

giving either {a,. , am}* or {a,.. , a,}. Thus u(H) {E, E*: E is an alphabet}. In
this case (H2) is closed under star and reversal. It is not closed under union, product,
intersection with regular sets, inverse homomorphism or homomorphism.

In both cases (H) and (H2) are AFLs, (HI) is the family of regular languages
and (H) the context-free languages. By the stretching technique given above we can
obtain

(3.3) Ha:SA; S -- B A aS B - h

from H1 and u(H3)= (REG). That we can obtain AFL’s as uniform families is not
surprising; however, we can also obtain anti-AFL’s.

Consider

(3.4) H4 S SSS S - aa

then u(H4) is not closed under star, since L(H4)* is not in u(H4). In particular, no
interpretation of H4 can generate a word of length four. That u(H4) is not closed under
the other AFL operations is easy to see.

We now demonstrate that there are many more uniform families than strict
families by way of the following family of grammar forms"

(3.5) G S SS S a i, 1 < j <

for all _>- 1.
Clearly Gk <:lu Gl for all k, l, 1 _-< k _-< l, hence u(Gg)

_
q’u(G). Further, this

inclusion is proper for all > k, since (Gl) contains {a/}*, which is not in u(Gk). NOW
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since u(Gi) is not closed under intersection with regular sets, u(Gi) is not a strict
family. This gives the result.

Continuing to contrast uniform and strict interpretations we next consider reduc-
tion results, or rather, as we shall see, nonreduction results. However, we will present
first the positive results.

LEMMA 3.1. Let F V, ,, P, S) be an infinite context-free grammar form. Then
there exists a u-form equivalent context-free grammarform G, every nonterminal of which
is infinite.

Proof. Assume F has at least one nonterminal H which is finite. If there is no such
nonterminal take G to be F. Without loss of generality we may assume that F is
reduced.

Observe that we can also assume that F has no productions of the type A A, since
under uniform interpretation such productions yield productions of exactly the same
type, and hence can be ommitted from F without affecting its generative power.

Now two finite nonterminals A and B are said to be equivalent, A B, if[

A=)’*CelB and B::r),*ce2Afl2 in F for some 01,02, fll,/2. Let [A] denote the
equivalence class of A under --. Clearlythe equivalence classes of finite nonterminals
are partially ordered under _-< defined as follows:

[A] <_-[B if[ there is A’ in [A] and B’ in [B such that

A’ ::* aB’/3 for some a and/3.

Consider a maximal equivalence class [A]; that is, if there is an equivalence class
[B] with [A]<=[B], then [A]=[B]. Such an equivalence class must exist. From
F (V, Y_,, P, S) we will construct a G (U, E, Q, S) such that u(F) u(G) and G
has fewer finite nonterminals than F. Let [A] {A 1,’ ’, A,,}, m > 0 and L([A]) {x:x
in Y_,* and Ag ::> x for some A in [A ]}; this is well defined since if A, Aj are in [A ], then
Ai*aAj implies either a/3 h, or a/3 contains only nonterminals equivalent to A, in
which case L([A])= {h }. Let U V-[A] and define a substitution z on V as follows:

z(X) X for all X in U, "r(Ai) L([A]) for all Ai in [A].

Now let Q ={B z(a): B is in U, B a is in P}. The equality of u(F) and u(G)
should now be clear and furthermore the lemma follows by induction on the number of
equivalence classes. 71

Our second result concerns "isolation". Under strict interpretation of a form F any
derivation according to F can be isolated. By this we mean the chosen derivation can be
so interpreted as to be the only possible derivation in an interpretation grammar. This is
not true, in general, under uniform interpretations. Consider

F S -> SS S -> a

then S SS aa in F, but there is no uniform interpretation F’ <uF such that this is
the only derivation in F’. For, if this were so, the language {aa } would be in u(F), but as
we have seen above this is not the case. We do have a weaker "isolation" result, namely:

LEMMA 3.2. Let F V, Z, P, S) be a context-free grammar form with L(F) .
Then there exist a word x in L(F) and an interpretation F’ <uFsuch thatL(F’) {x}; that
is, the derivation of x in F can be isolated.

Proof. Since L(F) is nonempty, there is a word in L(F) and moreover there is a
smallest such word; let one of these be x. Now there is a shortest derivation S ::), n+ X in F.
For if this were not so then we would have:

S*a1Aa2 alfllAfl2ce2* X in F.
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In this case we obtain S ::),* alAa2::),* xl by omitting the production A --> fllA2. Now
either [x[ < Ix[, giving a contradiction, or x x, in which case the derivation can be
shortened, again a contradiction.

Since S n+r X in F then there is trivially an F’ <%F such that L(F’)= {x}. [3
The remarks previous to this lemma also indicate that the following "contraction"

transformation does not preserve u-form equivalence. Let F=(V, E, P, S) be a
context-free grammar form and A ::)>* a be some derivation in F for some nonterminal
Ain V-E.

Define G=(V,E,P{A->ce},S). Under strict interpretation (F)=f(G).
However, consider F to be S--> SS; S-> a and G to be

S --> SS; S --> a S -> aaa,

since S ::* aaa is in F. It is easily seen that u(F) u(G).
This transformation is usually used in the proof of the following "simulation"

result. Let/7. (V, Ei, Pi, Si), 1, 2 be two context-free grammar forms such that for
each production A a in P1 there is a derivation A ::),* a in P2; then ’(F) g 5f(F2).
Now for all productions in G there is a derivation in F. However u(G) g u(F), since
this would imply u(F)= u(G), which does not hold. Thus the "simulation" result
does not hold for uniform interpretation.

Our final positive result is similar in nature to the spanning normal form theorem of
[MSW4]. We say a context-free grammar form F (V, E, P, S) is in recurrent normal
form if the following conditions hold:

(i) Each nonrecurrent nonterminal A has only productions of the types

A-> BC A-> a.

(ii) Each recurrent nonterminal A has only productions of the types:
(a) A BC, B A C,
(b) Aa,
(c) A --> A,
(d) A -aoAa Aa,,,ai in (V-(A})U(A}, O<=i<=m.

A context-free grammar F (V, E, P, S) is said to be n-recurrent, n >-0, if for all
recurrent productions A--> a, lalA <= n. We say a context-free grammar form F
(V, E, P, S) is in n-recurrent normalform, n >= O, if it is in recurrent normal form and it is
n-recurrent.

We now have:
THEOREM 3.3. For every n-recurrent context-free grammar form F there exists a

u-form equivalent context-free grammarform G in n-recurrent normal form.
Proof. This is clear. 71
Theorem 3.3 is the best we can do in two senses. First, if there are no recurrent

nonterminals in F then we have the Chomsky normal form result as in [MSW5].
However, in general we cannot reduce an n-recurrent grammar form to an (n- 1)-
recurrent grammar form. For example, consider:

F S --> SSS S --> a

then u(F)= {E, E(EY-;)*: E an alphabet}.
It is easy to see that if G is u-form equivalent to F and 2-recurrent then G
(V, {a}, P, S) must at least have productions

S --> o1Sa2So3; S --> a,

where alaza3 are in (V-{S})*. Now if ala2a3-/ then the language {a}* can be
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obtained which is not in u(F). If ala2a3
,., then we can ensure via interpretation that

a 102a3* X implies X is in {b}* for some b.

In this case we can obtain via interpretation an infinite language which contains the
word a but not the word b. Again, this language cannot be found in u(F).

We have almost proved our first nonreduction result, namely:
THEOREM 3.4. There are n-recurrent grammar forms for n > 0 which have no

u-form equivalent (n 1)-recurrent grammar form.
Proof. For n > 1 consider the forms

proceeding as above. For the case n 1, consider

Fx S-> aS S-> A.

Now u(F1) {E*: E an alphabet}. It should be clear that no 0-recurrent grammar form
is u-form equivalent to F1, since in such a grammar form any length word can be
isolated.

COROLLARY 3.5. Reduction to Chomsky normal form is not in general possible
under uniform interpretation.

Similarly, removal of left recursion and reduction to Greibach normal form is also
not possible. We leave the details to the interested reader, suggesting F2 of the proof of
Theorem 3.4 as a candidate grammar form for this task.

Theorem 3.3 is also the best we can do in a second sense; namely, we cannot
remove A-productions for recurrent nonterminals.

THEOREM 3.6. LetFbe given by S - aS; S A. Then there is no A-free context-free
grammar form G such that -u(G) C’u(F).

Proof. Assume there is such a grammar form G. Then by Lemma 3.2 there is a
word x in L(G) such that {x} is in u(G). Now since G is A-free, x A. Thus because
u(F) {,E*: ,E an alphabet} CI {{A }}, we obtain a contradiction.

Our next result shows that even chain-productions cannot be removed in a A-free
grammar form. A chain-production is a production A B, A, B both nonterminal.

THEOREM 3.7. Let F be given by

S -A S bbb A - aA A - a.

Then there is no chain-free A-free context-free grammar form G with L’u(G) L’u(F).
Proof. Assume such a G (V, Y_,, P, S) exists. Now S* aa is not a nonrecurrent

derivation for any a in Y_,, since this would imply {aa} is in u(F), which is a
contradiction. Therefore consider a derivation S* aa for some a in Y_,. Since G is both
chain-free and h-free we must have either

or

SaBaa, B in V-Z(SAaaa, A in V-E)

S AB aB aa, A, B in V- F_,.

Since A a and B a are both nonrecurrent, either A or B is equal to S. Assume B S
without any loss of generality. Then we have S*aS in both cases. Thus S* anS for
all n >_-1. Secondly, observe that there must be some b in F_, such that Sn+rbbb.
Otherwise {bbb} is not in u(G). Moreover a b, otherwise {a, aaa} is in u(G), a
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contradiction. Hence there is a derivation

S* a "S a"bbb in G.

But such words are not in L(F’) for any F’ uF. 1
Note that if we remove the A-free condition, a chain-free grammar form can easily

be obtained by replacing A B with A BC and C A.

4. Generative power of general grammar torms. In [MPSW] it was shown how the
introduction of a specific interpretation mechanism, the production-restricted inter-
pretation, enabled numerous non-context-free families to be generated by general
grammar forms. In the present section we demonstrate how the EOL, ETOL, matrix
and scattered context language families can be generated by general grammar forms
under uniform interpretation in a simpler manner than that of [MPSW]. While the
generation of EOL and ETOL is immediate, the generation of matrix and scattered
context depends upon the introduction of the notion of a complete set of productions
for general grammars. This notion, which is usually associated with EOL and EIL
grammars (see [MSW3] or [RS], for example), we now define.

DEFINITION. Let G (V, .E, P, S) be a general grammar (form) and m >0 an
integer. We say G is an m-smooth grammar if

(i) for all a -/3 in P, Icl_-< m, and
(ii) for all c in V*(V- E) V* with 1 -<_ loci-< m there is a production a -/3 in P, for

some/3 in V*.
Convention. When specifying a particular general grammar form, we assume that

all unspecified left-hand sides have identity productions a a so as to ensure that the
form is m-smooth for some m > 0.

We now modify the notion of interpretation by taking into account the notion of
smoothness. If F is an m-smooth general grammar form and F’ -uF (or F’ -F), then
F’ must also be an m-smooth general grammar form.

That this is a subtle restriction can be seen by considering the 2-smooth general
grammar form

F:SoAA; AAa; Aa.

Under smoothness u(F) only contains nonempty languages of at least two words. For
consider an F’ ,F; then there must be at least one production

S’ - A’A

in F’, at least one production

A’A" a’

in F’ and finally at least one of each production

A’- a" and A"- a’".

Otherwise, since F’ must be 2-smooth by our convention, the absence of a specific
production for an a implies that there is a production a - a. However, if F’ has S’ - S’,
A’A" A’A", A’A’ or even A"A", then F’ is not an interpretation of F. Thus
L(F’)-> 2.

It is of course clear that there are singleton languages in (F), or even in u(F)
when F is not assumed to be smooth.

This example also illustrates that under the smoothness convention isolation is not
necessarily possible. This is in contradistinction to all other interpretation mechanisms
including the uniform interpretation considered in the present paper.
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Finally, add the productions

8 $; A-A; AA oAA

to F, in which case u(F) is the same whether or not F is assumed to be 2-smooth.
This is, in fact, generally true. For an arbitrary general grammar form H add the

productions a a to H for all ce fl in H. Let this new form be G, then u(G) gives the
same language family whether or not G is assumed to be smooth. This together with the
particular form F above demonstrates that the smoothness convention enables all
uniform families to be generated and more. However, it is not clear when u(G)=
SOu(H) under the smoothness convention. Later we make intrinsic use of the smooth-
ness convention so that we can obtain a G such that u(G) is the family of matrix
languages. We claim that the star closure of the matrix languages is included in u(G)
when the smoothness convention is ignored. Thus, in this case the question of the
equality of u(G) with and without smoothness is reduced to that of whether the matrix
languages are star closed. This is, in fact, a well-known open problem.

In the case of context-free grammar forms 1-smoothness does not make any
essential difference to the generative power. This means that up to the empty set the
same language families can be obtained.

We now turn to our first results"
THEOREM 4.1. Let G be a 2-smooth general grammar form specified by the

productions"
S ALZR AL AAL AL A

AZ AZ AZ ZA AZ ZZA AZ aA

AR o R AR o,.

Then u(G)= (EOL).
Proof. Intuitively the A acts as an activation messenger, each A sweeping from left

to right, causing a rewriting of each symbol until the R is reached. At this point either the
A is erased or both the A and R are erased. This latter case corresponds to the
termination of the simulated derivation. Finally, a number of A’s are first generated
before the simulation is begun.

(i) (EOL)_u(G). Consider an arbitrary EOL language L. Then L can be
generated by an EOL grammar F (V, E, P, Z), all of whose productions are of the
following types"

B- CD; B o C; B a;

a N; N N, where N is a blocking symbol.

Construct G’ <u G as follows. Let G’ (V’, Y_,, P’, S), where V’ {S, A, L, R}
U V U {B" B in V-E}, and P’ contains the productions

(i) S ALZR AL AAL AL A; AR R; AR h,
(ii) AB - AB; for all B in V-E,

(iii) AB CA if B C is in P,
(iv) AB CDA if B CD is in P,
(v) AB aA if B a is in P.

A derivation in G’ proceeds as follows"

S =>+ A"-ILZR A"ZR :A"R :ffA"-aAR =)>A"-aR =>"
Clearly, since activation symbols cannot affect each other, any n-step derivation in F
which does not produce any terminal words before the nth step can be simulated by G’.
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Conversely, each A introduced must sweep completely from left to right up to R. Hence
the only way a terminal word is produced is when an n-step terminating derivation of F
is simulated by G’. Thus L(G’)= L(F).

(ii) u(G)___(EOL). Consider an arbitrary G’<uG. First observe that there
may be many interpretations of A, L, Z and R. However there must be a finite number
of them, so it is sufficient to consider one A, L, Z and R such that S--> ALZR, since
’(EOL) is closed under union. By the choice of G, when S--> ALZR is fixed as the
starting production in G’, then A, L and R cannot be changed via productions since we
are dealing with uniform interpretations. Further, for termination purposes AR
must be present as must AL--> A. Since G and G’ are 2-smooth, then G’ must have
nonblocking productions for interpretations of AZ and AZ. Let G’= (V’, E, P’, S),
where {Z, S, A, L, R}

_
V’. Construct an EOL grammar F (V, E, P, Z) from G’ as

follows: V (V’-{S, A, L, R}) t.J {N} and P contains the productions
(i) N --> N; a --> N for all a in
(ii) B --> B if AB --> AB, B in V’-
(iii) B --> C if AB --> CA, B in V’-
(iv) B --> CD if AB --> CDA, B in V’-
(v) B --> a if AB --> aA, a in
By the remarks in part (i) it should be clear that L(F) L(G’), when AL --> AAL;

AL --> A; AR --> R AR -> h are all in P’. In the case that neither AL --> A norAR --> are
in P’, then L(G’) . IfAL --> AAL is not in P’, then take Z --> a into P for all AZ --> aA
in P’, since this is the only terminating production. The situation is similar if AR --> R is
not in P’.

We may generalize this result in two ways. First, note that interpretations of G in
Theorem 4.1 give rise to simulations of interpretations of the synchronized EOL
grammar F’Z->ZZ; Z-->Z; Z--> a where productions for a are blocking. Let
EOL(G) denote the simulated EOL grammar F. Then it follows, by arguments similar
to those used in Theorem 4.1 that for each G’ <uG, ,(G’)= u(EOL(G’)). Since
EOL(G) is synchro-very-complete (see [MSW7]), every u-synchro-EOL family can be
obtained as an u(G’) for some G’ <u G.

THEOREM 4.2. Let be a uniform synchronized EOL form family of languages.
Then there exists a smooth general grammar form G such that u(G).

In fact, this result can be extended to include every uniform EOL family, by adding
the productions

S -* ALaR Aa -A(t Ad - ZA AZ A

to G, where i is a new nonterminal.
Second, we can also generate the ETOL languages.
THEOREM 4.3. Let H be a 2-smooth general grammar form specified by

S LZR L -* AL AL A

AZ -AZ AZ -ZA AZ ZZA AZ - aAAR - R AR - A.

Then 9u(H)= (ETOL).
Proof. The essential change is that L may introduce many (but a finite number)

different A’s. Each different A corresponds to a different table. The proof is analogous
to that of Theorem 4.1 and is omitted. However the reader should be aware of one
subtle use of smoothness. Let H’ be an interpretation of H, and {Aa,..., A,,} be the
interpretation of A. If L -> AiL is not in H’ for any i, then AL --> A can never be applied;
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hence the productions L -. AiL give E*L for some X
_
{A x, , A,}. Now note that by

smoothness AiL Ai must be in H’ for each i, 1 <- -< m; hence we obtain E+Z’R as
initial configurations of the simulation. If we do not rely on smoothness then we have
KZ’R as initial configurations, where K __c E+ is regular. However regular-controlled
ETOL grammars give ETOL languages; therefore the result again follows, l-!

The final remarks in this proof of-Theorem 4.3 lead to the following generalization.
Let be a family of control languages for ETOL grammars such that is generated by
some general grammar form. Then the class of -controlled ETOL languages can also
be defined by a general grammar form.

We now turn to sequential rewriting and demonstrate a similar result in this case,
namely that classes of controlled context-free languages can be defined by general
grammar forms.

THEOREM 4.4. Let G be a 2-smooth general grammarform defined by the produc-
tions"

S -. AAS; AS - AZ,AZ ZA AZ ZA Aa aA Aa aA,

A-; AA,

Az-,A2; A2-,z; A2-,zz;
AZ -, AZ; 3,Z-, Z; AZ-,ZZ

Then 5F,(G)= (MAT), the family of matrix languages.
Proof. That (MAT)

__
u(G) can be seen by simulating with interpretations of G

matrix grammars whose matrices contain exactly two productions. The A and A are
activation messengers for each of the two productions in a matrix.

The productions in a matrix grammar can be assumed to be of types

BC, BCD, Ba

without any loss of generality. Hence these can be obtained as interpretations of the Z
and Z productions.

Conversely, consider an interpretation G’ (V, E, P, S’)<u G(/x). We construct a
matrix grammar M=(V’,,,P’,Z) such that L(M)=L(G’). First note that since
(MAT) is closed under union we need only consider the case that G’ has one
production AS AZ.

Second, note that since G and G’ are smooth then for all A’ in/(A) and Z’ in/x (Z)
there is a production A’Z’ Z’A’ in P. Otherwise G’ would not be an interpretation of
G. This is once more an implication of smoothness. This fact is important since it means
each A’ will indeed give rise to an A’ (again because of smoothness), A’Z’ A’’ is in
G’ and also there is a production ’’- a in G’. Of course the same holds true for the
A symbols as well. Let

R (A’A’) {A’A’. ’- A’ and A’ -. A’ are in G’},

denote the pairs of activation symbols derived from a pair A’A’ where S A’A’S is in
G’. Let

T(A’A’) {[Zl --> ff 1, Z2 --> if2]’ A’Z1 --> A’21;

’ a; ’Z2- A’Z:; A’Z- a: are in G’}.
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Finally, let

P’ [_J T(A’’).
S-’A’$ in G’ ’’ in R(’A’)

Since the A’ and A’ symbols can migrate freely to the right, letting V’= ELI/x (Z),
we have L(M)= L(G’). [q

That G is 2-smooth is crucial to the validity of the proof of Theorem 4.4. For if G
were not a 2-smooth grammar, then under interpretation the productions Aa - aA and
Aa - aA could be omitted. Let G1 be G with Aa - aA and Aa - aA omitted; then
even u(G1)

_
5fu(G). (Note, however, that G1 is not an interpretation of G.) This can

be seen since by preventing the messengers from passing over terminals we can obtain
the star of an arbitrary matrix language. Hence proper containment of u(G) in u(G1)
depends upon whether the star closure of the matrix languages properly contains the
matrix languages. This is a well-known open problem.

To give the reader some intuition for this claim, consider the generation of
{anbnc" n > 0}*.

Let H be the matrix grammar given by the productions:

m’[ZZ;ZBIB2],
m2" [B1 - Bb B2-m3 "[B1 - Bb BE
m4"[B - h; B2- hi,
ms" [-; a],
m6’[ ; -Za],
m7 [i --> 7; ti --> a],
m8 [b - b b - b ],
m9"[ -"> ; c].

Now L(H){a"b"c" n>0}* since in a matrix grammar words of the form
anlbnlcmla"2b"2c m2 are obtained, where nl + nz ml + mE. In other words the matrix
grammar knows no boundaries. However, in the simulation of H by an interpretation
G of G1 in which the messenger symbols cannot skip over terminals, the application of
m6 implies everything to the right of d must be terminal. Hence L(G)=
{a"bc n" n > 0}*.

Hence considering G not to be a smooth grammar means that G is also an
interpretation of G. Thus smoothness is crucial.

By a slight modification of the grammar G of Theorem 4.4 we are also able to
obtain the family of scattered context languages, (SCAT).

THEOREM 4.5. Let F be a 2-smooth general grammarform defined by the produc-
tions"

(1) S - AS AS AZ,
(2) AZ -ZA Aa aA A - A,
(3) AZ -AZ AZ -ZA AZ ZZA AZ - aA,
(4) AZ -ZA Aa - aA A A,
(5) AZ AZ;ZZ;AZZZ AZ a.

Then u(V) (SCAT).
Proof. Again because of smoothness, any interpretation F’ of F has for each A’

productions of types (2) and (3), and hence productions of types (4) and (5) for some A’,
for all a in tt (Z) U (a). This enables a two-production scattered-context-poduction to
be simulated. The details of the proof are similar to those of Theorem 4.4. [3
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Theorem 4.4 is a special case of a more general theorem. Let c be a family of
control languages, where each control language represents a subset of P*, P being some
finite set of context-free productions. Then if is generable by some general grammar
form we can also define the CO-controlled context-free language family by a general
grammar form.

Finally, note that smoothness is again crucial to the equality &u(F) (SCAT) in
Theorem 4.5. Without it, type (4) productions AZ ZA; Aa aA could be omitted in
interpretations, and hence context-sensitive rewriting could be simulated. This follows
from the observation that the A messenger no longer moves right but immediately
causes the rewriting of the symbol to its right, if there is a production for this symbol.
Thus context-sensitive productions of the type

BC--> a with [c1>_-2
can be simulated. Hence without the smoothness convention (F)=(CS). If we
include erasing productions

AZ --> A and AZ--> )t

in F, then without smoothness (F)= (RE).

5. Generative power of some simple types of grammar orms under uniform
interpretation. In this section we study the generative power of (cI), )-forms under
uniform interpretation, where consists of just one or two variables. Everything up to
Theorem 5.5 deals with context-free forms. We start by presenting a characterization of
the language families generated by separated (S, Z)-forms. Forms considered will be
assumed to generate infinite languages throughout.

We need a few preliminary notions. A finite collection ’ of languages over {S},
St/" {{S}, L1, L2, Ln}, Li S*, is called closed if there is a finite set of productions
R _c S x S* such that

{= {L(Q)" Q R, L(Q) is the language

of sentential forms generated from S by Q}.

Let Y,, be an alphabet,M a finite subset of Z*. A substitution " defined on a single symbol
S is called M-restricted, if for some dfl-substitution we have ’(S)___ (M).

Using the above notions the language families generated by (S, Z)-forms can be
characterized as follows"

THEOREM 5.1. A family of languages 5 is equal to u(F) for some separated
(S, ,)-form Fiff there exists a closed class oflanguages Y{and a finite subsetMof ,v_,* such
that

{’(L): L is in ?7, - is M-restricted}.

Proof. Left to the reader. 13
THEOREM 5.2. Let F be an (S, A)-form with productions P such that S z is in

P ]’or some z in A+. Then u(F)__.(REG) iff P is a finite subset of S
A* U S+ U +/-+S U SA+ U SA+S.

Proof.
Part 1. Suppose F is an (S,A)-form with productions P_S-->

A* [3 S+ U A+S [3 SA+ [3 SA+S. Consider an arbitrary G ({S} U :,
Then we have O O113 02 [3 03, where O S -A UBS U SC, A, B, C finite subsets
of ,*, 02 S --, SDS, D a finite subset of :+, and 03 S --> E, E a finite subset of S+.
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Observe that in any derivation of a word x in L(G) productions can be rearranged
(if necessary) such that

S y ::> z ::), x holds.
Q3 (2 Ol

Starting with S, the productions of Q1 yield the language L01 B*AC*, the produc-
tions of Q2 the (sentential form) language L02 (SD)+S; hence Q2 and Q1 together
yield (when starting from $) the (regular) language Lo2.01 (B*AC*D)/B*AC*. The
(sentential form) language L03 generated by productions Q3 from S is well known to be
regular. Since L(G) is obtained from Lo3 by the substitution L(G)= r(Lo) with
r(S) Lo.ol and since regular languages are closed under substitution, L(G) is in
(REG) as stated.

Part 2. Suppose F is an (S,A)-form containing a production not in $-->

A* LI S+ LI A+S SA+ SA+S. Then F contains a production of type (i), (ii) or (iii)"
(i) S --> uSv with u, v in A+;
(ii) S -> aaSuSv I(iii) S -> vSuSaa j

with c, fl in ({S} LI A)*, u, v in A*, a in A.

Since cases (ii) and (iii) are symmetric, it suffices to consider cases (i) and (ii). We first
discuss case (i). Consider an interpretation G <auF such that G contains exactly two

/

productions S --> tTSt3 and S --> , where t7 is in E, f is in E2 and
mutually disjoint alphabets. (Such a G clearly exists.)

Since L(G) {gnW----6n" n >-- 0}, L(G) is nonregular. Thus u(F)
___
(REG) does not

hold.
Consider now a production p" S--> ceaSuSv as listed under case (ii). Let A(),

A(2), , A(1, and {a, b } be mutually disjoint alphabets, and let hi be a homomorphism
defined on A 1,3 {S} by

Ja(i forainb,
hi(a)

s for a S.

Let q" S --> z be the shortest non-empty terminal production of F, Izl m > 0. Observe
that such a production exists by the assumption in the theorem statement.

Let G be an interpretation of F, G <auF with the following productions"

01: S --> hl(o)ah2(fl)Sh3(u)Sh4(v),

02: S --> hs(t)bh6()Sh7(u)Shs(v),

P3: S - h9(z),

04: S --> ho(Z).

Let x x, x2, y, y2 be the unique terminal words defined by

hl(ce)Xl, h2(fl)x2,
03 03 04

Hence we have

h6(fl)ShT(U )Sh8(v y2.
04

S xlax2Sh3(u)Sh4(o’) and S yby2.
{01,03} {02,04}

Consider now the CF grammar H ({S, a, b}, {a, b}, {S--> aSSIb}, S) and the
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homomorphism h defined by

We have

a for c a,

h(c)= b force=b,

A otherwise.

L(H) h(L(G) f"l {xlax2, h3(u), h4(v), ylby2}*).

However, L(H) is well known to be equal to D2{b}, where D2 is the Dyck-language over
the alphabet {a, b}. D2 is not linear. (It is indeed known to be of infinite index.) Since
(LIN), the family of linear languages is a semi-AFL, hence closed under intersection
by regular sets and homomorphism, L(G) is not linear. This establishes for case (ii) that
u(F)_ (REG) does not hold. lq

A few remarks concerning the above proof are in order. Case (ii) of Part 2 is much
easier to carry out if F can be assumed to be h-free. In this case, G can be chosen to
contain only two productions. The only point in having productions p2 and P4 in the
above proof is to obtain a "discernable" derivation S =),* y 1by2 of a nonempty terminal
word.

The proof of Part 1 not only establishes that for an (S, A)-form F with productions
P
_
S -> A* LI S+ LI A+S [_J SA+ O SA+S, u(F)

_
(REG) holds. It also shows that we

have u(F)
_
o’(REG(3)), the family of regular languages of star height h =< 3. We thus

have as an immediate corollary.
COROLLARY 5.3. Let F be an (S, A)-form with at least one terminating production

S -> z # A. If SEu(F) contains a regular language of star height h >-4, then u(F) also
contains nonregular languages.

Before presenting a characterization of linear and finite index (S, A)-forms, we
need a technical lemma concerning the invariance of the infinite index property under
certain operations.

LEMMA 5.4. (Infinite index lemma). Suppose L is a context-free language, R a
regular set, h a homomorphism, L’= h (L (q R) and L’ is of infinite index. Then L is of
infinite index.

Proof. Obvious by the closure properties of finite index languages. I-I
THEOREM 5.5. LetFbe an (S, A)-form with productions P such that S --> z is in Pfor

some z in A+. Then u(F)(LIN) iff P is a finite subset of either

M1 S -> A* 0 S+ U A+S U SA+ [_J SA+S or M2 S --> A* [3

Pro@
Part 1. Suppose P is a subset of M1. Then u(F)___ (REG) by Theorem 5.2.

Suppose P is a subset of M2. Then, clearly, u(F)(LIN), holds.
Part 2. Suppose P is not a subset ofM or Mz. If P is not a subset ofM U M2, then

P contains a production of type (ii) or (iii) as discussed in Part 2 of Theorem 5.2. By that
proof, we have L h (L’ 71 R) for some language L’ of infinite index, for some regular set
R and homomorphism h. By the infinite-index lemma u(F) contains a language of
infinite index and hence a nonlinear language.

It remains to consider the case that P_ Mx LI Mz but neither P
_
Mx nor P c__M

holds. This clearly means that P contains a production of $ - A+SA+ and a production
of either S - Sk (k ->_ 2) or S --> SuS with u in A+. In both cases, nonlinear products of
linear languages can easily be obtained as interpretations of F. I-I
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THEOREM 5.6. Let F be an (S, A)-form with productions P containing a nonempty
terminal production. Then u(F)

_
(FINDEX) (the class ofnite index CF languages)

iff P is a finite subset of
Z S -> A* U A*SA* U SA+S U S+.

Proof. If P is a finite subset of Z, then u(F) contains (following the idea of the
proof of Part 1 of Theorem 5.2) only substitutions of linear languages into regular
languages. All such languages are known to be of finite index.

Conversely, suppose P is not a finite subset of Z. Then P contains productions as
listed under case (ii) and (iii) in Part 2 of the proof of Theorem 5.2. As was argued there,
this implies that u(F) contains languages of infinite index.

In the next theorem we establish that generative power increases dramatically
when going from the (S, ) case to only the sequential ({S, A}, ) case, and that even in
the (S, ) case general forms are much more powerful than context-free forms.

THEOREM .5.7.
(i) There exists a regular language L such that for no general (S, Y_,)-form F is L in

u(F).
(ii) For every type 0 language L there exists a sequential general (S, A), (a, b))-

form F with L in u(F).
(iii) There are general (S, Z)-forms F such that u(F) contains non-context-free

languages.
Proof of (i). Consider L--ca/c and suppose L is in u(F) for some general

($, a)-form F; i.e., L-L(G) for some general ($, E)-grammar G. We must have
$ cac, and there must be a production $- $/3 in G. Because $* cac, we must
have c/3 -A, a contradiction.

Proof of (ii) and (iii). Let L be an arbitrary type 0 language. We may assume
that L-L(G), G=(V,Z,P, Ax), where V-E--A,A2,...,A) and P_
(V-E)/(V-Z)*LJ(V-Z)E. Define a homomorphism h on V by

if c is in E,
h (a) Sa is if ce Ai.

Consider F1 ({S, A, a, b }, {a, b }, P1, A) and F2 ({S, a, b }, {a, b}, P2, S) as follows"

P1 {A --> SaS} O, P2 {S -> aSaS} O,

O {h(c)--> h() c --> is in Pfq (V-Z)+ (V-Z)*}
I,.J {SaiS --> b" Ai ’-> c is in Pfq (V-Z) Z}.

By interpreting SaiS--> b as SaiS-> c for every Ai "> C in P (V-Z) Y_, and by
interpreting S --> aSaS (in the case of F2) as S --> $SaS (where $ is a terminal symbol not
used otherwise) we obtain interpretations F and F of F1 and F2, respectively, such
that L(F’ L and L(F (q SZ* SL, establishing our theorem.

We do not know whether the terminal alphabet in F1 and F2 can be reduced to one
letter.

We conclude this section by showing that (despite the fact that there are context-
free complete ({S, A}, a)-forms by 3) sequential ({S, A}, a)-forms do not have great
generative power.

THEOREM 5.8. There exists no sequential ({S,A}, a)-form F such that u(F)
contains L, where L {cb na /b nc n >= 1}.

Proof. Suppose that we have L=L(G), G V, Z, P, S), V={S}
{A 1, , An} U Z, G <uF and without loss of generality that S --> S and Ai "> Ai do not
occur in G. We may further assume that every Ai is infinite.
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Observe that

P {$ --> V*} LI .J {Ai--> (, 1,3 {Ai})*}.
i=l

Now S cbabc must hold. Hence S* aSI3 and al3 *x in X+ implies a/3 h.
Thus, S does not occur on the right side of any production. For every sufficiently

large m we thus have S x* cb"amb’c, where x contains some A in {A 1, , A,,}.
Since A generates an infinite language, A* uAv holds for some uv in X+. Note that
{u, v}___ a* b*. Since [U]b ]V]b must hold, A is of either type (1) or (2)"

(1) A::*biAb (i => 1),
(2) A :* akAa (k + >= 1).

Observe that A cannot be of both type (1) and (2) simultaneously, and that for every A
of type (1) a terminal production containing an a must exist. However, to generate
cb ’a ’b c, an A of type (1) must occur and can only be surrounded by terminals.

Thus we have

S => ylAy2 :>* cbmamb’c,

where yl, Y2 are in X* and A is of type (1). Since A must produce a ", A must also be of
type (2) for sufficiently large m, a contradiction. [3

6. Goodness and badness. In this section we consider goodness and badness of
context-free grammar forms under uniform interpretation. In analogy to [MSW2] or

[HMO] we call a context-free grammar form Fgood if u(G)
_
u(F) implies that for

some F’ <uF, u(G) u(F’) holds. We call Fp-good if u(G) u(F) and G A-free
("propagating") imply that for some F’<uF, u(G) u(F’) holds. Accordingly, F is
called bad, (p-bad), iff F is not good (not p-good).

Despite the fact that results on goodness and badness are often difficult to obtain,
cf. the papers quoted above, we present a number of both positive (goodness) and
negative (badness) results. In particular, we show that every separated (S, a)-form is
p-good but bad (once more stressing the significance of the empty word in form theory;
cf. [AIM]). We then show that many nonseparated (S, a)-forms are bad, and give a
result allowing us to establish badness of certain forms based on an "isolation
property".

We begin with a technical lemma.
LEMMA 6.1. Let F be a separated (S, a)-form and X, an alphabet. If an infinite

language L contains a word x in + and all but a finite number of words of L contain
symbols not in , then L is not in .u(F).

Proof. Assume F’ <,F and L(F’) L, F’ ({S} U X’, X’, P, S). Since x is in L, S - z
is in P for some z in X/. Hence L contains arbitrarily long words over . V!

THEOREM 6.2. Let F ({S, a}, {a}, P, S) be a separated form with L(F) infinite.
Then F is p-good.

Proof. We first establish that F is p-good. Consider some G with (G)___(F)
and G A-free. We may assume that G is reduced, that L(G) is infinite and that, by
Lemma 3.1, every nonterminal is infinite.

By analyzing G (V, X, Q, S) carefully we will be able to show that G <aF holds,
implying the p-goodness of F.

First observe that Q Q1 tA Q2 J Q3 [3 Q4 Q5 with Q1 -- S --> S+, Q2 - S -> ,,+,
Q3 - S --> E+S(E LI {S})* U (E U {S})*SE+, Q4 - S --> V*(V- -{S}) V*, and Q5

_
(V-{S})--> V*. It is our first aim to establish Q3 Q4 . Since G is reduced, this
implies Q5 . Once Q Q1 [-J Q2 is established, our claim follows readily.
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Suppose first that Q4 - . Then Q contains a production S --> RAft with A # S. Let
and A be disjoint terminal alphabets. By Lemma 3.2 there exists a G’ <au G such that

L(G’)={x}, x in E+, G’=({S}UIUZ, , P’,S). Consider a G"<auG with G"=
({S} [,.J (I)2 [_ A, A, p’, S) such that (i) no production contains a symbol of Z, (ii) the only
production involving S is S --> Afl obtained from S -> RAft by replacing any terminal
symbol in aft by some symbol of A and (iii) adding the production S -> x would give a
grammar generating an infinite language. We may assume that 1 n2 . By
Lemma 3.1 the grammar

O"’= ({S} U UUEU A, YU A, P’U P", S)
can be assumed to be a uniform interpretation of G. L(G’") contains the word x in
but all other words contain symbols of A. Hence, by Lemma 6.1, L(G’") is not in L’u(F),
i.e. u(G)u(F). Thus Q4 # is impossible.

Assume next that Q3 . Then Q contains a production $ ySa with y in/ and
a in (E U{S})*. Construct an interpretation G’ of G, G’<G by taking into G’ the
production $ ySa and productions necessary for an isolated derivation S ::>* x, x in
A/, AN E . (Possible by Lemma 3.2). Then L(G’) contains a word in A/, but all
other words contain symbols of E. By Lemma 6.1, u(G) g u(F) and hence Q3 is
also impossible.

We have now established Q Q U Q2. For any pair of productions S - sk in Q1
and $ w in Q2 consider G’<G where G’ consists of only the productions S Sk and
S w; i.e., L(G’) ={w(k-n+" n _->0}. Since L(G’)=L(F’) must hold for some F’ <auF,
S - Sk must occur in F’ and hence in F. Since S w must occur in F’, F must contain a
production $ a t, where

Thus, Q1
_
P holds. Further, for every production $ x in Q2, P contains S a Ixl.

Thus G <uF, establishing the p-goodness of F. El
We now establish that a large class of (S, a)-forms is bad:
THEOREM 6.3. Let F be a A-free (S, a)-form containing the production S a, a

production S -> aSfl with a # h but not containing S -> S k, k [aSfl [. Then F is bad.
Proof. Consider the grammar form G with productions S -> Sk and $ --> a. Clearly,

u(G)
_
u(F). But F’<F implies u(F’) u(G). For suppose (F’) (G), i.e.,

’(F’)
_
(G). By the proof of Theorem 6.2, F’ contains the production S-> S k, a

contradiction. 71
We believe that Theorem 6.3 can be strengthened considerably. Indeed, we

conjecture that any (S, a)-form F generating an infinite language is bad.
To formulate the final theorem in this section, one further notion proves useful.
A grammar form F has the isolation property if for every integer k there exists an

F’ <auF such that L(F’)= {x}, where Ixl--> k.
THEOREM 6.4. SupposeF is a grammarform, Y{a closed class andMa finite subset

of ,*, Z an alphabet. If Lt’u(F)_{’(L): L is in 7, - is M-restricted} and every infinite
interpretation ofF has the isolation property, then F is bad.

Proof. By Theorem 5.1, there exists a separated (S, a)-form G such that u(G)
{z(L)" L is in Y/’, z is M-restricted} and hence u(G)

_
u(F). Suppose for some F’ <auF

we have u(G) u(F’). Since, by assumption F’ has the isolation property, G would
have the isolation property, a contradiction.

We conclude this section with a sample application of Theorem 6.4.
Example. F ({S, A, a}, {a}, P, S) with P {S -> A, A --> SS, A --> a} is bad.

Consider Y{ {{S}, {S+}}, M {a},

u(F){z(L)’L {S}orL S+ -($) /z (a)}.

F has the isolation property. Hence F is bad.
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ATTRIBUTE GRAMMARS AND MATHEMATICAL SEMANTICS*

BRIAN H. MAYOH’

Abstract. Attribute grammars and mathematical semantics are rival language definition methods. We
show that any attribute grammar G has a reformulation MS (G) within mathematical semantics. Most
attribute grammars have properties that discipline the sets of equations the grammar gives to derivation trees.
We list six such properties, and show that for a grammar G with one of these properties both MS (G) and the
compiler for G can be simplified. Because these compiler-friendly properties are of independent interest, the
paper is written in such a way that the first and last sections do not depend on the other sections.

Keywords. mathematical semantics, attribute grammars, compiler properties

1. Introduction. Attribute grammars [9] give a systematic way of expressing such
restrictions on a programming language as that variables must be declared before use
or that the types of the two sides of an assignment statement must agree. In this paper
we show that any attribute grammar can be given an equivalent and elegant formulation
within the mathematical semantics of D. Scott and C. Strachey [16], [17]. This
reformulation is of interest because of the widespread acceptance of the advantages of
mathematical semantics for the description of real programming languages 1 ], [2], [5],
[12], [13], [18], [19].

Before looking at the details of the reformulation, let us look at Knuth’s simple
example of an attribute grammar BIN for binary notation"

B - O v[B] O,

B 1 v [B 2cs,
L - 13 yELl- v[B], c[B]- c[L], l[L]- 1,

LoLB2 v[L0] v[L]+v[B2],c[B:z]=c[Lo],

c[L1] c[L0] + 1,/[Lo] =/[L1] + 1,

N-L v[N] vEL], c[L] O,

N - Lx" L2 v[N] riLl] + v[L2], c[L] O,

c[Lz] -l[Lz],

As explained in [9, p. 131] one can deduce from the grammar that the number 13.25 is
the meaning of the expression 1101.01, because the equations given by the grammar
can be ordered suitably. This difficulty with the ordering of equations does not arise
when the grammar is reformulated within mathematical semantics:

bv[O](c)=O,

bv[1](c)=2,
Iv[B](c) bv[B](c), lIEB] 1,

Iv[LB](c) Iv[L](c + 1)+ bv[B]c, ll[LB] ll[L]+ 1,

nv[L] Iv[L](O),

nv[Lx Lz] lv[Lx](O) + lv[L:z](cz) where cz -ll[Lz].

* Received by the editors August 25, 1978, and in final revised form October 10, 1980.

" Department of Computer Science, University of Aarhus, Aarhus, Denmark.
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Here we have the definition of four functions: by for the synthesized attribute v of the
symbol B, Iv for the synthesized attribute v of the symbol L, II for the synthesized
attribute of the symbol L, and nv for the synthesized attribute v of the symbol N. The
first two functions have an argument in round brackets for an inherited attribute. All
four functions have an argument in square brackets for derivation trees. In all our
examples we will have an unambiguous grammar so we can use strings instead of trees
for square bracket arguments. The deduction that the number 13.25 is the meaning of
the string 1101.01 now becomes

nv[1101.01] =/v[1101]0+ Iv[01]c2, where c2 -//[01]

=/v[llO1]O +/viOl](-2)

=(lv[llO]l + 1) + (/riO](-1) + 0.25)

(12 + 1)+(0+0.25)= 13.25.

This example is too small to justify the claim that the reformulation of an attribute
grammar within mathematical semantics is easier to understand because it only uses
functions, whereas an attribute grammar uses attributes, functions and equations. The
example in 4 better illustrates the advantages of a reformulation MS (G) within
mathematical semantics of an attribute grammar G. There is always an MS (G),
equivalent to G (Theorem 1); if G is well defined, then MS (G) does not use recursion
(Theorem 2). Some attribute grammars have properties that discipline the set of
equations the grammar gives to derivation trees. If a grammar G has one of these
properties then Table 1 shows that both MS (G) and the compiler for G can be
simplified.

TABLE 1

Property

unordered
ordered
reordered
tangled
benign
well defined

Compiler Simplification

subtrees in arbitrary order
subtrees from left to right
subtrees in fixed order
one pass
attributes in fixed order

MS (G) Simplification

as compiler
as compiler
as compiler
no splitting
determinate
no recursion

Because these compiler friendly properties are of independent interest this paper has
been written in such a way that those unconcerned with mathematical semantics can
omit all but the last section, and scan the earlier sections when they meet undefined
notation.

2. Reformulation of an arbitrary attribute grammar. An attribute structure
consists of:

(1) disjoint sets , _A, A;
(2) for each X in , subsets _X c _A, and X c A;
(3) for each a in g tA _A, a set V.

The elements of 4 are called symbols, the elements of _A are called synthesized
attributes, and the elements of A are called inherited attributes. For each X in 4 we
define

SYN IX], the Cartesian product of V0a for a in X,

INH IX], the Cartesian product of V for a in .



ATTRIBUTE GRAMMARS AND MATHEMATICAL SEMANTICS 505

By convention SYN IX] (INH IX]) has precisely one element if _X() is empty. An
attribute grammar consists of:

(1) a context free grammary (3, g(, S, ); where the start symbol S does not occur
on the right side of a production;

(2) an attribute structure such that /= 3-U , S is empty, and _X is empty for X
in ;

(3) for every production Xp,oXp,l’" Xp,-1 in we have a partial function
0 0’L-,(Rp -R),

L -INn (Xp,o) SYN (X.,1)x SYN (X.,2) SYN (Xp,_),

R. SYNo (Xp,o) INn (X,I) x INn (X.,2) INn (X.,_).

Here and later we avoid a sea of subscripts by using a convention due to B. Rosen in
which Xp,-1, rather than Xo,np-1, is the last symbol of production p. In practice we usually

o o_.> o o o o o
have a function qp Lp Rsuchthatfp(1)(r)=q(l)foralllinLandrinRp, andwe
say that an attribute grammar is in normal form if we have such a function for each
production.

Example. For the attribute grammar BIN we have Table 2.

TABLE 2

_S={v}, O={c}, b={v,l}, ={c}, _N={v}, ={.}
SYN (B)= V, SYN (L)= V va, SYN (N)= V,
INH (B)= Y, INH (L)= Y, INn (N)= {.}.

syntactic rule

B-0

LB

Lo L B2

N-* L

N-LI L2

semantic rule

Note that our reformulation of BIN borrows notation like v[B] for attribute values
from the original formulation, and it shows that the attribute grammar is in normal
form. The differences between our definition of attribute grammar and that in [9] are
minor and inessential, but they pave the way to the lattices and functions of mathema-
tical semantics. For each symbol X in U ff the productions of the grammar give
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DOM (X), the set of derivation trees that can be generated from X. As described in
[16], [17] one can convert the sets V,,, SYN (X), INH (X) DOM (X) by adding a
bottom element _1_ and a top element -l-, to lattices Va, SYN (X), INH (X), DOM (X),
and one can form a lattice of continuous functions

CONT (X)- DOM (X)- (INH (X)- SYN (X)).

A reformulation of a grammar in mathematical semantics will define precisely one
elemetit of CONT (S).

Convention. When specifying a function x overDOM (X), we may do so by a set of
equations

x.[X, x,
with one equation for each production p with Xp,o X. We use x[Xp,1 Xp._I] as a
convenient way of writing the value of X on a derivation tree of the form

where ffp..., ffp,_ are derivation trees with Xp,1 "Xp,-1 at their roots. Because
DOM (X) is the lattice sum of DOM (X.)x... x DOM (Xp._x) for p such that
Xp.o X, our sets of equations do determine functions over DOM (X). The equation
pairs for by, II, lv, nv in 1 determine functions

bv:DOM (B) Vc - Vv,

ll: DOM (L) V,

lv: DOM (L) - V Vc,

nv: DOM (N) Vv.
When specifying these functions we used the convention that parentheses can be
omitted if this does not lead to confusion. This convention usually allows us to omit
parentheses around empty sets of arguments.

DEFINITION 1. Let G (3, , S, ) be an attribute grammar.
An assignment to a derivation tree r of G is a pair of functions (sy, in) from nodes

of r to attribute values such that"

sy (u) e SYN (X) and in (u) e INH (Xu),

where X, is the symbol at node u. The assignment is said to be complete if for all nodes u
we have

sy (u) e SYN (X,) and in(u) e INH (X).

For every complete assignment (sy, in) we can define Next (sy, in) as the assignment
(sy’, in’) given by

(.) (sy’ (Uo), in’ (Ul)’’’ in’ (U-l))

f(in (Uo), sy (Ul) sy (u_l))(sy (Uo), in (Ul) in (u_))

for each applicat.ion Uo - u u_x of the production X,o Xp, X,_a in the tree r.
The assignment (sy, in) fits zr if (sy, in) Next (sy, in). The grammar G assigns w to

r if w sy (root of r) for every complete assignment (sy, in) that fits r.



ATTRIBUTE GRAMMARS AND MATHEMATICAL SEMANTICS 507

Example. The derivation tree

L

L

for the grammar BIN fits the assignment

sy 13.25 in 0

/I\ /I\
13,4 .25,2 0 -2

/\ I\ IX /\
12, 3 0, .25 0 -2

/\ I\I
12,2 0 0 2 -1

/\ 1\I
8,1 4 3 2

8 3

An assignment - to a derivation tree 7r gives a value ’(u, a) to each attribute c of
each node u. We say 7r has a computation sequence if there is a sequence
(Ul, al) (un, cn) such that

(1) each uj is a node of
(2) each cj is an attribute of the symbol at the node ui;
(3) the pair (u, a) occurs in the sequence for each attribute a of each node u;
(4) if - and -’ are complete assignments such that

then Next (r)(ui, ai) Next (r’)(ui, ai) # +/-.

LEMMA. If the derivation tree r has a computation sequence, then there is precisely
one complete assignment that fits r.

Proof. We define an assignment w by:
if - is any complete assignment such that

"/’(b/l, O1)"- ’Fw(Ul, O1) ’/’(b/i-l, O/-1)-- Tw(Ui-1, O/-1),

then 7"w(Ui, ai) Next (’)(ui, ai).

A simple induction argument using requirement (4) in the definition of computation
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sequences gives

Zw(Uj, aj)# +/- does not depend on the choice of ’.

This implies that Zw is a complete assignment.
If we take Zw as z in the definition of Zw(Ui, ai) we get Zw(Ui, ai) Next (Zw)(Ui, a.),

so the complete assignment Zo fits the {ree zr. Suppose ’1 is a complete assignment that
fits 7r. If we have Zw(Ul, a) z(ux, a) Zw(Ui_, ai_) z(ui_, ai_) requirement
(4) gives Next (zx)(uj, ai) Next (zl)(ui, ai) and Zw (u., aj) -(ui, ai) follows from Zw
Next (Zw)& ’ Next (z). We infer that Zw

THEOREM 1. For any attribute grammar G with start symbol S we can define a

function s in CONT (S) such that for any derivation tree - we have
(a) if s[Tr] w SYN (s), then G assigns w to
(b) if zr has a computation sequence and G assigns w to -, then s[Tr] w.

Proof.
(a) If we extend the functions f,o to continuous functions fp" Lp (R, R,), and we

use fp instead of fop in the equations (.) in the definition, our function Next becomes a
continuous function from assignments to assignments. For any derivation tree zr there is
a least assignment - satisfying z Next (z). If (sy, in) is this least assignment and we take
sy (root) as the value of s[Tr], then "(sy, in) is less than every assignment that fits 7r"
gives part (a) of our theorem.

(b) Let us agree on the following continuous extension of fop.

fp(l)(r)= greatest lower bound of f(l’)(r’) for I’, rc r’

and look at the definition of Zw in the proof of the lemma. Because of the way we have
extended fop we have

Zw(Ui, a.)= Next (z)(ui,

for every assignment satisfying

Tw(UI, O1)’- T(Ul, O1)" Tw(U]-I, O/-1)-" T(U/-I, Oj-1).

Suppose we define ’i Next (ri_l) and take z0 as the assignment that gives _L to all
attributes of all nodes in a derivation tree. If we have

w(U, ,)= _(u, ,)... rw(U-, ,-)= _(u_, _),

we also have Zw(Ui, ai) Next (zj_)(ui, ai) z(ui, aj).

Since Next is continuous we also have

7"w(Ul, O1)-- 7"](Ul, Ol]) Tw(U]-I, O1-1)""

and induction gives

Tw(Lll, O1)-" 7"l(Ul, O1) ’w(Ur, Olr)-" 7"r(Ur, Olr),

so Zw agrees with the least assignment z0 U rl U ".

If the grammar G assigns w to zr, then the lemma ensures that w is the value of the
synthesized attributes in the complete assignment Zw. By definition s[zr] is the value of
these attributes in the least assignment. These two values must be the same.

Comment. So far we have only considered assignments to derivation trees with the
start symbol of an attribute grammar at their roots. For any derivation tree r with root
symbol X e gU ff we can extend definition 1 and the proof of Theorem 1 to give a
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function x[r] in INH (X)--> SYN (X). These functions are defined by the equations

syo Xp,o[Xp, Xp,_l]ino,

sy xo,[X.]in sy_l xo,_l[Xo,_]in_

(syo, ino" in-l)= fp(ino, sy.. sy-)(syo, in1 in_l).

This was proved in an earlier version of this paper but the details are so similar to those
for the independent result in [4] that they are omitted here. In a suitable specification
language, the unique function X,o given by equations (.) is

(**) x,.o[X,, X,_]ino YH , 1,

where H(syo, in1"." in_ fp(ino, Xp,l[Xp,]in,..., x,,_[Xp._]in_)(syo, in1.., in_l).

Here Y is the fixed point operator, $1 selects the first component of a list, and we
include the trivial functions xp, for terminal symbols X,,i. In practice such trivial
functions can be omitted.

Note that Xp,o is a member of CONT (Xp,o), and s in Theorem 1 is the least upper
bound in CONT (S) of the functions X,o for the productions with S X.o.

Applying our construction to the grammar BIN gives the somewhat obscure

b[0]c YH 1 where H(v) 0,

b 1]c YH 1 where H(v) 2c, where Fo c v, F c --> v,

l[B]c YH $1 where H((v, l), int)= ((b[B]in, l), c),

l[LB]c YH $1 where H((v, l), in, in2)

((/[L]inx $1 + biB]in2, /[L]inl$2 + 1), c + 1, c),

n[L] YH$1 where H(v, in) (/[L]inl $1, 0),

niLe. L2] YH $1 where H(v, in1, in2)

(/[L]inl $1 +/[L2] $1, 0,-/[L2]in2 $ 2).

Straighforward fixed point elimination gives

b[0]c =0,

b[1]c =2,
liB]c (b[B]c, 1),

l[LB]c (vx +b[B]c: l + 1) where (vl, l)= l[L](c + 1),

n[L]=l(L]O,l,

niLe. L2] Vl + V2 where (v, l)=/[L]0 and (/)2, /2)= l[L2](-12).

Replacing the last line by

and (v2,/2) YH where H(v, l)= l[L2](-ll)

makes the recursion explicit.

3. Reformulation of a well-defined attribute grammar. In this section we show
that recursion is not needed when a well-defined attribute grammar is reformulated
within mathematical semantics.
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DEFINITION 2. An attribute grammar G (3r, W, 9’, ) is well defined, if the test in
[9] shows G is not circular.

THEOREM 2. For any well-defined attribute grammar G with start symbol S we can

define a function s in CONT (S) such that for any derivation tree r we have
(a) the specification of s does not use recursion or the fixed point operator Y;
(b) G assigns w to rr # s[r] w;
(c) s[] +/-.

Proof. The algorithm for testing whether an attribute grammar is well defined [9,
correction] generates a finite set of directed graphs. These graphs are of three kinds. For
each element X in kJ we have a set of symbol graphs SYM (X) showing how the
synthesized attributes may depend on the inherited attributes of X. For each production
X,0- X., X._ we have:

(1) a production graph D. with arrows to the synthesized attributes of X,o and the
inherited attributes of X., X.._ from the zero, one or more attributes they depend
upon;

(2) a set COMP (p) of composite graphs of the form D.[Q(1) Q(-1)] where
Q(1) SYM (X.,1) Q(-1) SYM (X.,_I). Knuth’s test for circularity generates the
composite graphs and SYM (X) for X in from the production graphs and SYM (X)
for X in g. If any composite graph contains a cycle, then our attribute grammar G is not
well defined; otherwise these graphs tell us how to replace (**) in the proof of Theorem
1 by a specification with no implicit or explicit recursion. As we shall see in the next
section, this reformulation is particularly simple if for every p the union of the graphs in
COMP (p) contains no cycle. Even although this simplification is advocated in [4] and
almost always possible in practice, we have to treat the general case if we are to prove
the theorem. The nondeterminism that plagues very general attribute grammars then
enters in the form of joins in function lattices. For each symbol X in kJ -, for each
graph F in SYM (X), and each synthesized attribute a in _X, we introduce a function

symbol (F, a) DOM (X) W(F, a) - V,

where W(F, a) is the subset of INH (X) given by the arrows going to the node for a in F.
If a a are all the attributes of the start symbol $, this gives functions

symbol (F, a) DOM (S) - V. symbol (F, a.) DOM (S) - V.
for each F in SYM (S). The product of these functions is a member of CONT (S), and
the least upper bound (= join) of these products will be the function s of Theorem 1. For
each production Xv,o- Xv,,’", Xv,-x there are a finite number of ways of choosing
graphs Q(0)Q(1) Q(-1) such that Q(]) is in SYM (Xv,i) for j =0, 1,...,-1 and

(***) there is an arc from a to a’ in Q(0) if and only if there is a directed path from
(Xpo,) to (Xpo,,)in D[O(1),.. , Q(-1)].

For each synthesized attribute a in _X,0 and each such choice of Q=
(Q(0), Q(1), , Q(-1)), we introduce a function

rule (Q, a):DOM (Xo) W(Q(O), a)-- V,.

Because the graph Dp[Q(1),..., Q(-1)] contains no cycle, it gives a function
rule (Q, a) that does not require recursion or the fixed point operator Y. Using these
functions we complete the definition of s by

symbol (F, a)= the join of rule (Q, a) such that Q(O)= F.
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We have now proved (a); if we can show that every derivation tree in a well-defined
grammar has a computation sequence, Theorem 1 and the lemma will give (b) and (c).

There is one and only one way of assigning symbol graphs and composite graphs to
nodes of a derivation tree r so that (***) is satisfied" there is a unique choice of symbol
graph for each terminal, and, working up the tree, one and only one choice of Q for each
application of a production. The composite graphs partially order the attributes at the
nodes of the tree because no composite graph contains a cycle, let

be an embedding of this partially ordered set in a linear order. If - is a complete
assignment to the derivation tree, the value of Next (r)(uj, a.) is given by rule (Q, ai) for
the Q at node u. and this only depends on

"/’(Ul, 01)" 7"(Uj-1, Oj-1).

Our linearly ordered set.(ul, al) (u,, an) is a computation sequence.
Comment. In a well-defined grammar we have:
(a) every derivation tree has a computation sequence;
(b) for each derivation tree 7r there is precisely one complete assignment that

fits r.
Our lemma shows (a) implies (b); the grammar

f(sy0, c, d) (c, if d even then 1 else d, c 1)

shows (b) does not imply (a) because it is circular but there is precisely one complete
assignment that fits its only derivation tree, syo 1, c 1, d 0. There are grammars
satisfying (a) that are not well defined, but they must have useless productions [9].

Examples (continued). The circularity test for our grammar BIN generates

SYM (B)= (Fo, F1)

SYM (L) (F2, F3) where F:z C V l, F3 C V I.

We see that we must introduce functions

symbol (Fo, v) :DOM (B)- V,

symbol (F2, v) DOM (L)- Vo,

symbol (F2,/) :DOM (L)- Vl,

symbol (F1, v): DOM (B)o Vc - Vo,

symbol (F3, v) :DOM (L) V V,,

symbol (F3, l) :DOM (L)- Vt
The test also generates four graphs in COMP (Lo L1B2), the composite graphs given
by including or excluding broken arrows in the graph

c(Lo) v(Lo) l(Lo)

/ ;><..(!)- --- v(L) l(L) c(B2)---- e(B2)

For the production Lo LIB2 there are four ways of choosing graphs Q(0), Q(1), Q(2)
that satisfy (***)"

o(0)
o()
Q(2)

01 Q2 Q3 04

1-’2 F3 1’3 F3
F2 F2 173 1-’3
Fo F Fo F1
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Since L has two synthesized attributes, we have eight rule-functions and four symbol-
functions:

rule (Q1, v)[LiB2]=symbol (F2, v)[L] +symbol (Fo, v)[B2],

rule (Q2, v)[LxB2]c =symbol (F3, v)[L]+symbol (F, v)[B2]c,

rule (Q3, v)[L1B2]c =symbol (F3, v)[L](c + 1) +symbol (Fo, v)[B2],

rule (Q4, v)[LB2]c symbol (F3, v)[L](c + 1)+symbol (F, v)[B2]c,

symbol (F2, v)[LB2]= rule (QI, v)[LIB2],

symbol (F3, v)[LB2]c rule (Q2, v)[LB2]c (.J rule (Q3, v)[LiB2]c
LI rule (Q4, v)[LB2]c,

rule (Q, l)[LB2]=symbol (F2,/)[L] + 1,

rule (Q2, l)[LiB2]=symbol (F2,/)[L] + 1,

rule (Q3, l)[LB2]=symbol (F3,/)[L] + 1,

rule (Q4, I)[LB2]= symbol (I"3,/)ILl]+ 1,

symbol (F2, I)[LB2]= rule (Q, I)[LB2],

symbol (1-’3, I)[LB2] rule (Q2, l)[LB2]t.Jrule (Q3, I)[LIB2]
t_) rule (Q4, I)[LIB2],

In the next section we show that the above twelve equations can be replaced by

symbol (1"3, v)[LB2]c symbol (F3, v)[L1](c + 1)

+symbol (F, v)[B2](c),

symbol (F3, I)[LB2] symbol (1-’3,/)[L]+ 1;

clearly these are unsugared versions of our original equations

lv[LB]c lv[L](c + 1)+ lv[B]c,

ll[LB ll[L] + 1.

4. Other desirable properties. Well-defined attribute grammars can have other
desirable properties that simplify the task of making a compiler for the language they
generate. In this section we introduce six such properties and show how the refor-
mulation within mathematical semantics of an attribute grammar G becomes simpler
when G has one of these properties.

DEFINITION 3. Let D be the graph introduced in [9] for a production p:Xpo-
X... X,_ in an attribute grammar. Let W be the subgraph of D formed by
deleting every arrow from an inherited attribute ofX0 and every arrow to a synthesized
attribute from an attribute of X,x X,_. We say that the production p is

unordered
ordered

reordered

if Wo is empty;
if each arrow in Wo from an attribute of Xo, to an attribute of Xp,k
satisfies 0 < ] < k;
if there is a permutation f of 1, 2,. , n(p)- 1 such that each arrow
in W from an attribute of Xo, to an attribute of X,.k satisfies
] 0 A f(j)<f(k);
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tangled

benign

well defined

if there are no cycles in the graph Do(All (Xo,a).." ALL
where ALL (X) is the graph with an arrow from every inherited
attribute of X to every synthesized attribute of X;
if there are no cycles in the graph Do(SOME (Xo,a)’."
SOME (Xo,-a)) where SOME (X) is the union of the graphs in
SYM (X);
if there are no cycles in any of the graphs Do(O(1), 0(-1)) for
(1) SYM (Xo,a) 0(-1) SYM

Remark. A grammar is not circular if all its productions are well defined. If a
production has one of the other properties we have defined, then the order of evaluating
the attributes of the symbols on the right side of the production (right symbols) is
simplified. For a benign production this order does not depend on the productions used
to expand the right symbols. For a tangled production this order can be such that all the
inherited attributes of a right symbol occur before any of its synthesized attributes. For
an ordered (reordered, unordered) production this order can be such that one can
evaluate all attributes of a right symbol Xo, before evaluating any attribute of the next
right symbol (the symbol following Xo, in some permutation of the right side of the
production, any other right symbol). Clearly these distinctions are significant when
designing a compiler for the language given by an attribute grammar.

Example. Consider the attribute grammar CONTRIVED, presented in Table 3.
The broken arrows in a production graph Do are those that are not in Wo. We see that
the productions U o 5, U o 7, S o O, O o X, X o 9 are unordered, the production
0 o RT is ordered, and the production R o TO is reordered.

THEOREM 3.
(a) unordered o ordered o reordered o tangled o benign o well defined.
(b) The chain of implications in (a) is proper.
(c) A production Xo,o O Xo,1... Xp,-a is tangled if and only if the attributes of

Xo,o, Xo, Xo,-1 can be ordered in such a way that every inherited attribute ofXp, can
be evaluated before a synthesized attribute of Xp, is evaluated.

Proof.
(a) The first, second, fourth and fifth implications follow directly from the

definitions. For the third implication assume that production Xo,o o Xo,1... Xo,_ is
reordered and Do(ALL (Xo,a)... ALL (Xp,-a)) has a cycle. This cycle cannot pass
through an inherited attribute of Xo,o because there are no arrows to these attributes; it
cannot pass through a synthesized attribute of Xo,o because there are no arrows from
these attributes in a reordered production; it cannot use an arrow of Wo because f
increases along such an arrow and f is constant on the arrows of ALL (X). Since
ALL (X) has no cycle, our assumption is absurd.

(b) Consider the grammar CONTRIVED. The production O o RT is ordered, but
not unordered; the production R o TO is reordered, but not ordered; the production
ToBX is tangled, but not reordered; the production B oX is not tangled.

As the production graph DI is the only symbol graph in SYM (X) it is also the graph
SOME (X). Since Dk[D] has no cycles, the production B oX is benign. Now consider
the attribute grammar given by the first three productions of CONTRIVED. The
production S o U is well defined because there are no cycles in Da[Db] and Da[Dc], but
it is not benign because there is a cycle in D[Db U Dc].

(co) If the composite graph Do(ALL (Xp,a)" ALL (Xo,_I)) has no cycles, it is the
graph of a partial order on the attributes of Xo,o, Xp,a" "Xo,-a. Because any partial
order can be embedded in a linear order we can evaluate attributes in an order
satisfying:
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TABLE 3

g={g}, O={til, a2}, O={O}, /={f}, ={t"}, /={/1,/2}, 2={il,;2},
_S={}, _U={_ul,_u2}, Q={_o}, _R={f}, T=I_t}, _B={_b}, _X={_xl,_x2}

name production semantic rule production graph

S U f, (u_l, u2)(s, u 1, u2) , "-.

ul u2 ul u2
(u_!_1 + u2, LZ, u__!3

U 5 fb(ul, u2)(u___l, u2)

(23 x-f, 5)

U 7 L(ul, u2)u(_u_, u2)

S O

OX

ORT

=(7,29x u2)

f,(o)(s, ,)

(3xo, 2)

L(6, xl, x2)(_O_, x 1, x2)

(xA/x2, O, 0)"

[r(o, r, t_)( o, e, )

(19 x_t, 31 x 6, 37 x_r)

R TO fg(f, _t, o)(_r, , 6)

T-) BX

=(11 x_t, 13xo, 17xf)

fh(L _b, x__l, x2)(_t, b 1, b2, x 1, x2)

=(b+ x2, , xl, , b2)

u"--f u- u u2

ul u2 ul u2

s

0 o
r

-f x-- x

6 o_

-i

b2 b xl x2 xl x2

BX &(b 1, b2, xl, x2)(b, xl, x2)

(b 2 x2, b 1, xl)

X 9 [(x 1, --X-)(x 1, x2)

(xl, x2)

x2 xl x2
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(1) if attribute/ depends on attribute a, then a is evaluated before/3;
(2) if a is an inherited attribute of Xo, and fl is a synthesized attribute of Xo,j, then

a is evaluated before/.
(c) Assume the attributes of Xo,0, Xo,1, Xo,_l can be evaluated in some order

satisfying (1) and (2). Consider an edge from attribute a to attribute in
Do (ALL (Xo, x) ALL (Xo,_). If the edge is in Do, a is evaluated before fl by (1); if
the edge is in ALL (Xo,i), a is evaluated before fl by (2). Since "is evaluated before" is a
linear order, Do (ALL (Xo,). ALL (Xo,-)) has no cycles.

Comment. An attribute grammar with only ordered productions allows "evalua-
tion in one pass from left to right" [3], [8]. One applies the following recursive algorithm
for each application of a production Xo,o Xo,1 Xo,_I in a derivation tree:

lr evaluate: begin fetch inherited attributes of Xo,o;
or X Xp,1 to Xp,-i
do begin Use fo to evaluate inherited attributes of X;

Call lr evaluate to calculate synthesized attributes of X;
end

Use fo to calculate synthesized attributes of Xo,o;
end.

A similar argument shows that one can evaluate an attribute grammar with only
tangled productions in one pass, if we allow a pre-evaluation phase in which we either
rearrange the derivation tree or add a next sibling pointer to each node in the tree. One
applies the following recursive algorithm for each application of a production Xo,o
Xo,’"" Xo,- in the tree

t-evaluate: begin fetch inherited attributes of Xo,o;
for a :attribute of Xo,o Xo,1. Xo,_ in order given by

Theorem 3c
do if a is inherited attribute of Xo,; for j 0

or a is synthesized attribute of Xo,o
then Use fo to calculate a
else if a not already calculated
then Call t-evaluate to calculate

all synthesized attributes of the Xo, to which
a belongs;

end.
An algorithm for finding the finite number of passes required to evaluate a

well-defined attribute grammar is given in [15].
DEFINITION 4. An attribute grammar is in normalform if for every production the

function

satisfies

for any in L and any r, r’ in R.
o ofo" L- Ro Ro

fo(Z)(r) fo(Z)(r’)

Comment. For well-defined attribute grammars in normal form, many tiresome
distinctions disappear.

TIEOREM 4. (Hanne Riis). If an attribute grammar is in normal form then the
production p is reordered : production p is tangled.

Proof. Suppose Xo,o X,,I"" Xo,- is a tangled production of an attribute gram-
mar G. If G is in normal form, we can evaluate all attributes of a right symbol Xo, "at
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the same time", because we can wait until a synthesized attribute is required before
evaluating the inherited attributes. To make this argument precise we introduce the
relation R by

]Rk e, there is an arrow in Dp from a synthesized attribute

of Xp,j to an inherited attribute of Xp,k
The reflexive transitive closure R* of this relation is a partial order because jR*k,
kR*], f#k implies a chain of arrows in Dv that becomes a cycle in

Dv [ALL (Xv,1) ALL (Xp,_l)]; and this cannot happen when p is a tangled produc-
tion.

Embed the partial order R* in a total order and define f(j) as the position of Xp,j in
this total order. Clearly f is a permutation and ]Rk implies f(/’)< f(k). Because G is in
normal form, there are no arrows in Wv from either synthesized attributes of Xv,0 or
inherited attributes of Xp, Xv,_. If there is an arrow in Wp from an attribute of Xv,i
to an attribute of X,,k we must have/" # 0 and jRk. The tangled production p must be
reordered; the converse implication is given by Theorem 3.

Example (continued). As an illustration of the simplifications possible when
productions have our "compiler-friendly" properties we reformulate our grammar
CONTRIVED within mathematical semantics in Table 4.

TABLE 4

syntactic rule

SoU
Uo5
Uo7
SoO
OoX
OoRT
Ro TO
ToBX
BoX
Xo9

semantic function

s[U]= ul + u2 where (ul, u2)= u[U](u_2, u___l)
u[5](] 1, u2) (23 x u--f, 5)
u[7](u 1, u2) (7, 29 x u2)
s[O]=3xo[O]2
o[X](7)-- x__l/x2 where (xl, x2)= x[X](0,
o[RT](O) 19x_t where _r= r[R](31 x ) and _t t[r](37 x_r)
r[TO](F)= 11 x_t.where _o=o[O](17 xF) and _t tiT](13 x_o)
t[BX]t-) _b + x2 where _b b[B](, t’-) and (xl, x2)= x[X](, r)
b[X](b 1, b2)= b2-x2 where (x_j_l, x2)- x[X](b 1, xl
x[X](x 1, x2) (x 1, x2)

The only productions which are not tangled are S U and B X. For these two
productions and no others we have recursion in the corresponding semantic function.
Since our grammar is well defined, this recursion can be eliminated by Theorem 2. For
the nonbenign production S U, the proof of the theorem suggests replacing the
semantic functions for the first three productions by

s[U] sb[U] [.J sc[ U],

sb[U]= ul + u2 where u2 u2b[U] and ul ulb[U](u2),

sc[U]= ul+u2 where ul ulc[U] and u2= u2c[U](u__l),

u lb[5](u 1)= 23 x u 1, u2b[5] 5,

u lc[7] 7, u2c[7](u2) 29 x u2.

The proof of our next theorem shows why the join operator LI is not needed when
removing the recursion in the semantic function for the benign production B X"

b[X](bl, b2)=b2-x2 wherexl=bl andx2=xl.
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Convention. We use MS [G] as an abbreviation for a specification in mathematical
semantics of the function s in the proof of Theorem 1 for an attribute grammar G.

Determinacy theorem. If all productions in an attribute grammar G are benign, then
the join operator U need not appear in any of the functions specified by MS [G].

Proof. For each X the set of symbol graphs SYM (X) can be replaced by their
union SOME (X). If we make this replacement in the proof of Theorem 2, there is one
and only one Q satisfying requirement (***) for a production Xp,o- Xp,1 Xp,-1. The
function rules (Q, or) that are joined in the definition of symbol (F, or) come from
different productions with the same left side. Such joins do not appear in an MS [G]
specification because ot the convention in 2.

Comment. Because our grammar MS (G) works on derivation trees, the implicit
joins in the 2 convention do not destroy determinacy. The convention that MS (G)
semantic functions may be specified in terms of one another seems just as harmless. In
our statement of Theorem 2 we avoided the fixed point operator Y used to unravel this
mutual recursion.

Splitting theorem. Ifallproductions in an attributed grammarG are tangled, then we
can construct an MS (G) such that

(a) no function specified in MS (G) uses the operators Y and U
(b) every function specified in MS (G) is in CONT (X) for some X in N U T.
Proof.
(a) Combine Theorem 2 and the determinacy theorem.
(b) Consider the MS (G) formulation given by part (a). It consists of specifications

of the functions Symbol (SOME (X), a) for each X in N (.J T and each synthesized
attribute c in _X. For a tangled production Xp,o Xp, Xp,_l, all inherited attributes
of Xp.i can be evaluated before any synthesized attributes of Xo,i. Thus each function
Symbol (SOME (X), c) can be extended from DOM (X) W(SOME (X), a) V,, to
DOM (X)INH (X)--, Vs. Our theorem now follows from the fact that the lattice
product of DOM (X)INH (X)--, V for c in _X is isomorphic to the lattice
CONT (X)= DOM (X)INH (X) SYN (X).

Comment. When we removed recursion from the semantic function for the benign
production B X in our grammar, the required splitting of SYN (X) was implicit. The
general construction would give

b[X](b l, b2) b2-x2 where xl x l[X]b l andx2 x2[X]x___l,

x l[9](x 1) x 1,

x219](x2) x2,

and minor changes in the specifications for productions O--,X and T BX.
Concluding remarks. The converse of the problem in this papermforming an

attribute grammar from a specification in mathematical semantics--is the subject of [8],
[11 ]. Is there any good reason for basing a compiler generator on attribute grammars,
rather than mathematical semantics [14]? If there is, should one allow for attribute
grammars that are well defined but not benign? Any algorithm for checking that an
attribute grammar is well defined is computationally intracfable [6], [7]. Chirica and
Martin [4] give a pragmatic reason for preferring benign grammars for particular
languages; our determinacy theorem gives a theoretical reason for this preference.

Acknowledgment. The author would like to thank Ole Lehmann Madsen, Hanne
Riis, and Erik Meineche Schmidt for many fruitful discussions on this and the other
topics discussed in this paper.
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AUTOMATIC PROGRAMMING OF FINITE STATE
LINEAR PROGRAMS*

AMIR PNUELI" AND GIORA SLUTZKI:

Abstract. Finite State Linear Programs (FSLP) are introduced to model simple data processing
applications. Essentially these are finite automata with the added capability of performing linear operations
on a set of registers and the input. Algorithmic constructions are given to test equivalence of FSLP programs,
and to minimize the number of states and registers. Linear algebraic methods are used for the register
minimization procedure (and its correctness proof).

Key words, automatic programming, finite state programs, analysis, synthesis, optimization, register
optimization.

1. Introduction. The prominent problems in the area of analysis and synthesis of
programs can all be described under the uniform framework of translation or alter-
native descriptions of a common object. We may consider two languages" 5, a
specification language, being a high level, nonprocedural description language (such as
the predicate calculus) and , a programming language. With respect to this pair we
may investigate the following questions.

(1) Analysis. Given a program in , produce its specification in
(2) Synthesis. Given a specification in 5, construct a program in satisfying the

specification.
(3) Verification. Given a specification in 5, and a program in , check them for

consistency.
(4) Optimization. Find the best program in equivalent to a given program in

or satisfying a given specification in
The present approaches to these very important problems can be divided into two

types.
(a) Considering the problems in their full generality, devise heuristics which will

cover as many cases as possible. All the efforts in [1], [3], [5] can be grouped under this
approach.

(b) Construct submodels of the general case for which there exist algorithms
solving some of the problems (1)-(4). A successful example of this approach is [8].

The main difference between (a) and (b) (which may be argued to have a large
overlap) is that (a) is essentially procedure oriented while (b) is model oriented. In this
paper we adopt the approach in (b), calling upon extensions of models developed in
automata theory. More specifically, we suggest an extension to finite state automata
which will approximate a simple class of data processing programs which satisfy the
following properties.

(a) The program reads an input tape and outputs a single (numeric) result.
(b) The tape contains both numeric and alphabetic fields. The numeric values are

used for computation, using a finite set of numeric registers (program variables). The
operations allowed are linear in the input values (i.e., additions and multiplications by
constants).

(c) The symbolic (alphabetic) fields are used for control decisions, i.e., selection of
the next operation, or next part in the program to be executed.

* Received by the editors July 13, 1978, and in final form October 23, 1980.
r Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
Department of Computer Science, University of Kansas, Lawrence, Kansas 66045.
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The two critical restrictions stipulated in the model are (1) the operations are linear
and (2) control decisions depend only on the symbolic fields of the input, and not on the
results of the computation.

Thus, the finite state linear program (FSLP) model imposes a separation between
arithmetic (numeric) manipulation and control. For the control component we assume a
finite state control. This separation ensures, as shown in the paper itself, decidability for
the questions (1)-(4) above. Simple as this class is, it does cover some nontrivial
examples and with additional extensions (discussed in 5) can cover an interesting
subclass of data processing applications.

While this work reports only results about relations and transformations between
programs, and thus is restricted to investigations within (the programming language),
there has been developed an appropriate specification language ow. Just as the class of
FSLP programs is an extension of finite state automata, the specification language is an
extension of the regular expression language obtained by allowing numerical
coefficients in the expressions. Relative to these two languages the questions of analysis
and synthesis have been investigated and proved decidable, and algorithms have been
developed for their general solution. These results are reported in [7].

The paper is organized as follows. The second section introduces the FSLP model.
The two results proved in this section are (1) nondeterminism does not increase the
computational power of FSLP programs and (2) allowing nondeterminism, one register
is enough to carry out the computation. Section 3 treats the zero computation problem
(i.e., whether the program computes zero on its domain) and the (related) equivalence
problem. Both problems are shown to be decidable. In 4 we deal with optimization
problems. It is shown that state optimization can be carried out by identifying equivalent
states, much in the spirit of the traditional automata theory. The main result of this
section is a procedure to minimize the number of registers subject to a given control
structure. This enables one first to minimize the number of states in the program and
then to minimize the number of registers without compromising the state minimality.
The last section concludes the paper, summarizing the results and pointing out several
potentially useful extensions. All constructions presented in this paper are effective.

2. The class of FSLP programs. The class of programs we study is a class of
programs which process two data types. The first is a finite set of letters E (finite
alphabet), while the second is some fixed field of characteristic zero, R (the rationals will
be used in our examples). The program can manipulate a finite set of registers of type R,
denoted by Z1,"’, Zn, and it can read a file which contains a sequence of pairs
(O’1, Yl) (O’i, Yi) with O" and Yi R. Each pair (O’i, Yi) is called a record. Thus,
an input to an FSLP program is a "word" over the (infinite) alphabet of records E R.
The empty word will be denoted by A. The program uses the tri’s to determine its next
move, and it can add or subtract the yi’s from some of its registers. The program cannot
test the current value of any of its registers in order to determine its next move. Thus the
control capabilities of programs (in our case finite state control) and their computational
capabilities are separated in the FSLP model. The operations allowed on the R-data
type are addition, subtraction and multiplication by a constant.

We will have to deal (occasionally) with undefined values. Denote by to, to R, the
undefined value, and let R/= R (.J {to}. We set the following rules for arithmetical
operations for any r s R and to (1)r + to -= r, (2) r. to =- to, where the "--" relation means
that either both sides are undefined (i.e., to) or both are defined and equal to each other.
As it turns out, the seemingly bizarre rule r + to r is very convenient technically (see
Definitions 2.1(5) and 2.3). Apparently, the reason is that to behaves both like a zero
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and like the usual undefined symbol precisely where the respective properties are
needed.

DEFINITION 2.1. Let R be any field of characteristic 0. An R-FSLP program is a
pair P (s, ), where s (K, ;, 8, B, F) is the underlying (nondeterministic) finite
state au,tomaton with state set, input set, move function, initial states and final states

respective_ly, and (Z, T, U, A, V) is the computation structure, where"
(1) Z (Z1, , Zn) is a (row) vector of registers capable of storing values from

R. The register vector is modified during transitions.
(2) T’K x;xKRn, where R is the set of n n matrices over R; for

q’: 8(q, o’), T(q, r, q’)= 0 (all-zero arrays will be denoted by 0).
(3) U’KxExKR ", where R is the set of (row) n-vectors over R; for

q’ 8(q, o’), U(q, o’, q’)= O.
T and U assign to each transition (q, or, q’) a matrix T(q, o’, q’) and a vector

U(q,o’,q’) such that the transformation associated with this transition is Z-
Z T(q, o’,.q’)+ U(q, o-, q’). y, where y is the numerical input read during the transition.

(4) A" B R assigns a (row) n-vector A(q) over R to each initial state q e B.
A(q) in the initial value of Z for computations starting at q.

(5) V’F-R assigns a (column) n-vector V(q)over R to each accepting state
q F. If the value of Z at state q F is ti, then the output value associated with q is
a. V(q).

A and V may be extended to all of K, in which case we set A (q) 0 for q e B and
V(q) o2 (02 will denote arrays all of whose components are 02) for qF.

To save repetitions we agree that, unless stated otherwise, a program P is denoted
by the pair (, ) and that and a always have the (same) components (K, , 8, B, F)
and (Z, T, U, A, V) respectively.

An FSLP program P is deterministic if IB] 1 (i.e., B contains a single state) and for
every q K and cr , 18 (q, cr)l-< 1 (i.e., there is at most one transition from q by or). In
this case we prefer to specify a single initial state, denoted usually by ql, instead of the
set B. Since all the programs discussed in this paper are FSLP programs, we shall
sometimes omit the adjective "FSLP". Hopefully, no confusion will be caused.

In our examples we shall usually describe FSLP programs as transition graphs
whose nodes correspond to states and edges to transitions. Each edge is labeled by a
letter cr X which selects the transition and a set of assignments of the form Z -alZ +" + a,Z, + by, 1, 2, , n, with ai, b R. y stands for the currently input
R-value. The assignments are assumed to be carried out simultaneously; i.e., all
right-hand side expressions are calculated first and then assigned to the left-hand side
variables. Of course, all these assignments can be represented as a single vector
operation Z Z.M+ 0" Y, where M and are the T and U for the specific transition
according to Definition 2.1. Also, if no operation is performed during a transition (i.e.,
M is the identity matrix and is the null vector) we prefer not to write any assignments
on the edge corresponding to that transition. This omission will make the figures more
readable and stress the fact that such transitions are considered as purely control-
transitions.

For any word (file) w (o’1, yl)(cr2, Y2)’ (O’s, y) 6 ( x R)* we define A (w) as

O’1 O’s (the Z-component of w). For any such word and for any program P we define
the following computation functions.

2.2. DEFINITION. The function Vale" (Y- x R)* x K R" is a vector-valued
function such that Vale(w, q) expresses the current value of the register vector Z at the
state q, after reading the input word w. Since P is nondeterministic, there may be many
paths reading w (w-paths) and leading from B to q. Roughly, Vale(w, q) is the combined



522 A. PNUELI AND GIORA SLUTZKI

value obtained by summing computations over the different paths, but discarding the
multiplicity introduced by shared subpaths. We explicitly stipulate that if q_ 6(B, h (w))
then Valp (w, q)=0. In all other cases Valp is given by the following recursive
definition’

Valp (A, qj) A (qj),

Valp (w. (o-, y), q)= Y [Valp (w, qk)" T(qk, o’, q) + U(qt,, tr, q.). y].
qkB(B,h(w))

Note that in the deterministic case the definition of Valp coincides with the
intuitive notion of computation sequence corresponding to an input w, that is, proceed-
ing along the uniquely determined path and performing the computations associated
with the edges in a stepwise manner.

DEFINITION 2.3. We define a function Outp ( R)* R by

Oute (w)= 2 Vale (w, q). V(q).
qe(B, A(w))

Note that if P contains no w-path leading from B to F, then Outp(W) is undefined. Thus
in contrast to the totality of Valp we prefer Outp to be a partial function, a feature that
corresponds to the possibility of program results being undefined. Note also that in the
case that Outp(W) is defined we may extend the summation over all states of P.

Example 2.4. Consider the following "real-life" situation. A wholesale store has
two types of customers denoted by u and v. It is selling two commodities a and b, and
the prices vary among the customers according to Table 1.

TABLE

Price/Unit Price/Unit
Product Customer u Customer v

a 3 4
b 7 6

An input file is presented which contains several groups of records, each listing
transactions for a certain customer. Each such group is headed by a record (u, 0) or (v, 0)
specifying the customer’s type. The records in the group are of the form (a, y) or (b, y)
where y is the quantity purchased at the transaction. The file is terminated by an (s, 0)
record. Thus the structure of the file can be described symbolically as

[[(u, o)+ (v, o)][(a, y)+ (b, y)]*]*(s, 0),

where / stands for choice (disjunction).
The (deterministic) program in Fig. 1 will read such a file and compute the balance

of all the transactions.
Consider now an alternative situation in which the record which identifies the

customer’s type succeeds rather than precedes the relevant transaction group. In this
case we will construct a nondeterministic program as in Fig. 2. Program P2 when
presented with the input (a, 1)(a, 2)(b, 3)(u, 0)(b, 2)(b, 2)(v, 0)(s, 0) outputs the
value 54.
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FIG. 1. Program P1.
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FIG. 2. Program P2.

There are special cases of the general model of FSLP programs that are worth
noting. Let P be a program. We already mentioned the deterministic programs. If for
each (q, r, q’) e K x E x K, U(q, r, q’) 0 then the R values on the input tape can be
ignored. In this case we obtain a multiplicative automaton (MA). If, in addition,
dim Z 1 (i.e., there is only one register) then we get a scalar MA. A model similar to
our scalar MA is discussed extensively in [4, Chapt. 6].

Let P1 and P2 be FSLP programs. We say that P1 and P2 are equivalent, P1 P., if
their Out(w) functions are equivalent; i.e., for every w e(ExR)*, Outel(w)----
Out,2(w).

We will show now that the well-known tradeoff between determinism and number
of states in the classical automata theory is extended here to a trade-off between
determinism and the number of registers and states. This is expressed in the following
two theorems.

THEOREM 2.5. For every FSLP program P there is an equivalent deterministic FSLP
program P.

THEOREM 2.6. For every FSLP program P there is an equivalent (possibly
nondeterministic) FSLP program utilizing a single register.

Proof of Theorem 2.5. Let P (, ) be an FSLP program. The idea of the
construction is the following. The underlying control structure of/ is exactly the one
derived when constructing the deterministic version of the_ finite automaton . The new
register vector Z will be a multiple copy of the original Z having a unique copy for each



524 A. PNUELI AND GIORA SLUTZKI

state q K. When entering a state / (which is a subset of K) the copy belonging to
qg e will undergo the transformation applied to Z when entering qg in P. In addition we
shall ensure that copies belonging to qj will be deleted (reset to 0) on entrance to
Assume that ]KI m, dim 2 n. Let t7 m.n. The required deterministic/3 is/3=
(s, ), where s=(/,E, g, 1,/) is the deterministic version of
(,, 7, ,/, I) is defined below. (1, , m)is a "supervector" assuming values
from R e, where Z is a copy of t.he original associated with the state qg K.
./ x E x/-Ree is an assignment of an d x d matrix to each edge (4, tr, 4’). For
each (4, tr, 4’) such that ’= g(4, tr) it is given by the block form (4, tr, 4’) (Ti,j),
where Tg.i T(qg, tr, qi), 1 <-_ i, ] <= m. Note that depends only on tr 5; and not on or

c We extend the definition of by setting T(q, o’, gl’) 0 if g(, r). 0"/ x E x
/ R e is an assignment of an r-vector to each edge (c., r, ’). For each (, r, ’)
satisfying ’=g(c, r), 0 is given by the block form U(, r, c’)=(O, ’)
where =q,o U(qg, o’, qi). Note that (, r, c’) is independent of ’. We extend
the definition of by se.tting 0(4,r,c’)=0 if ’g(4, cr).
(A(q),A(q2),’", A(q,)); i.e., A(I) is the supervector composed of all the initial
vectors, each in the position corresponding to its state. Note that zero vectors will
correspond to nonlnltlal states. V:FR assigns a (column) supervector in R e to
states e/6 bythe block form ()= (V’(ql)T, V’(qm)T)r where V’(qi)= g(qi) if
V(qg) is defined and 0 otherwise. The su.perscrijpt T denotes the transposition opera-
tion. Note that for and in/6 we have V() V(/3). Ag.ain we extend the definition by
setting (q) =- o) for F. This ends the construction of P. The proof that P /3 rests on
the assertion [Val (w, w)]i Valp (w, qj), where Cw d(ql, h(w)) and the subscript/"
on the left-hand side picks the fth block (which is an n-vector) of Val (w, 4w). The
proof of this assertion is a straightforward induction on [w[ (the length of w).

Proof of Theorem 2.6. Let P (, -) be given with K {qx,. , q,,}. We con-
struct a 1-register FSLP program /3= (s, ) where s= (/, ,E, g,/,/) and
(, , t), ,3., Q). The idea of the construction is to have a new state corresponding to
each register in each state of P. Thus when reaching state / we intend (the single
register of/3) to hold the value that Z. originally held on reaching q in P. The formal
definition follows.

dx {qti’= sl, m; j 1,,... n}the set of states of/3. , is the single register of/3.
g" Ez defined by g(q, o’)= {qlk 1,..., m ql 8(q], o’)}. b.
R is a scalar mapping defined by T(q, o-, q) [T(qi, o-, q)].k;i.e., the (i, k) entry of the
matrix T(qj, or, ql). " Ig2 x x Ig2 R is a scalar mapping defined by O(q, or, q)
(1/n)[O(q, o’, ql)], where 1/n is the inverse of n, which is assumed to exist in R. Note
that the right-hand side is independent of i./ {q.[i 1,.. , n; q B}. - R is
given by (qi)=[A(qj)]i. can be extended in the usual man,ner.
{ql* 1, 2,. , n; q F}. ’/6 R is defined by (q}) V(q)]g. Again V is exten-
ded to be o) for states not in/6. The inductive claim which is proved in this case (by
induction on [w[)is

[Valp(w, qi)]g Val, (w, qi),

and it serves to establish the equivalence of P and/3.
Example 2.7. The deterministic version of the program P2 of Fig. 2 is P3 shown in

Fig. 3. We have slightly deviated from the formal construction given in the proof of
Theorem 2.5 in that one (redundant) register (corresponding to the state q4) was deleted
and the register corresponding to q3 assumed its role. In Fig. 3 the actions Ci associated
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Pl C

c
4

c

FIG. 3. Program P3.

with the edges are the following:

Cl’Z--Z. 0 1 +(4,3,0)’y, C2"Z<-Z. 0 1 +(6,7,0)’y
0 0 0 0

0 0 0 1 1 1 0 0 0

C3"Z<--Z. 1 C4"Z<--Z. 0 0 C5"Z<.-Z. 0 O.
0 0 0 0 1

3. Zero computation and equivalence testing. In this section we assume that the
FSLP programs are deterministic unless stated otherwise. By Theorem 2.5 no general-
ity is lost.

The intuitive notion of the FSLP model being fully analyzable, which we wish to
stress throughout the paper, should clearly imply algorithmic solutions to questions like
the zero computation problem and equivalence. An FSLP program is zero computing
(ZC) if it outputs zero for each word w in (5; x R)* for which it is defined. The zero
computation problem (ZCP) is to determine for a given program P whether or not it is
ZC. This problem is algorithmically solvable. One approach to the proof of this fact is to
extend the result in [4] (given there for scalar MA’s). The basic idea would be to show
that for each program P there is a bound N such that P is zero computing for all inputs if
and only if it is zero computing for all words not longer than N. Of these it is sufficient to
consider inputs whose R-components are all zero except one which is 1. Thus by a finite
amount of checking one can verify that P is zero computing for all inputs.

We adopt here a more constructive approach. Let P (sg, ) be a deterministic
program with dim n. For each q K, each row vector 3 R and x 5;* we define
Amp (q, , x) 0 if 8(w, x) F, and otherwise to be the value output by P if started at q
with initial vector g and fed with w (rl, 0)... (r, 0), where , (w)= x.

For each q K we will construct a zero amplification subspace (ZAS) Sq (of column
vectors), which is a subspace of R such that

_t_$q , Amp(q,7, x)=0 for allxes;*.

5 _k Sq denotes here that 3 is orthogonal to Sq. Thus the subspace orthogonal to Sq is the
subspace of all initial values, at q, that will cause a zero amplification for any zero input
word w (i.e., word whose R-components are all zero). The bases of the spaces Sq are
constructed backwards by successive accumulation. At any stage they will be represen-
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ted, at each q, by a set No of independent n-vectors whose number is obviously bounded
by n.

3.1. The So-algorithm.
Initialization. Set No for each nonaccepting state q and No { V(q)} for each

q F. Obviously, for each q in F, the vector V(q) should be in So since any initial 17
which causes zero amplification must yield 0 for the empty word A, and hence must
satisfy 17. V(q)= O.

Iteration step. This step consists of consideration of all edges (q, o., q’) labeled by
the operation Z - Z.M+. y. Here, for each/2’ So, we should have M./2’ So. This is
so because any 17 which satisfies 172_ So can, by reading o., go into q’ with value 17. M, and
hence must satisfy 17. M 2_ So,. Hence 17. M./2’ 0, i.e., 17 is orthogonal to M./2’, which
gives M./2’ So. The iteration step consists therefore of taking each /2’No, and
calculating/2 M./2’./2 is then added to No if it is not already in So L(No) (i.e., cannot
be expressed as a linear combination of the current basisNo. L(No) is the linear subspace
spanned by No). The iteration step is repeated until after a complete cycle, including all
edges, no No has increased.

It is obvious that the algorithm converges. After the iteration step of the Sq-
algorithm has been completed we can conclude that each state q K has an associated
subspace Sq L(No) of R n.

The fact that this algorithm actually computes the desired So’s is proved in the
following lemma.

LEMMA 3.2.

172_ So e Vx E* [Amp (q, 17, x) 0].

Proof. () Assume that for all x Z* [Amp (q, 17, x)=0] and that 17./2’# 0 for
some /2’ esq. Since No spans So, there must exist a vector /2 in No such that
i3./2 #0. Then by the inductive definition of the No’s we can choose a path
7r. (q, o.1, ql)(ql, o.2, q2) (qk-1, O.k, qk) with qk V= F such that (1) 17 /2 0 and
(2) for each i, l<-i_-<k, we can choose tTi in Noi such that /2=

T(q, o’1, ql)T(ql, o.2, q2) T(qi-1, o.i, qi) "/2i with /2k V(qk)Nqk. Since P is deter-
ministic, Amp (q, 17, O" O’k) 17 T(q, o’1, ql) T(qk-1, O’k., qk) 17 /2 # 0, contrary
to our assumption.

(::>) This direction is proved by induction on Ix I, assuming 172_ So. If x A then q is
an accepting state and hence 172_Sq implies 17. V(q)-0. Since in this case
Amp (q, 17, A)= 17. V(q), we are done.

Assume the conclusion to be true for all states q and for all x * such that [xl < k.
Consider the word x’-O’x, and an edge (q, O’,q’) labeled by ZZ.M+O. y.
Obviously, since P is deterministic, we have Amp (q, 17, O’x)- Amp (q’, 17. M, x). Thus

, va s [e. a 0]

:: V/2’ So,[17 (M
, V/2’ So,[(17.M)./2’= 0]
,

where the implication is justified by the construction which ensured that M. So, So.
Hence, by the induction hypothesis, Amp (q’, 17 M, x) 0, which implies the required
result. 1-1
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Now let P be any deterministic program, q0 its initial state, A (qo) the correspond-
ing initial vector. For each edge e of P let Z Z. T(e) + U(e). y be the action labeling
it, and assume that the subspaces Sq have been calculated, for each state q of P, as
described above. The following lemma follows easily from Lemma 3.2.

LEMMA 3.3. P is ZC if and only if
(1) A(qo)+/-S.qo and
(2) for each edge e entering state q, U(e) +/- Sq.

Once the zero amplification spaces Sq have been computed for each q it is possible
to bring any FSLP program into a form which is easier to analyze.

DEFINIrION 3.4. An FSLP program P is said to be proper if (1) P is deterministic,
(2) A(qo)Sqo (qo is the initial state of P), and (3) for each edge (q’, cr, q) of P,
U(q’,o’,q)Sq.

There is an obvious advantage to a proper program in that it does not operate on
input values y if they do not participate in the output. Thus the following is an
immediate consequence of the above definition.

COROLLARY 3.5. A proper FSLP program is ZC if and only ifA(qo)= 0 and for
each edge (q, o-, q’), U(q, or, q’)= O.

In order to show that every program can be brought to a proper form we first bring
a linearity result which can be proved easily by induction, using the definitions of Val
and Out functions.

LEMMA 3.6. Let Pi (, ;i), 7i (2, T, Ui, A i, V), 1, 2, be two FSLP pro-
grams differing only in their initial (the A-) and nonhomogeneous (the U-) components.
Then P=(s,), where =(,T,UI+U2,AI+A2,V), satisfies Outp(w)---
Outpl(w)+Outp_(w) for every w (Ex R)*.

LEMMA 3.7. Every FSLP program can be brought to proper form.
Proof. Let P (s, ). Define two programs Pi (, c’i), ,-i (,, T, Ui, A i, V),

1, 2, as follows. Ul(e) --pr (U(e), S) for every edge e (q’, tr, q); i.e., U(e) is the
orthogonal projection of U(e) on Sq (4 is an orthogonal projection of 5 on X if
t7 ti + where # is orthogonal to X). Also define A a(q0)= pr(A (qo), Sqo). Similarly,
U2(e) U(e)-U(e) for every edge e of P, and A2(q0) A(qo)-Al(qo). Note that
U2(qi, tr, qi)+/-Sq, and A:(qo)+/-Sqo Thus P2 is ZC. By Lemma 3.6, Outp (w)=-
Outp(w)+Outp2(W)=-Outp(W) since Outp2(W) =- 0 (or to). Hence P1 is a proper FSLP
program equivalent to P. 1

In order to test the equivalence of two programs P and/92 we first check that their
domains are identical; i.e., they are defined for exactly the same set of words. This is
done by testing the underlying finite automata 1 and ’2 for equivalence. Once the
domains are found to be equal we construct the program P Pa- P2 as follows.

Let Pi (sli, ,-i) with i (gi, , i, Be, Fi), .i (2 i, Ti, Ui, Ai, V/), 1, 2, be the
two given programs. We may assume that the dimensions of 1 and : are equal. If
they are not, the shorter can be extended to match the longer. We define P (s, )
with K=KIUK2,==a, t tl -Jt2, T= TI+ T2, B=Bll,.JB:, A=AI+A:,
F F U F2, V V1- V. and U Ux + U2.

In the definition of V we used our convention that a +/- to =- to + a a (for a R and
to the undefined value). Thus if q F1 then qC:F2, implying V(q)=-V(q)-V2(q)=-
Vl(q)-to Vl(q), and similarly in the case of q e F.

P is actually the nondeterministic union of the two programs with V(q), for q F,
negated. Since the computation in disjoint nondeterministic programs is the sum of the
computations in the two components, the result will be zero if and only if the
computations in P1 and P2 produce the same results. Thus P1 P2 if and only if both
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have the same domain and P P1- P2 is a ZC program. To determine whether P is ZC
we first obtain a deterministic program P which is equivalent to P and then test it for the
ZC property. We summarize the above discussion in the following theorem.

THEOREM 3.8. The properties of ZC and equivalence are decidable for FSLP
programs.

Example 3.9. The bases of the ZAS for the program P3 (see Example 2.7) are the
following:

NI= 0 N2-- 0 1 N=
0 0 0

Note that P3 is already in proper form.

4. Optimization. Most of the constructions illustrated above, as well as initial
designs produced by programmers, are usually less than optimal in the sense that the
FSLP programs are not necessarily the most economical. Therefore, it would be most
desirable if we could offer an optimization procedure which for a given program P
derives its most economical counterpart P’. When measuring the structural complexity
of FSLP programs two criteria should be considered: (a) number of states, and (b)
number of registers. Unfortunately there is a tradeoff between the two, and one of them
can be optimized only at the expense of the other. Since for nondeterministic programs
the state optimization problem is not tractable even for the finite automaton case, and
the register optimization problem is trivially solvable by Theorem 2.5, we restrict our
discussion to deterministic programs.

This section is divided into two parts. The first part treats state optimization, and
the results are similar to those in the usual automata theory. The second and the central
part discusses a register minimization procedure which keeps the state structure fixed.
We obtain an algorithm that minimizes the number of registers subject to a given
control configuration, i.e., finds the program with the minimal number of registers
which is equivalent to a given program and has the same state structure.

4.1. State optimization. As in the finite automaton case, the state reduced (opti-
mal) program P’ equivalent to a given program P can always be obtained by identifying
equivalent states. For a program P and a state q of P, we define the program P, as the
program P modified by taking q to be the initial state with initial value A(q)= 0. The
appropriate equivalence relation (on the state set) turns out to be the following.

DEFINITION 4.1.1. Two states qx and q2 of P are said to be equivalent, q -q2, if
P. P..

Given a program P we can partition its states into equivalence classes (using, for
example, the equivalence test of 3). Let [q denote the equivalence class containing all
states equivalent to q. Let N be the number of different equivalence classes of states
in P.

LEMMA 4.1.2. In a proper FSLP program P, let ql q2 be such that 6(ql, o-)=
6(q2, tr) q. Then U(ql, tr, q) U(q2, tr, q).

Proof. Obviously, if ql q2, then all computations starting from ql and q2 respec-
tively (with initial value 0) should yield identical results. Thus in particular if the first
read letter is tr, leading both ql and q2 into q, this implies Amp (q, U(ql, tr, q), x)=
Amp (q, U(q2, tr, q), x) for all x X*. By linearity Amp (q, U(ql, o’, q)-
U(q2, o’, q), x) 0 for all x X*. By Lemma 3.2, U(q, or, q) U(q2, tr, q) 2_ Sq. P being
proper implies U(ql, tr, q) U(q2, tr, q) Sq, which is possible only if U(ql, tr, q)
U(q2, tr, q). V1
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THEOREM 4.1.3. LetNbe the number of different equivalence classes o] states in P.
Then there exists an FSLP program P’ such that P P’ and P’ has N states.

Proof. Let P be a proper FSLP program given by P=(M,;) with K=
{ql," , q,}, ql the initial state and dim Z n. Let n’= m. n. We define P’= (M’ -’)
where K’= {[q][q e K}; i.e., each state of P’ is an equivalence class of states of P. The
initial state of P’ is [ql]. 2’=(2,... ,2’) where dim/= n. Thus ’ is an n’-
dimensional supervector having a copy of the original register vector Z, for each state
qi e K. 6" K’ x Y,- K’ is defined by 6’([q], r) [6(q, r)]. It is easy to show that this
definition is consistent and that it makes P’ deterministic. T’ yields n’x n’ matrix for
each edge of P’. Actually, T’ depends only on o- and is given by block form

T’ (cr) T’ii (r)), 1 -<_ i, ] -< m, where T’ij(o-) T(qi, or, qi).

U’ is given by the block form U’([q], r, [q’]) (Ua, , U’) where U U(q, or, qi)
for j 1, 2, , m. By Lemma 4.1.2, this definition is independent of the state chosen
to represent [q], but the same representative should be used to define all the Ui’s. Note
also that U’([q], o-, [q’]) is independent of [q’]. A’([q]) is n ’- dimensional supervector
whose block form is A’([q])= (A(ql), A(q2),’’’, A(qm)). Note that since P is deter-
ministic, the n-components corresponding to qq will be explicitly zero. F’=
{[q]lq F}. Again the definition of equivalence implies identical acceptance behavior;
i.e., q q2 implies [qlF iff q2F]. V’ yields for each [q] in F’ an n ’- dimensional
(column) supervector defined by V’([q])=((Va) T, (V2), (vm)T) T, where Vi=
W(qi) if qi f and V 0 otherwise. We extend V’ as usual by setting V’([q]) w for
[q] F’. This completes the definition of P’. We omit the proof that P

Actually, at some expense of simplicity (of construction and proof) we could have
reduced the number n’ (in the above proof) to be n’= k.n, where k is the maximal
number of states (of P) in any equivalence class [q]. Further improvements, not using
register reduction (of the next section) are not obvious.

In order to prove that the program P’ of Theorem 4.1.3 has in fact a minimal
number of states, we shall show that there cannot exist an equivalent program with less
than N states. For our FSLP programs we assume that every state is accessible (i.e., the
programs do not contain useless states).

LEMMA 4.1.4. LetPand P’ be FSLP programs, with state setsKandK’ respectively,
and let P P’. Then for each q K there exists q’ K’ such that P, P,,.

Proof. It is easy to see that Pql Pi (ql and q being the initial states of P and P’
respectively). Were this not the case, then, since the contribution of the initial vector for
a given w (E R)* is constant, we could choose the R-values in w, so as to make
Oute(w) Oute,(w), which contradicts P P’. Now it is easy to see thatP P, implies
Pq,) P,,,,) for every o- E. Thus, since every q in P is accessible from q, say
q 6(qa, &(w)), we can take q’= g’(q, A(w)) (being sure of its existence) and get
P Po,. [3

Now let P be an FSLP program which is reduced in the sense of Theorem 4.1.3, i.e.,
for any qi and qi in K, P,, P. Let P’ be an FSLP program equivalent to P, but assume
that P’ has fewer states. By Lemma 4.1.4 each state in P is equivalent to some state in P’,
and there are fewer states in P’ than in P. Hence there must exist two states q and qi in K
and a state q’ in K’ such that P, P, and Pq P’,, implying Pq, Pqi in contradiction to
P being reduced. Thus we have the following corollary.

COROLLARY 4.1.5. The FSLP program P’ defined in Theorem 4.1.3 is a statewise
optimalprogramforP, i.e., for any program P" equivalent to P, the number ofstates ofP" is
equal to or greater than the number of states of P’.
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For example, it is easy to check that the FSLP program of Fig. 3 is already statewise
optimal, i.e., no two states of that program are equivalent.

4.2. Reduction of the number of registers. We now present a method for reducing
the number of registers of an FSLP program while retaining its state structure together
with all its states. For the scope of the subsequent discussion we introduce a slightly
extended version of the FSLP model. In this (still deterministic) model we do not insist
on the program having a common set of registers, but instead, each state qi K may have
its private register vector Z(qi). As a result, different states may have register vectors of
different dimensions and correspondingly the transformation matrices need not be
square. The only motivation for introducing this complication is to make the description
of the register reduction procedure easier.

DEFINITION 4.2.1. An extended FSLP program (EFSLP) is a triple P (4, , d),
where is defined as usual and (Z, T, U, A, V) where Z is a mapping associating
with each q K its private register vector Z(q). d is the dimension mapping such that
for each q in K, d(q)=dimZ(q); T(q, r, q’) is now a rectangular d(q)d(q’) matrix;
U(q, r, q’) is a d (q ’) dimensional vector; A(ql) is the initial d(ql)-dimensional (row)
vector and for q F, V(q) is a d(q)-dimensional (column) vector. All mappings are
extended as in Definition 2.1.

The next lemma follows immediately from the definitions.
LEMMA 4.2.2. The models of FSLP and EFSLP are intertranslatable.
Let P be an FSLP program. Following the Sq-algorithm we can construct for each

state q in K its zero amplification subspace (ZAS) Sq. These subspaces are represented
by rectangular matrices. Thus for qi in K we have a d(qi)f(qi) matrix with f(qi)
(<=d(qi)) being the rank of Ni. Hence we can construct a (not necessarily unique)
pseudo-inverse N such that N’Ni It(,,), Ir(,) being the identity matrix of order f(qg)
(see [2] for a detailed study of properties of such matrices). The fact that N represents
the ZAS at state qi is reflected by the property that for each row d(qi)-vector ,
tT. N 0 if and only if for all x Z*[Amp (qg, tT, x) 0]. f(qi) is called the forward rank
of state qi. Going back to the construction of the Ni we recall that for each (column)
vector Ni there exists a path from qi to some accepting state such that if the register
value at qi is Z(q) t7 the output value produced at the end of this path is iT. f. Thus
there exist f(q) input words xl,..., x(,) in (,E x {0})* (i.e., the R-components being
zero) such that for any initial register value at qi, say, tT. Ni is the set of output values
produced by the f(qg) computations induced by these words, leading from qi to the
respective accepting states.

Similarly to the "forward matrices" Ni we can construct "backward matrices" Xi
for each qi K. The subspaces represented by these matrices are the subspaces spanned
by all possible values of Z (qi) for all possible computations starting from the initial state

q x. Following is the procedure for constructing the Xi’s.
(1) Initially set X ={A(qx)} if A(ql)0; otherwise set Xx ; for i 1 set

Xi .
(2) If qj 8(qg, o’) and U(qi, r, qj) L(Xi) adjoin U(qg, r, qi) to X.. Repeat step (2)

for all edges (qi, 0", qi).
(3) If qi 8(qi, o-) and t Xi and 3 iT. T(qi, o-, qj) L(Xi) adjoin 3 to X.. Repeat

step (3) until a complete cycle including all edges has not increased any of the
Xg.

In the above, X. is a set of row vectors comprising a rectangular matrix, and

L(Xi) if f is a linear combination of the rows of X.. The final Xg’s are called
attainability matrices at state qg; they are b(q)d(qi) matrices of rank b(qg). We may
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assume that (each) Xg has the property that each row in Xi is Walp (w, qg) for some input
word w (E R)*. Were this not the case we could easily modify Xi while keeping the
same row space (i.e., we may change the basis of the row space). As in the case of the
Ng’s we can construct the pseudo-inverse matrices X such that for each state qg in
K, X Xg Ib q,)

DEFINITION 4.2.3. An EFSLP program P is called economical if for each state qi in
K, b(qi) d(qi) f(qg).

THEOREM 4.2.4. Each EFSLP program P is equivalent to an economical EFSLP
program P" with identical (state) structure.

Proof. Let P be given by P (s, ’, d). The procedure will consist of two steps.
First we will obtain an EFSLP program P’ such that b’(qi)<=d’(qi)=f’(qi)=f(qi) and
then construct an EFSLP program P" such that b’(qi)= b"(qi)= d"(qi)=f"(qi).

Assume that the matrices Ni have been computed for each state qi of P. Define
P’ (sg’, ;’, d’), where Z’(qg) (ZI Za,(qi)); d’(qi) f(qi); r’(qi, tr, qi)
N T(qi, tr, qi)’Ni; U’(qi, or, qj)= U(qi, or, qj).Ni; A’(ql)=A(qa)’N; V’(qi)
N" V(qi).

It is easy to check that the dimensions match and all assignments to Z’(qi) in fact
have dimension f(qg). In order to show that P P’, we first prove the following claim:

If qi 6(q, A (w)) then Vale, (w, qi) Vale (w, qi)" Ni.

The proof is by induction on [w I. Let w=A; then Valp,(A, ql)=A’(ql)=
A(ql)"N Valp (A, ql). N1. Assume that (*) is true for w, and let w’= w. (tr, y), with
qi 6 (qi, tr). Then

Valp,(W’, q)= Valp, (w, qi)" T’(qi, or, q) + U’(qi, o’, q)’y

Valp(w, qi)" Ni" N’i" T(qi, tr, qj). N. + U(qi, tr, qi). N.. y.

By the construction of the Ni’s it was ensured that T(qi, o-, q).N _L(Ni) (i.e.,
T(qi, o-, qi).g L(Ni) for each column 7 of N.). It is also obvious that for each
f L(Ni), Ni N .

Thus

Vale,(w’, qi)= [Vale (w, qi)" T(qi, o’, qj) + U(qi, o’, qi)" y]" N.
Valp (w’, qi). N.

which proves (*). Now, if (qx, A (w)) qk is in F then, since V(q,) is in L(Nk) and hence
Nk" N’k" V(qk)= V(qk), we obtain

Outp,(W Valp, w, q, ). V’(qk)

Valp (w, qk)" Nk" N’k" V(qk)

Valp(w, qk)" V(qk)

Outp (w).

This proves that PP’. For the derived P’ it would have been possible to
recalculate the ZAS S’q, for each qi. However, this is not necessary. By following the
construction of the original Sq, in P, we can observe a constant relation between vectors
in Sq, and vectors in S,. The relation is that for each vector 3, dim 7 d(qi), Sq,
implies N/*. 5 S,. HenceN Sq, S’q,. However, N*i Sq, N L(Ni) L(N Ni)
L(Ir(q,)) =c S’q,. Thus the rank of S’q, is at least f(qi), but the rank being also at most
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d’(qi) f(qi), it follows that N must be of full rank, and is actually the identity matrix
I,(,a. Consequently d’(qg)=f’(q) holds for P’.

We now calculate the attainability matrices X for each state qg of P’ as outlined
before. X is a b’(qg) d’(q) matrix. Define an EFSLP program P" by P"= (, ", d"),
where Z"(q) (Z, ., Zd"(qa); d"(qi) b’(qi); T"(qi, tr, q) Xi T’(qi, o’, q) X
U"(q, o’, q) U’(q, o’, q) ’*Xj A"(ql)= A (ql). X*’, V"(qg)=Xg. V’(qg). Again it
is routine to check that the dimensions are compatible. To show that P’ P" we first
prove the following assertion.

If q 8(q, h (w)) then Valp,, (w, qi) Valp, (w, qi)" XI*.

The proof is by induction on Iwl. For w A we have Valp,,(A, qx)=A"(qx)=
A’(qx).X* =Valp,(A, ql).X. Assume that (**) holds for w, and consider w’=
w. (o-, y), where 8(qi, tr)= qj.

Valp,,(w’, qi) Valp,, (w, qi)" T"(qi, tr, qi) + U"(qi, tr, qi). y

Walp, (w, qi)" Slt" Sl" T’(qi, o’, qi). X.* + U’(qi, o’, qj). S;* y.

By the construction of the Xg’s
Valp, (w, qi)" X* X Valp, (w, qi). Thus

Valp,(W, qi) E L(X and therefore

Valp,,(w’, q) [Valp, (w, qi) T’(qi, o-, q,) + U’(qi, o-, qi) y]. X.*
Valp, (w’, q). X*,

which proves (**). Assuming now that 3(qx, A (w))= qk is in F we have, arguing as
before, that

Outp,,(w)=-Valp,,(w, qk)" V"(qk)=-Valp, (w, qk) X’* X’ V’(qi)

-----Valp, (w, qk)" V’(q)----Outp, (w).

For P" we have d"(q) b’(qg) by definition. In order to prove that P" is economical
we have to show that f’(q) b"(qi) d"(q). In fact, it is easy to see from (**) that the
new attainability matrix at state q is X,’.’ Xi X Ib,(q,. Thus b"(qg) b’(qi). Now, in
view of NI Ia,(q,, the rank of XI NI is b’(qi) and so is the rank of NI: (which consists
of just the independent columns ofX NI ). We conclude that f"(qi) b’(q) b"(qi)
d"(qi). I-I

We wish to show now that an economical EFSLP program utilizes a minimal
number of registers at each of its states. We shall make this statement precise. Let
P (ag, r, d) be an EFSLP program and denote by [P] the set of all EFSLP programs
which satisfy (1)-(2) below.

(1) The control structure of each member of [P] is identical to that of P, i.e., for
each R in [P], R (4R, ;R, dR) and R .

(2) For each R E [P], R P.
Thus it makes sense to talk about some particular state qi in each program in [P].

For R [P] denote by dR (qi) the dimension of the register vector in R at state qg. We
shall fix our attention on an arbitrary state q.

Consider any r (r > 0) different input words wj, j 1, , r, which lead from ql to
q. For R in [P] each such word yields, on reaching qg, a dR (q/)-dimensional row vector,
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tT. which is the current value of the register vector as computed on wj. Let us construct an
r dR (qi) matrix C, whose rows are tTj, f 1 ., r.

Now consider s (s > 0) different words Xk, k 1," ", s, which lead from qi to any
accepting state in F and whose numerical components are all zero. For R in [P] any such
word induces a linear homogeneous transformation from the initial value of ZR (qi) (the
register vector of R at qi) to an output value. For each xk this transformation can be
represented by a column vector tsk such that for any initial register vector
tT, Amp (qi, , A (Xk)) k. Again we construct a dR (qi) s matrix, D,, with columns
fk, k 1,’’’, s.

Now consider the matrix E’=(Eik),j=l,...,r,k=l,...,s, where E.=
OUtR (W Xk), i.e., Eq‘ comprises the results of computations for all input words formed

Sby concatenating the w/s and the x It is clear that E’ C D. Since all programs
in [P] are equivalent, it follows that for any given r. s computations satisfying the
specifications indicated above, E’ is independent of the particular program taken to
carry out these computations. It is obvious also that for all R in [P], rank (E’) <- d (q).
If we take now the maximum of rank (E’) over all possible r > 0 and s > O, and all
possible r-s-computations we obtain a number p(q) which still satisfies p(q)_-< d (q)
for all R [P].

Thus it follows that p(q) is a lower bound on the number of registers necessary at qi

for each program in [P]. Now let Q [P] be an economical program. By the definition of
b(qi) there exist b(qi) distinct input words w, ]= 1,..., r= b(q), such that the
constructed matrix C’o(=Xi) is of rank b(qi). Similarly there exist ]’(qi) words x,
k 1,..., s =f(qi), such that Db(= Ni) is of rank f(qi). Since Q being economical
implies b(q) do(q) fO(qi), the particular matrix E’ C.Db is also of rank
d(qi). Q in [P] implies therefore that p(q)<-d(qi) while maximality of p(qi) implies
p(q)>-d(q); thus p(qi)=d(qi). We have proved"

THEOREM 4.2.5. Let P and R be FSLP programs such that R is in [P]. If P is
economical then ]’or each state qi, P has no more registers than R has at qi.

The above discussion shows that after transforming a given FSLP program into an
equivalent minimal state version, we may then make it economical without
compromising its state minimality. In an obvious sense, minimal-state economical
EFSLP programs are the best programs we can hope for, if state minimality is our chief
concern.

EXAMPLE 4.2.6. To minimize the number of registers of the program P3 (see Fig.
3) while keeping its state structurefixed, it is necessary to "go backwards and forwards"
as in the proof of Theorem 4.2.4. Using the matricesN of Example 3.9, computing their
generalized inverses and applying the "backward process" we obtain the programP of
Fig. 4.

L

L2 L5

L /

START b L8

A(Pl)= (0,0)

V(P3)=l

FIG. 4
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In Fig. 4 the actions Li are the following:

LI’Z1 " Zl"
0

+ (4, 3)" y, L2 Z1 + ZI
0 1] + (6, 7)’y,

0 [; 1;]1 1 ta’Z2 <-" Zl"
0

0 0 0 1 1 1

Ls’ZZa. 1 L’ZZ. 0 0 0

0 0 0 0

1I !1 Ii OilL Z1 Z. + (4, 3). y, La Z Z.

L9" Z3 Z2"

For P; we compute the matrices Xi"

[4 371XI= 6
X2=[3 3 33, x=[33,

+ (6, 7).y.

and their pseudo-inverses"

lI!1xl x;=
l_

Applying the "forward process" we construct a program P, having the same
control structure as P, with the following differences, A"(p)=(O, O) as in P;
V"(p3)-" 3 and the actions Li are now

L’Z+Z" 0
+(1, 0). y,

L3 Z2 +--Z1. .
L7" 21 + 22" [1-3-6 1-63 + (1, 0). y,

L2" Z1 + ZI
0

+ (0, 1). y,

L4"Z2 - ZI"

L8 21 - 22"[ ]+ (o, ). y

Ls, L6 and L9 are identity transformation. Observe that the dimensions of the final
register vectors are dim Z1 2, dim Z2 dim Z3 1, and hence two is the minimal (and
thus optimal) number of registers needed to carry out the computation of P3 (keeping
the control structure fixed). 71

5. Conclusion. It is clear that the model studied in this paper is but a first step in
the general direction of identifying decidable and analyzable programming models. It is
our belief that a very large part of the actual programming done today (in particular in
data processing applications) naturally falls into one of the analyzable categories, and
we would like therefore to encourage further research along these lines.

Several possible extensions to our model have been contemplated. The first is to
remove the restriction on computational data testing. This has to be done carefully so as
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not to admit to full power of a Turing machine. An example of such a careful relaxation
is to allow a test on the current numeric values (input as well as registers) provided we
can always modify the most recent input so that the test will take any of its possible
branches. This corresponds to the notion of a "free program" in analogy to the concept
of free schemes. For some results along these lines see [63.

Another useful type of extension is to allow output of an output file rather than a
single output value. This will lead to generalizations of finite state transducers, and may
enable modeling of a much larger class of data processing applications.
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PUMPING LEMMAS FOR REGULAR SETS*

A. EHRENFEUCHT-, R. PARIKH/ AND G. ROZENBERG

Abstract. It is well known that regularity of a language implies certain properties known as pumping
lemmas or iteration theorems. However, the question of a converse result has been open. We show that the
usual form of pumping is very far from implying regularity but that a strengthened pumping property, the
block pumping property, is equivalent to regularity. The proof involves use of the finite version of Ramsey’s
theorem. We compare our results with recent results of Jaffe and Beauquier and state some open questions.

Key words, regular languages, finite automata, pumping

1. Introduction. Work on regular sets, sets recognizable by finite automata, goes
back to the middle and late fifties, to Kleene, Myhill, Nerode, Rabin, Scott and
Shepherdson (see, e.g., [5], [6], [8], [9], [10]). Most preliminary questions were solved at
this early stage, and most of the questions that remain appear to be quite hard.

Among the properties that regular sets have are so called pumping lemmas or
iteration theorems. These theorems follow from the fact that a finite automaton that
accepts long strings must repeat internal states, i.e., loop. The existence of such a loop
implies that the corresponding portion of the input string may be eliminated or iterated
without affecting acceptance or rejection by the automaton.

The question that we intend to consider in this paper is that of a converse, i.e., the
question whether a given pumping property implies regularity. We present both
positive and negative results and compare them with recent results by Jaffe [3] and
Beauquier 1 ].

We close the paper with some open questions and suggestions for further work.
Notational remarks. Throughout the paper, Z will be some fixed unspecified, finite

alphabet, except in Theorem 1, where Y_. is given explicitly, a, b, o- are symbols, x, y, z are
strings, and A is the null string, lYl is the length of the string y. Letters i, j, k, l, m, n, p
denote natural numbers. N 2will denote the cardinality of the set of all sets of natural
numbers. N is, of course, uncountable. Since there are only countably many recursive
languages, it follows that if there are N languages belonging to a particular class, then
they cannot all be recursive.

2. Negative results. We begin this section by stating the pumping lemma.
DEFINITION. Let L Z*, x 6 E* and x uvw. Then v is a pump for x relative to L

itt, for all i-> 0,

u(v)iwL iff x6L.

Note that being a pump is really a property of the particular occurrence of v. x may
contain two occurrences of v of which one is a pump, the other not.

PUMPIy6 LEMMA. Let L
_
Z* be regular. Then L satisfies the pumping condition;

i.e. there exists a k > 0 such that for all x, y, z E*, if ]y[ >- k then there are u, v, w Z*,
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v A such that uvw y and for all >- 0

xu(v)iwz L iff xyz L.

This is a well-known result [2, p. 47]. It can be proved by letting k ->_ n, where n is
the number of states of M where M is a finite state automaton that recognizes L.

Question (Rao Kosaraju [4]). Does the pumping condition imply regularity?
TI-IZOrZM. (Beauquier 1 ]). There is a context-]ree (CF) languageL which satisfies

the pumping condition but is not reguI’ar.
We prove below a somewhat stronger theorem.
THEOREM 1. There are languages which satis]y the pumping condition. Thus the

pumping condition does not even imply recursiveness. Some of these languages are CF but
not regular.

Proof. We prove this result bythe following device. Let Z1 {a, b} andX
___

ZI*. We
take a 16 letter2 alphabet and code X as a subset L(X) of *. L(X) satisfies the
pumping condition and the map X L(X) is 1 1. Since X is an arbitrary subset of 1",
there are b possibilities forX and hence the same number for L(X). This proves the first
part of the lemma. We show moreover that if X is the language {abln >- 0} then L(X)
is CF bu.t not regular.

Let Y_, {ai,jlO <= i, j <- 3}. We define two maps fa, fb from

fa (ai,j) ai+ 1, (mod 4), fb(ai,i) ai,i+ (mod 4).

The functions fa, fb are permutations of and have moreover the property that applying
two functions can never have the same effect as applying one or applying none; e.g., for
all tr ,

([ ()) /.() (Z. ()).

This is because applying two functions increments both subscripts i, by one
(mod 4) or one subscript by two (mod 4), and a single application of a function can never
achieve this.

We define a legal string as any string x =(o’1)1(o’2)n2... (cr,)n" where m_->
1, o"1 is a0,0 and for all < m, tri/l is either fa (cri) or fb (O’). The powers ni are all required
to be positive. If we think of the transition from tr to trg/l as being caused by an a or b,
depending on whether o-g/1 fa(tri) or ri/l fb(tri), respectively, then there are m 1
transitions in the x above, and the corresponding m 1 symbols form a string y in ,E*.
Since the ng are all positive, y is unambiguously determined by x. We shall say that x
codes y. Thus the string x ao,oal,oal,oal,1 is legal, nl 1, n2 2, and/’/3 1. The coded
string y is ab. Note that y does not determine the precise values of the ni, and hence has
many codes x. Note also that deleting any (try) "’ from the above legal string results in a
transition that does not correspond to an a or to a b, and hence the new string must
be illegal.

Actually Beauquier’s counterexample is somewhat stronger. There is a marked pumping lemma where
k distinct symbols in y are marked and the pump is required to contain one of the marked symbols. Beauquier
shows that there is a CF language that satisfies the marked pumping condition but is not regular. Subsequent
to our Theorem 1, Vaughan Pratt showed (private communication) that there are languages having the
marked pumping property.

We can carry out essentially the same construction with fewer letters if we notice that the f, fb defined
below are elements of the group of permutations on Y, which satisfy certain conditions. However, the
construction is most transparent with the ,E that we use here.
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The parity of a string is the sum of all subscripts i, j (mod 2). Thus the parity of the
string x above is 0.

Now we let

L(X) {xlx is legal and x codes a y X} U {xlx is illegal and has parity 0}.

We claim that the map L is 1-1. That is, we claim that if X X’, then L(X)
L(X’). For say x X-X’. Then any legal string y which codes x lies in L(X)- L(X’),
and thus L(X) L(X’).

We now show that L(X) always satisfies the pumping condition. Let k 5. Let
xyz * and lYl -> 5. We consider two cases.

(1) (a) xyz is legal and y contains a doublet mr. Let y uo-w, where the last
symbol of u is also tr and let v or. Then for all i, xu(o’)iwz is legal and codes the same
string that xyz does. Hence xu(o’)iwz L(X) iff xyz L(X).

(b) xyz is legal but y contains no doublet. We now have to consider parities. Say
for example that xyz L(X) and has parity 1. Now one of the last two symbols of y has
parity 1, since parities of consecutive symbols alternate. Let v be that symbol and
express y as y uvw. Then for all -> 1, xu(v)iwz codes the same string as xyz and is
legal, so

Xbl(l.))iwz L(X).

For 0, xu (v)wz xuwz has parity 0 and is illegal, so again

XU(1))iwz . L(X).
The cases where xyz has parity 0 or xyzgL(X) are similar.

(2) xyz is illegal. The illegality may be caused by the initial symbol being other
than a0.o or by a bad transition. In any case xyz contains a substring y’ of length -<_2 such
that preserving that string will preserve illegality. Hence since [Yl--> 5, we can find a
substring v’ of y, of length 2, such that v’ is disfoint from y’. (This would be automatic if
y’ were in x or z and can also be achieved if y’ overlaps y.)

Now let v be a nonempty substring of v’ of parity 0. There must be such a v with
one or two symbols. For if there is a symbol of parity 0, then v can be that symbol.
Otherwise any v of length 2 will have 0 parity. Let y uvw. Then for all >= O, xu(v)iwz
has the same parity as xyz and is illegal. Hence xu(v)iwz is in L(X) iff xyz is.

This proves the first part of the lemma. Intuitively, the second part depends on the
fact that some PDA (or FSA) acceptsX iff some other PDA (FSA) accepts L(X). Hence
if X is CF but not regular, then L(X) is also CF but not regular.

For our specific example consider the strings x a"b where n is divisible by 4, and
the strings y which represent these strings x. Consider the CF rules

S --> Ao,oA a,oA2,0A 3,0SAo,aAo,2Ao,3Ao,o,
S -> Ao,o,

Aid -’> ai,iAi,i,

Ai,i --’> aid.

The set generated is CF and is the set of y which represent some a"b where
n 0 mod 4. (The cases n mod 4 for 1, 2, 3 are similar.) Hence L(X) Legal is
CF, being the union of four CF sets. But then L(X)= (L(X) fq Legal) t.J (Illegal fq

0-parity), and Illegal, 0-parity are regular. Thus L(X) is CF, being the union of two
CF sets.
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But L(X) cannot be regular, for consider strings Yi such that yi=

ao,oa 1,oa2,oa 3,0) i/4
a0,o and z such that z (ao,lao,2ao,3ao,o)/4 and is divisible by 4.

(This is for convenience, since ao,o is the starting symbol of all legal strings, and is also
the last symbol of yi if 4 divides i.) Now for all i, j, if j then

YiZi E L(X) and yizi L(X).

Hence, by Myhill’s theorem [8] or Nerode’s theorem [6], L(X) is not regular.

3. Positive result. We saw in the last section that the pumping lemma does not
imply regularity. This is also true (cf. footnote 2) of a somewhat stronger "marked
pumping lemma". Thus the question arises whether there is any form of pumping that is
a necessary and sufficient condition for regularity. We being the discussion by quoting a
recent result of Jaffe [3].

THEOREM. L is regulariffthere is a k such thatforallx *, if [xl >= k then there exist
u, v, w, x uvw, v A and for all z, v is a pump for xz relative to L; i.e., for all >= O, all
Z *,

U(D)iwz L iff xz L.

However, Jatte’s pumping condition is not local. Given an x it requires a pump that
works not just for x but a uniform pump which works for all xz, z E*. So the question
that arises is whether we can find a "local" pumping condition that is equivalent to
regularity. Our Theorem 2 below gives a positive solution to this question.

DEFINITION. L
_
Z* has the block pumping property if there is a k such that for all

x, w, yl, ., y, w’ in E*, if x wy, yw’ then there exist m, ], 1 <- m < ] <_ k such
that Ym+l’’’Yi is a pump for x relative to L. (Note that because the x, w, etc. are
universally quantified over, we need not specify that the yi be nonempty. The fact that
some cases under the condition are vacuous does not imply that the condition itself is
vacuous.)

DEFINrrION. L E* has the block cancellation property if there is a k such that for
all x, w, y, , yk, w’ in E*, if x wy ykw’ then there exist m,/’, 1 <= m </" =< k such
that wy. y,yj/l ykw’ E L iff x L. Notice that the block cancellation property is a
special case of the block pumping property.

Notation. If L has the block cancellation property for a particular k we shall say
that L %.

THEOREM 2. Regularity, the block pumping property and the block cancellation
property are equivalent.

Proof. First note that regularity implies the block pumping property, for if L is
regular, let M be an automaton accepting L and let k be the number of states of M.
Suppose x E* and x wy yw’. Let s be the state reached byM just after reading
yj then s, s 1, s are k + 1 occurrences of states and there must be m,/" such that
m < f but s" s. Then v y,/. yj is the required pump for x relative to L. Also ifL
satisfies the block pumping property, then it trivially satisfies the block cancellation
property.

Thus the theorem reduces to the lemma below:
LEMMA 1. The cancellation property implies regularity.
The proof of this lemma reduces to the following three lemmas.
LEMMA 2. There are only finitely many languages in k.
Notation. Given a language L and a string x, let L be the set

{zlxz L}.
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LEMMA 3. IfL is in qk then so is L for any cr X.
LEMMA 4. LetP be a property of languages such that (i) there are only finitely many

languages that have P; (ii) for all tr in , if L has P then L has P. Then P implies
regularity.

Notice that Lemma 4 is essentially the lemma used in proving Nerode’s theorem
[6]. Here the property P will be the property of being in COg, for some fixed k.

Before giving the proofs of these lemmas we state the following version of
Ramsey’s theorem. Here if X is a set, X[2] denotes the set of all two element subsets of
X. If X has n elements then X[2] has n(n 1)/2 elements.

THEOREM. (Ramsey) For every k there is a number r(k) such that ira setXhas r(k)
elements or more and X[2] Z t_J Z’ then there is a Y

_
Xsuch that Y has at least k + 1

elements and Y[2]
_
Z or Y[2]

_
Z’.

For a proof of Ramsey’s theorem, see [7] or [2].
The number r(k) is usually denoted N(k + 1, k + 1, 2) corresponding to a more

general statement of the theorem, but we shall use the simpler notation. In Lemmas 2
and 3, k is fixed.

ProofofLemma 2. To prove Lemma 2, it is sufficient to show that if L, L’ are in k
and for all strings x with ]xl < r(k), x L iff x 6 L’, then L L’. In other words, if L, L’
"agree" on all strings of length <-_r(k), then they coincide. For then if X has n elements,
n > 1, there are at most m n r(k) strings of length <r(k) and hence at most 2
languages in k.

Claim. We will show by induction on n that if Ix[ n, then x L iff x 6 L’. This is
clear if n < r(k). Assume the claim for all p < n.

Suppose Ix[= n and n >-r(k). To apply Ramsey’s theorem we define Z, Z’ as
follows. Write x Wyl Yr(k)W’, where all the yj are nonempty. LetX {0, , r(k)}
and for m,fX, m <], let {m,f}Z if wyl YmYj+I Yr(k)W’ eL and otherwise let
{m,j}Z’.

Then X[2]- Z U Z’ and by Ramsey’s theorem, there is a Y with k + 1 elements
such that Y[2]

_
Z or Y[2]_ Z’.

In either case the elements of Y split x into k + 2 strings, the string u before the first
element of Y, the string u’ after the last element, and all the k intermediate strings,
Zx, ", Zk. Each z will be a union of one or more consecutive y’s, and x UZx ZkU’.
We have two cases.

(i) Y[2] c_ Z. Then removing any consecutive block of z’s from x corresponds to
some set {m,/’} in Y[2] and the shortened string x’ is always in L. However, by the
cancellation condition, there is some consecutive block of z’s, whose removal leads to
an x’ such that x’ L iff x L. Hence x L.

(ii) Y[2]_ Z’. A similar argument tells us that x’ L.
Hence, by (i) and (ii), x L iff there is a Y with k + 1 elements such that Y[2]

_
Z.

The same facts hold also for L’, with the same Z and Z’. This is because L and L’
coincide for all strings of length less than n. Thus for x also we get, x L iff x L’. This
proves the claim and Lemma 2. 71

Proof of Lemma 3. Suppose that z Y_,* and z wyl’’’ ykW’. Consider trz

w"y ykW’ where w" crw. Then, since L COg, there exist m, ], 1 < m < ] < k such
that

w yl y,y+l ykW’ L iff trz L.
But then

wy YmYi+I ykW’ L iff z L.
Hence L is also in k. [-1
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ProofofLemma 4. Suppose Lo has the property P. We define the automatonM as
follows:

$ all languages L having property P,
So start state Lo
M(L, r)= next language (state) after reading r

go.
F set of accepting states {LIA L}.

We can show by induction on x that M(L, x) is Lx for all x in E*. For LA L, and
for all o" in E,

Lx (Lx) M(L, x) M(M(L, x), o’) M(L, xcr).

Thus M accepts x iff M(Lo, x) F iff AM(Lo, x)

iff A (Lo)x

iff xALo
iff x Lo.

We close this section by listing some open questions"
(1) Is there an analogue of Theorem 2 for context-free languages?
(2) The automaton that we have constructed in the proof of Theorem 2 which

recognizes the languages L0, has a very large number of states. For a two-element E, the
number would be 2 (2rk. By considering nondeterministic automata we see that there is
a lower bound of 2k. Can we bridge this gap? The corresponding gap in Jatte’s
construction has been closed by A. Yehudai [10].

(3) The block pumping lemma depends for its strength principally on the cancel-
lation property, i.e., the case 0. Is there a pumping property which is positive, i.e.,
uses i-> 1 only and which is equivalent to regularity?

Acknowledgments. We are indebted to J. Jaffe, Rao Kosaraju, A. Meyer, V. Pratt
and the referees for various useful suggestions.
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WORST-CASE AND PROBABILISTIC ANALYSIS
OF A GEOMETRIC LOCATION PROBLEM*

CHRISTOS H. PAPADIMITRIOU’

Abstract. We consider the problem of choosing K "medians" among n points on the Euclidean plane
such that the sum of the distances from each of the n points to its closest median is minimized. We show that
this problem is NP-complete. We also present two heuristics that produce arbitrarily good solutions with
probability going to 1. One is a partition heuristic, and works when K grows linearly--or almost so--with n.

The other is the "honeycomb" heuristic, and is applicable to rates of growth of K of the form K---n ,
0<e<l.

Key words, location problem, K-median problem, NP-complete problem, probabilistic analysis of

algorithms

1. Introduction. In this paper we study a classical location problem: Suppose that we
are given n points on the plane, and an integer K < n. We are asked to choose K of these
n points and proclaim them to be centers or medians in such a way that, if we add the
distances from each point to its closest median, this sum is as small as possible. We call
this optimization problem the K-median problem.

In [FH] it is conjectured that this problem is NP-complete (see [Ka1 ], [GJ], [PSI for
definitions concerning NP-completeness). It was already known [KH] that the K-
median problem, with a metric not Euclidean but induced by a graph, is indeed
NP-complete. The performance of heuristics for the problem with the general metric
was analyzed both deterministically and probabilistically in [CFN] and [CNW].
Furthermore, a continuous version of the problem was of concern for a long time in
economic location theory [St], [Bo], [FT1].

In 2 we show that the Euclidean metric version of the K-median problem is
NP-complete, thus proving the conjecture of [FH]. The result and its proof follow in
style the analogous result about the traveling salesman problem [Pal], [GGJ].

Once an optimization problem is shown NP-complete, the interest of researchers is
usually shifted towards the analysis of efficient heuristics that, one hopes, produce
good--though suboptimal--solutions (see [GJ, Chap. 6]). In fact, Karp [Ka2], [Ka3]
has initiated research on a probabilistic refinement of this approach: He gave heuristics
for several hard combinatorial optimization problems that were efficient (sometimes on
the average) and produced solutions which, with probability arbitrarily close to one,
were arbitrarily close to the optimum. Such an approach to the K-median problem was
taken in [FH].

Before explaining the results of [FH], we need to make an observation about the
K-median problem. Any instance of the K-median problem with n points can be solved
exhaustively in time proportional to n c/1, where c min (K, n-K). Thus, although the
problem is NP-complete when K is not fixed but comes as a part of the input, it is
polynomial for any fixed K. In fact, if we restrict K to grow extremely slowly with
nmsay, K log log n--then the exhaustive algorithm is not polynomial any more, but
it certainly is subexponential. It therefore makes sense to subdivide the instances of the
K-median problem into classes according to the rate of growth of K with n. [FH] gives
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an "aggregation" heuristic, which is polynomial and has favorable error analysis when
K grows slower than log n. (Notice that, for this growth, the problem is most probably
not NP-complete since it is solvable by a subexponential algorithm.) As a lemma, they
show that there are constants c 1, c2 such that the cost of the optimum is almost certainly
between cln/x/- and c2n/x/when n/K goes to infinity. We improve this result in two
ways: We prove it for bounded n/K (Lemma 2), and we find the exact limit C3rt/n/-- for
n/K going to infinity faster than log n (corollary to Theorem 5).

In 3 and 4 we give probabilistic algorithms for fast growths of K. Section 3 is
concerned with the case in which K grows faster than n(log rt)-1/3. We give a
partitioning algorithm for this problem, and we show that when the points are drawn
from a Poisson distribution with mean N, then this algorithm has O(Na/log N) average
execution time, and has a relative error smaller than any e > 0 with probability going to
1 as N goes to infinity. Our main tool for proving this is a combinatorial lemma (Lemma
1) which shows that in the optimal solution with probability going to 1, no point is
"much" further from its closest median.

In 4 we study the case in which K grows slower than n/log n, but faster than log n.
We notice that the continuous location problem [Sta], [Bo] becomes relevant. We give a
proof that the continuous location problem is asymptotically optimized when the area is
divided up into hexagonal cells (this result was apparently known to L. Fejes Toth
[FT1], as quoted by Bollobas [Bo]; an independent proof was found by Mordecai
Haimovich [Ha]). We then use this result to analyze a very simple "honeycomb"
heuristic which, in time O(n log n) constructs a solution that has relative error smaller
than e > 0 with probability going to 1. Our probabilistic assumptions are that the n
points are n independently and uniformly distributed variables on the unit square.

Finally, in 5 we discuss our results, a related recent development that may
simplify our approach for the case in which K grows exactly as n, as well as several
related open problems.

2. NP-completeness. In order to show that the K-median problem is NP-
complete, we have to formulate it first in a more suitable manner. We assume that the
points are in the integral lattice, and are given as pairs of integer coordinates.

A familiar problem arises--see, for example, [Pa2], [GGJ], [Pall, [PS]: In order to
be able to argue that the problem is in NP, we must round the distances down to the
closest integer; i.e., if Pl (xl, Yl) and P2= (x2, y2), then dist (Pl, P2)
[((Xx + x2)z +(Yl + y2)2)l/zJ. This is done in order to avoid the difficulty of comparing
sums of radicals, a problem of rather mysterious complexity.

We define our problem thus:
K-MEDIAN. Given a multiset P {px, Pn} of points with integer coor-

dinates and integers K and L, is there a subset M {rnl rnc} -P such that
j=l d. <=L, where di =rain ,,,M dist (pi, m)?

This strict definition only serves the purposes of the present section. In order to apply
probabilistic techniques, we will have to make the problem continuous. Even in the
constructions of the present section, we shall allow fractional--and even irrational--
coordinates. The assumption is that all coordinates, as well as the limit L, will be
eventually multiplied by a sufficiently large integer and rounded, so that any required
precision can be accomplished.

We shall also occasionally define a point in p with a weight w. This will mean that
there are w points in P with exactly the same coordinate. If a fractional weight is used,
we are assuming that all weights (including unit weights) will be eventually multiplied by
a sufficiently (yet polynomially) large integer, so that all weights become integers. In the
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sequel we shall use weights and nonintegral coordinates without further explanation.
THEOREM 1. The K-MEDIAN problem is NP-complete.
Proof. That K-MEDIAN, as defined above, is in NP is immediate. To prove

NP-completeness, we shall reduce to K-MEDIAN the following problem"
EXACT COVER. Given a set U ={U1, U2,..., U3n} and a family F=

{$1,..., Sk} of subsets of U with ISI 3, j 1 k, is there a cover C c__ F such
that IC[ n and U c S.= U?

This problem is known to be NP-complete [GJ].
Before proceeding to the actual reduction, we shall discuss the properties of the

configuration of points R (Fig. la). R is called a row of length m. It has 6m + 4 points,
and the two extreme points b, b’ have weight m2; this will imply that they have to be
medians in any optimal solution. Suppose that we must allocate m + 2 medians to R.
Then the two best solutions are shown in Fig. 1 a. They both designate b, b’ as medians,

\\
P3mol \
3m+1,2

(b)

FIG.

plus m more points. Either {P2h, Psh P3rn-l,j,} for some choices of jl 1 or 2,
1, m; or {P3il, P6i2, P9i3 P3m,i,}, again for some choices of h. The former is

called Solution 1 (it is really a family of solutions) and the second Solution 2. Solution 1
induces to the points of R the partition shown in solid lines in Fig. 1 a, whereas Solution
2 the one with broken lines. Among each resulting group of 6 points the median can be
chosen either as in Fig. lb (called an upper median) or as in Fig. lc (lower median).
Notice that Solution 1 is cheaper by 2e where e m -4. For our reduction, given any
instance U {ul,..., u3n} and F {$1, Sk} of the EXACT COVER problem, we
shall construct a point set P (weighted) and integer K, as well as a limit L, such that P has
K medians with cost L or less iff there is an exact cover C

__
F of U. P consists of k rows

R1 Rk, each of length 3n, arranged parallel to each other (Fig. 2, schematically).
Thus, we can distinguish 3n columns of this formation, corresponding to the elements of
U.

We shall examine in detail the "window" W of Fig. 2. It is shown in detail in Fig. 3.
The spots x, y, w, z of Fig. 3 are not points of P, but only possible positions of

points. For each window, one of x, y and one of w, z positions is occupied with points of
weight n -2. x is occupied iff UiSj-I’ y iff UiESj__I Similarly w is occupied iff

Ui E Si; z iff Ui_ Si.
We now define K k(3n + 2)+ 3n(k- 1). The first term provides enough medians

for all k rows, and the second one median for the q-q’ pair in each window W.
L consists of 3 components L=L+L2+L3. Lx=k(2*l.5+3n(2.2+

2/1.04)) 2he. This cost comes from the k rows. In order for it to be achieved, all rows
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RI

R2

Rj-I

Rj

Rk
u u2’’" u U3n

FIG. 2

must be grouped according to Solution 1 or 2, and, and, because of the -2he term, at
least n of them must be grouped by Solution 1.

L2 3n(k 1), and comes from the cost due to the q or q’ points. Only one in each
pair will become a median, at a cost of 1 per pair.

L3 12m(k 1)/n 2 is the cost of connecting each of the 6m(k 1) points x, y, w, z
to the closest q, q’ or p point, always 2 away.

CLAIM. There exists M
_
P with IM[ K with cost L or less iffF contains an exact

cover C of U.

pj-I j-I pj-I pj-I
3i-2,2 P3i-I,2 3i,2 3i+1,2

o o

2 2 2

Y

qj-l,i

q-I,i

2

w

o 9

P’ i-2,l P31i- I,I P3i, P3i+I,I

FIG. 3
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Proof of claim. Suppose that such an M exists. It is not hard to see that 3n + 2
medians must be allocated to each row and one median to each q q’ pair for the cost to
be L or less; to see this it suffices to consider the incremental cost or gain associated with
adding or taking away one median. Each row is therefore grouped by Solution 1 or 2.
Take the fact that R. is grouped by Solution 1 to mean that Sj C, where C is the
claimed exact cover. In fact, at least n rows must be grouped by Solution 1 for L to be
achieved, and hence C must contain at least n sets.

Suppose that R. is grouped by Solution 1 (i.e., S. C). Consider the ith group,
where Ui S. It looks like Fig. 4 (or the corresponding lower median configuration).

i-2,1 ’-5i-I,I rsi,

1,2 3i-1,2 3i,2

qj,i

FIG. 4

Since Ui Si, both w (above) and y (below) positions are occupied by a point. These
two points cannot therefore be connected to their p-median with a link of length 2, as
required. So they are connected to the corresponding q-medians. But this means that
the x or y point of qj-l.i (respectively, the w or z point of q,i) must be picked by their
corresponding lower (respectively, upper) p-medians in Rj/I (respectively, Ri-1). By
induction, thel:efore, the ith group of any row Rk k < j (respectively, k > j) must have a
lower (respectively, upper) median. Hence this change in this kind (upper vs. lower)roof
medians can occur at most once per column. However, Ri causes this change to all three
columns corresponding to the three elements Ui S., and thus there can be no overlaps
in the sets S. of C. So, C contains at least n sets without overlaps: it is an exact cover.

Conversely, suppose that the given instance of EXACT COVER has a solution C.
Then we can infer a solution M of the K-MEDIAN problem by allocating 3n + 2
medians to each row, and 1 to each q -q’ pair, having each Rj grouped by Solution 1 if
Sj C, and by Solution 2 otherwise. Finally, let j(i) be the index j of the unique Sj C
such that S.. We group the ith of R. by an upper median if -> j(i), and a lower median
if/" < j(i). It follows that the solution has cost L. [3

It is more meaningful to consider the special cases of the K-MEDIAN problem, for
which K is related to n in a prespecified way. Let K:NI-NI be a (polynomially
computable) function. By K(n)-MEDIAN we mean the set of all instances of K-
MEDIAN for which K K(n). We can show, from Theorem 1, the following stronger
result.
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COROLLARY. Suppose that min (K(n), n-K(n)) l)(n ) forsome e >0. Then the
K(n)-MEDIAN problem is NP-complete.

Proof. The proof follows by standard "padding" arguments.
Corollary 1 is in a sense the strongest possible result, with the present state of our

understanding of complexity theory, because if either n- K(n) or K(n) grows slower
than n for all e, the K(n )- median problem can be solved by a subexponential
algorithm.

3. The linear case. In this section we consider the case in which K(n)= [an for
some a < 1. Informally, this means that a fixed fraction of the customers are proclaimed
medians, and therefore each median will be, on the average, responsible for a constant
number of customers. We consider point sets P {pa pn} drawn from a Poisson
process of intensity N on the unit square. As a result, the distributions of points in any
two prespecified nonoverlapping subregions of the unit square are independent, n is a
random variable with expected value N.

We divide the unit square into O [/N/logN]2 equal smaller squares Sa,..., So,
each of side [/N/logN]-1 and containing approximately log N points on the average.
If M P, we let ft(pj) m M iff dist (&, m) < dist (Pi, m’) for all m’ M-{m}. With
probability 1, fM is well defined for all M_P. We let dt=dist (Pi, ft(Pi)) and
C(M) Y.i=a d, the cost of the set M of medians. Once we have fixed Sa So, we
shall define the separable cost of M. Let $(pj) denote the square Si among Sa So
for which pj Si. We define, for pi s P,

M
gj min dist(pi, m).

eM
S(m)=S(p)

Finally, the separable cost ofM is defined as C’(M) j=l g. Thus, informally, C’(M)
is the cost ofM under the additional restriction that customers must go to medians in the
same square

We shall prove the following:
THEOREM 2. Let ,I be the optimal solution of P. Then C’(2I)-C()= o(N1/2)

with probability 1 o (1).
All asymptotic statements are meant as N goes to infinity. Thus, "with probability

1- o(1)" means "with probability going to 1 as N goes to infinity".
We first need the following lemma:
LEMMA 1. There is a constant ca > 0 such that max,.d< ca(ol.3N)-1/2 with prob-

ability 1 o (1).
Proof. It is clear that, with probability 1-o(1), n >=N/2 and thus [.//I > [aN/2J. If

m hT/, let A(m)= {pi" fzct(pj)= m}. It follows that, with probability 1- o(1), there exist
at least [aN/4J medians mM with IA(m)l<-_2/a. It is therefore obvious that, for
some constant c2 > 0, two of these medians (say, m and m’) are closer to each other
than c2(cN)-1/2 with probability 1-0(1). (To see this, divide the unit square into
[([aN/4J)a/Z-lJ 2 equal squares; two of the [cN/4J medians are bound, by the
pigeonhole principle, to fall in the same of these squares, and hence t_hey cannot be
further apart than the diameter of the square. This argument gives c2 /8; c2 (12)1/4

is possible.)
Suppose now that one of the points Pk P has dff > 2c2(N03)-/2. Then we claim

that C’(-{m}U{pk})< C(/)absurd, since ,/is optimum. To prove our claim,
we shall construct a mapping f:P-M={m}U{pk} such that Y’.=a dist(pi, f(Pi))<
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C(//). f is defined as follows"

f(P)=P,

f(p)=m’

f(pi)= m"

Thus

C(//)- Y dist (pi, f(pi))= d-

if pi A(m) and pi Fk,

if p. s A (m"), m" and p

dist (pj, m’)-dist (pj, m)
PicA(m)

(by the triangle inequality)

>-d-IA(m)[ dist (m, m’)

2
,) /)(since IA (m)l <- and dist (m, m < c(aN)-

>-d 2c2(Na3))-a/2 > O.

This proves the lemma with ca 2c2. []

Proof of Theorem 2. Lemma 1 implies that with probability 1- o(1) all points
p e P such that S(pj) S(ft(pj)) lie in a "corridor" of width 2ca(a.3N)-1/2 around the
perimeters of the small squares (Fig. 5). Using this, we shall show how to modify the
optimal solution so as to make it separable, with a total increase in cost which is
(o(NX/Z)).

n/- N

I/N/log N

FIG. 5

The main idea is the following: It is clear that the total number of points in P that lie
within these "corridors" is o(N) with probability 1- o(1), since each square has side
asymptotically -x/logN/N, whereas the width of the corridor is --./-/N.
We shall show that we can assign each of these points to a median 3/in its own square
which is, on the average, O(N-a/2) away.

The details are as follows: Let us divide each square S into 4 Ix/log N] triangular
"slices" as shown in Fig. 5. The unit square is now divided into R =4[x/10gN]Q
triangles h, tR and the corresponding trapezoids rl,..., rR (see Fig. 5). If pi P, we
denote by r(pi) the trapezoid it is in, or by t(pi) the triangle it is in (exactly one is well
defined). Let bi be a random variable denoting IP (3 ril; ] 1, R, and let q. P be the
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point in ti that is closest to the basis of tj parallel to the side of the square, while hi is the
distance of qi from the basis (see Fig. 5).

It is immediate that each has area J/N, where J- c7/log N, and thus the
probability that P fq t. is e -. Thus we may assume that no P ti is empty (i.e.,
exists) with probability (1--e-J)R>--l-Re-= 1-0(1). We now claim that, with
probability 1-0(1), we can assign the points of P f3r to the median
and repeat this for all rj’s, at a total incremental cost that does not exceed
c3/N/log Nfor some c3 > 0. This would settle the theorem.

The cost of connecting each point p of the bi points in rifqP to f(qi),
dist (p, f;t (qi)) can be bounded from above as follows (with probability 1- 0(1)):

dist (p, f(qi))=<dist (p, qi)+dist (% f(qi))

x/-(Cl(OI. 3N)-1/2 + hi) + Cx(Ol.3N)-] 1/2

Thus the total increase in cost is bounded by
R R

C’(]I) C(]f) c4(a3N)-1/2. 2 bi +’,/- Y’. bjhi.
/=1 i=1

-3/2The area of each ri is equal to cso /N for some constant cs; thus the bi’s are
identically and independently distributed random variables with mean ca -3/2, and
hence, by the central limit theorem, with probability 1- o(1)

R

E bi <- 2Rcsa-/ <-- c6N/x/iog N
for some c6>0. hi takes values from 0 to L=1/2[(N/logN)/2] -, and the expected
number of points in P V]t is J=cT/iogN. To calculate (hi), we note that,
prob (h > xL) equals

ji-J )2i (x2-2x)j -xJe .(1-x =e =<e
i=0

Hence

e(fi)<= L Io xde-x’r =--L _jJ<+ 1=c8N_1/2
j

e
J

Thus (hjbi)<= C9(ol. 3N)-1/2, and by the central limit theorem
R

hibi <-- 2RC9(a3N)-1/ <- CodiN/log N)

with probability 1-o(1). It follows that C’(]/I)-C(flf)<-Cll(Ol 3 log N/N)-/2 with
probability 1- o(1), and the theorem is proved. [3.

Theorem 2 implies that the optimum separable solutionmthe one that minimizes
C’(M)mwould be a good approximation to the optimum solution. We shall describe
below an algorithm for computing the optimum separable solution.

The algorithm is a dynamic programming scheme. Let f(i, f) be the cost of the
optimal way of allocating medians to Si, and let F(i, f) be the cost of the optimal way of
allocating a total of medians to the squares $1, $2, Si. It follows that

F(i, 1)=f(i, 1) for/= 1, 2 Jan l,

F(i,j+l)= min [F(k,f)+f(i-k,j+l)] forj=l Oandi=]+l, [cnJ.
jk<i
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Notice that F( [an J, Q) is the required optimum cost, and that the dynamic program-
ming scheme can be implemented in such a way that the optimal allocations of medians
are recovered after the determination of the optimal cost. This dynamic programming
scheme requires Q [an evaluations of the function f(i, f). Notice that /q(Q [anJ)=
O(NZ/log N).

For any and fixed L evaluating f(i, ) can clearly be done in a number of operations
bounded by d2k, where d > 0 and k ]P (3 Sj[. Thus the expected number of operations
for evaluating f(i, i) is

y d 2k (log N) -og N Ne =de =d.N.
=0 k!

Therefore, this algorithm has an expected total number of steps O(N3/log N).
To evaluate the relative error of the algorithm, we need the following lemma.
LEMMA 2. If )/[ is the optimum solution, then, with probability

c4for some c >0.
Proof. Let us fix a value for n; the points in Pj are thus uniformly distributed

in the unit square. Divide the unit square into [/n---] 2 squares, where p << 1 is to
be determined. How many squares contain exactly one point? This is at least as much as
a binomial variable with n trials and probability 1 -p. So, by Chebyshev’s inequality, at
least (1-2p)n squares have one point, with probability 1-o(n-a).

Consider these (1 2p)n squares, each of side a n/p] In how many cases of
these squares the point is further than pa from the boundary? By Chebyshev, at least
(1-3p)3n with probability 1-o(n-). Choose (1-3p)3=(1-a/2). Suppose that a is
the distance from pi to the point in P-Pi closest to pi, and assume that P has been
ordered in decreasing ai’s. The above argument suggests that, with probability 1 o(1),
a p/n for ] (la/2)n. Thus

It is, however, clear that i=,-t,+ ai is a lower bound for C(). Since n N/2 with
probability 1 o (1), the lemma follows.

Combining the proceeding observations with Theorem 2 and Lemma 2 above, we
obtain
TzOM 3. The dynamic programming algorithm above requires an expected

number of operations O(N/log N) and produces a setM of medians with relative error
(C(M)-C())/C() o(1) with probability 1 -o(1).

We note that the same approach works for slightly sublinear growths of K (n), in
particular, K(n) w(n/log/3 n). In the next section we handle in a very different way
more sublinear growths of K(n), namely K(n) n for some 0 < e < 1.

4. The honeycomb heuristic. In this section we consider the case in which K(n)
grows slower than n/log n but faster than log n. For simplicity, we shall only deal
explicitly with the family of growth k (n) In for some e, 0 < e < 1 generalization to
the above mentioned range is immediate from our proofs.

A simple consequence of this growth is that both K (n) and n/K(n) go to infinity
quite fast, as n , 6 > 0. That n/K(n) grows quite fast means, intuitively, that the average
median would, asymptotically, be responsible for a "continuum" of points. It is
therefore natural to consider the following continuous, deterministic version of the
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problem:

Place K points M ={ml mn} in the unit square so that C*(M)=
K

j= Di dist (mi, A) dA is minimized,

where D {x [0, 112: dist (x, m.)=< dist (x, mi) for all # j} are the Dirichlet cells
(Voronoi polygons of Shamos [Sh]) of the point m. with respect to the point set M.
Di is thus the locus of all points that are closest to mi; it is easy to see that Di is
always a convex polygon (since it is the nonempty intersection of the half-planes
dist (x, mi)-<_ dist (x, mi), j).

Let R be the regular n-gon of unit area, and let c be its center. We let
y(n) a dist (c, A) dA. A simple calculation yields y(n) log (t + /1 + t2)/t/-t) +
/1+ t/(/), where t=tan (r/n). Some values of y(n) are given in Table 1. The
following lemma is shown in [FT].

LMMA 3. Let S be a convex n-gon with unit area, and let p S,. Then
s. dist (p, A) dA >-_ y(n).

A tedious calculation yields
LEMMA 4. The function (y(x))-2 is concave for x >= 3.
The following lemma says, essentially, that if we partition the unit square into many

polygons, then each polygon must, on the average, have fewer than 6 sides. It is a rather
surprising application of Euler’s formula, and can be found, for example, in Heawood’s
5-color proof [He].

LEMMA 5. Let {$1,..., S} be a partition of the unit square into k convex polygons,
with m rn sides, respectively. Then rni <= 6k 2.

Using these lemmas, we can show the following theorem:
THEOREM 4. If [M[ K, then C*(M) g-1/2"y(6).
Proof. By definition, C*(M)= Y,i o, dist (mi, A)dA, where D. is the Dirichlet

cell of mi with respect to M. If D is an ni-gon, we have, by Lemma 3,
K

3/2C*(M) >= E [D.[ Y(ni) E v(k) E IDI3/2,
/’=1 k=3 jEGk

Xi
3/2 with ’= Xi fixed is minimized when all Xi’Swhere Gk {J’" ni k}. Recall that i=

are equal.
Thus,

(EIDI/2C*(M)-> k=3E ,(k)[Gl\ [Gi }

The latter expression can be written as

!,o 1 ( Y(k)s/’
C*(M)>- kY \,EaZ [D, I-- ).

By the same argument, the right-hand side of the inequality above can be bounded
from below:

{ ( ,.y2(k)(]Gkl3/2}/{o }1/2 (K--2( )--1/2
However, since y-Z(x) is concave, (Lemma 4) we have, by Jensen’s inequality,

K

K
which, by Lemma 5 and since y is nonincreasing, gives C*(M)K-a/2y(6).
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TABLE
Values of 1,(n)

n y(n) (1/y(n))

3 .4036467 6.137583
4 .3825979 6.831482
5 .3784829 6.980836
6 .3771967 7.028524
7 .3766843 7.047660
8 .3764462 7.056577
9 .3763231 7.061196

10 .3762541 7.063786
20 .3761341 7.068293
100 .3761264 7.068583

2/3ff 9/4
2.3761264 7.068583

Theorem 4 implies that asymptotically as K grows, the optimal partition of the
square into polygons with respect to the valuation C* is the one that consists of regular
hexagons (if we ignore the effects of the boundaries of the unit square). A very simple
and efficient heuristic for solving the K(n)-median problem for this range of growths of
K(n) is immediately suggested by Theorem 4.

Given P={pa,...,
(a) Find K K(n).
(b) Tile the plane with hexagons Ha, H2,... each of area 1/K. Choose those

hexagons H for which H
_

[0, 1]2. Let the set of their centers be H {ha,..., hk},
k<_K.

(c) Define the set of medians M={ml rnk}_P by dist (m., hi)_<-dist (p, hi)
for all p P.

The remaining part of this section is a probabilistic analysis of this honeycomb
heuristic. Our probabilistic assumptions are that n is fixed and P {p!, pn} consists of
points independently and uniformly distributed over the unit square. The following
lemma is shown in [FH].

LEMMA 6. If is the optimum solution, there is a constant c such that C(.hI)>-
cnK(n) 1/2 with probability 1-o(1).

We also need the following lemma, which is a specialized result about multinomial
distributions. Suppose that we have divided the unit square into 22m equal small
squares, where n 2-2m =n for some6>0.

LEMMA 7. With probability 1- o(1) each small square will contain N points of P,
where INi- nl o(n).
To prove Lemma 7 we need a purely probabilistic fact"

LEMMA 8. Let b be a binomially distributed random variable with probability and n
5+ -n6trials. Then prob (Ib n/21 > n <= e tor large enough n.

Proof. It is well known that prob (b =/’) B.,, (n]2-". By Stirling’s formula
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where E(n, ]) is an error term

1 (n2___n/_’_+__fz]E(n, ])= 1 + i/12 n](n -]) ]
+ O(1).

Let ] n/2x, x >=0 (for x =<0, similarly). Then, for some cl >0,

B,,. 1<c(nl/2[n/2-x’n/2 ,1 (n/2X) )+ -,,-,/2

1/2
--c1

Letting z x/(n/2), we have

2 -n/2
X

Let A(/’, n)=(1-z2)-"/2((1-z/1 + z))X; then
4 6 2 3

n( 2 z Z7- ( z z
log A(/’, n) 7 z +m+ +... +x -z Z+m--m

z z 3

2 3

z 3-- i=
aizzi with aj

j(2j- 1)"

Hence log A(j, n)<= (n/2) z2= 2x2/n, and B(.i, n)<=cln 1/2 e -2"=/". Hence

prob ( b -] >= nS+a) <= nB( n 5+8-n
\

F/ . 3/2
--cln e]

for large enough n. F1

Proof ofLemma 7. Fix an c > 0, and define

p, ] exp (- n’5/2), f,. Y. 2-i (n 2-(i-1))s+.
i=1

We shall prove by induction on k that each of the 2k subregions (squares if k even,
rectangles if k odd) contain between n2-k +f points, with probability 1-p. Notice
that this settles the lemma.

To start the induction note that the assertion holds for k 0. Suppose that it holds
for k ]. Let A,+x be one of the 2+1 subregions, and let A be the unique subregion
among the 2 that contains it (if ] is even, Aj is a square and Aj/x is its half rectangle; if ]
is odd, Aj is a rectangle consisting of two squares, and A,/ is one of them). For N large
enough, we have, by Lemma 8,

( N N5+" N)prob A+ contains-+ ptsl& contains >= 1-e

Hence

prob (Ai+l has n2-(J+l) + (1/2f. + (n2-i +f) s+ pts Ai has n2-i +.)

=> 1 exp (-(n 2-i -.)’).
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But this can be rewritten as

Thus

prob (A.+I has n2-(+1) +/-f.+ pts A. has n2- +/-f.) >_- 1 exp (- (n2--f.)),
’s {i+t)+/- ’s 2-i +/-fi),prob (all Ai+a have n2- ’+lpts] all A have n

(1-exp (- (n2-i-.))2i+1 1-2i+ exp (- (n2i-))
1- exp (-n/z).

prob (all Ai+I’S have n2
-(+1 +/-f.+x pts)

>=prob (all Ai’s have n2-i +/-f. pts)(1 -exp (-n a/2)
>_-(1- p.)(1-exp (-n/a) (by induction hypothesis)

aS/2)->_ 1-exp (n p > 1-p+l.

Lemma 7 implies that with probability 1 o (1) every subdivision of the unit square
into not more than n 1- equal squares will contain only squares that have n points, plus
or minus a lower order term. It will be very useful in evaluating how well the continuous
deterministic problem approximates the K-median problem.

The error analysis is rather simple, though tedious, since it involves the numbers
C(M), nC*(M), C(M), nC*(H) and y(6)n//; here r is the optimal solution, M is
the solution found by the heuristic and H is the set of hexagonal centers. C is our
ordinary cost valuation, whereas C* is its continuous counterpart. Our strategy is shown
in Fig. 6. A solid undirected line between A and B means that we shall showuin the
lemma whose number is indicated on the lineuthat IA-Bl=o(n//k(n)) with pro’b-
ability 1-o(1). A broken directed line from A to B means that A>=B. Once we
establish all this, it is immediate that C(M)-C(f-I)= o(n//K(n)).

/
obvious
/

/
/

\
\
T eoem 4

C(M)

C’( M

II

nC*(H

,(6).N/)

FIG. 6

LEMMA 9. IC(I-nC*()[ o(n/4k(n)) with probability (1-o(1)).
Proof. Recall that K(n)= [n]. Let us divide the unit square into 22m equal

squares, where m [log2 (n)/2J for some e < 6 < 1. Let each square have a side of
length A.

We shall show that with probability 1 o(1) no point Pie P has dt(pi) >= c//K(n)
for some constant c x. Suppose that such a point Pi existed. Then, with
probability 1-o(1), the disk with center Pi and radius ca/3/2K(n) has at least
7rcn/18K (n) points of P in it. This is established by considering the small A x A squares
falling within this disk and applying Lemma 7. However, one could then make Pi into an
additional median, at a savings of at least (Trn/54)(c//K(n))3. Therefore, one can
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argue in a manner identical to Lemma 1, that there exist two medians in M within
distance (2K(n))-a/2, each having at most 2n/K(n) points. By choosing 6 appro-
priately, we establish that maxj dt (pi) <-- Cl/X/K(n) with probability 1 o(1).

Let us define now yet another valuation C of any set of medians. C is a
discretized version of C*" we assume that one point of weight n A2 is in the center c. of
each A A square Si and calculate

K

(M) Y. nA2 Y dist (mi, ci).
Si --D

Let us calculate I()-nC*(ll)]. This difference is due to "lost" squares along the
perimeters of the Di’s, and also to a "discretization" error. The perimeter does not
exceed c2x/K(n), since it consists of O(K(n)) sides, all bounded, by the above
remark, by Cl/X/K(n); so there are at most c3x/g(b)/A lost squares, a total error
<=nAZc3(/K(n)/A) max.d(p.) =crnA--o(n//K(n)). The "discretization" error
totals to, at most, nA/-/2, also o(n//K(n)). Thus I(f4)-nC*(f4)l=o(n/x/K(N)).

Let us now evaluate Iff(/) C(//)I. This difference contains also a "distribution"
error (squares that have more or fewer points than their share), besides the boundary
and discretization errors. However, Lemma 7 says that, with probability 1- o(1), this
new error is o(n) max,. d;t(pi) o(n//K(n)).

That [n(il?’I)-C*(iI)[=o(n//K(n)) can be shon in a very similar way to
Lemma 9.

We now turn to
LEMMA 10. n[C*(H)-y(6)//K(n)[=o(n//K(n)) with probability 1-o(1)
Proof. Each of the hexagons in the tiling {Ha, H2,... } has area 1/K(n), and

therefore side c4//K(n). Thus, there are at most cx/K(n) hexagons that cross the
boundary of the unit square. It is contributions from these squares that increase
C*(H) away from y(6)//--n-). However, each hexagon on the boundary adds at most
c6(K(n))-3/2 to C*.(H), and thus the total deviation is n[C*(H)-y(6)/x/K(n)[<=
c7n/K(n) o(n//K(n)).

LEMMA 11. nlC*(m)-C*(H)[=o(n/x/K(n))with probability 1-0(1).
Proof. The difference between C*(M) and C*(H) is due to the "displacement" of

the medians from the centers of the hexagons to the points closest to the centers. Now,
each center of a hexagon falls in one of the A squares (A n -a/2+8, arbitrary > 0),
and we know that, with probability 1- o(1), there is at least one point from P in each
square (Lemma 7). Thus this displacement is for no center greater than /, with
probability 1- o(1). The total error due to displacement is therefore no greater than
n/. Taking 6 < (l-e)/2, we prove the lemma. 1-1

We can finally show:
THEOREM 5. The honeycomb heuristic constructs in time O(n log n) a set M of

medians having relative error

(C(M) C(2/I)/C(]I) o (1) with probability 1 o (1).

Proof. The error analysis follows from Lemmas 9-11 and Theorem 5. For the time
bound, we have to show that in time O(n log n) we can find for each point in a set H,
]HI <--N, the closest to it from another point set P, IPI-<- This, however, is possible by
the Voronoi techniques of Shamos [Sh]. [3

By Theorem 5, we can explicitly calculate the exact limit of the optimal cost for this
range of K(n):
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COROLLARY. For K(n)=w (log n), K(n)=o(n/16g n), we have

prob ( C(h?I)/K n
> e) 1 o(1) ]’or all e > O.

5. Discussion. We note that no NP-completeness results are known for the
following two variants of the K-median problem"

(a) One does not restrict M to be a subset of P. That is, the K medians can be
chosen to be totally new points.

(b) The min-max version of the K-median problem.

We conjecture that both problems are NP-complete.
As far as probabilistic analysis of heuristics is concerned, our results leave open two

regions of the spectrum of growth of K(n)"

(a) K (n) c log n.

cln c2n<_K(n)<(b)
log n (log n)/3"

For the case that K (n) Jan 1, a very interesting recent result by J. Michael Steele
[Ste] may simplify our approach considerably. Steele proved the following: Let any
valuation [ mapping finite point sets to the reals satisfy the following properties"

(a) f is Euclidean, i.e., linear and invariant under translations.
(b) f is monotone; i.e., f(Pt.J{p.+})>-_f(P).
(c) f has bounded variance, under the uniform distribution.
(d) f is subadditive, i.e., if {S}Ta is a partition of the unit square into squares or

total perimeter L, f(P) <-= f(P (3 s) + O(L).
Then, with probability 1,

lim (f(Pl’’-x/’’P’))=fll a constant.

Using this theorem, Steele gives a simple derivation of the Beardwood, Halton,
and Hammersley theorem [BHH]. Notice that the valuation f,(P)-
min {C(M):IM] [alPIJ} for some a 0 < a < 1, does not satisfy conditions (b) and (d)
above; however, Steele claims that the conclusion of the theorem still holds for F, [Ste].
Explicit proofs of this fact have actually appeared [Ha], [Ho]. This suggests the
following simple partition heuristic for the K(n)= [an case:

1) Partition the unit square into n/log n smaller squares.
2) Solve the K(n)-MEDIAN problem for each of the smaller squares.

As a result of Steele’s theorem, the optimum such restricted separable solution gives a
solution that is asymptotically very close to the exact optimum. We note, however, that
our approach is still necessary for K(n)- o(n).
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influence, came from discussions with Dorit Hochbaum and Dick Karp. The conjecture
which eventually became Theorem 4 is due to the insights of G6rard Cornuejols. Some
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KEY COMPARISON OPTIMAL 2-3 TREES WITH MAXIMUM
UTILIZATION*

JAMES R. BITNERf AND SHOU-HSUAN HUANGt

Abstract. To study the relationship between key-comparison cost and utilization (space efficiency) of
2-3 trees, we define a class of 2-3 trees called kcu-optimal trees, which, out of all 2-3 trees with optimal
key-comparison cost, have maximum utilization. A characterization theorem for this class is proved and the
"average" utilization is found to be 64.7%, showing that these properties are not totally incompatible.
Finally, a linear-time algorithm is given to create a kcu-optimal tree from a sorted array of keys.

Key words. B-trees, 2-3 trees, storage utilization, optimality, bushy, scrawny, compact and minimal
comparison 2-3 trees

1. Introduction. Three cost measures (measures of "goodness") can be defined
for B-trees" node-visit cost, key-comparison cost and utilization (these terms are
defined below; see 1.1). This paper is concerned with the relationships between these
different measures. We are interested in questions such as "if a B-tree is optimal for one
given measure, is it necessarily optimal or near.-optimal for another given measure?" or
"can it be shown that B-trees which are optimal for one given measure must be very
poor for another?" We study the relationship between key-comparison cost and
utilization (the other two possible pairs have been previously studied; see 1.2).
Previous results (see 1.3) suggest that these properties are incompatible, i.e., that a
2-3 tree with optimal key-comparison cost must have very poor utilization. Our result is
to show that this is not the case. We first consider the set of 2-3 trees which have optimal
key-comparison cost and find a characterization for the 2-3 trees which have maximal
utilization over this set. We then compute their utilization and show it is significantly
higher than the minimum. We also show the space-efficiency compares favorably with
"random" 2-3 trees [5].

1.1. Definitions. Our definition of B-trees and 2-3 trees is taken from Knuth [2].
Note that under this definition the nodes having no sons (called leaves) do not carry
information. The height of a B-tree is the length of the path from the root to any leaf.
(Thus, the tree consisting of a single node with leaves as sons has height one.)

Notation. We let K and N stand for, respectively, the number of keys and internal
(nonleaf) nodes in a given 2-3 tree.

DEFINITION. In a 2-3 tree, a 1-node is defined as a node containing one key and a
2-node as a node containing two keys.

We now define our cost-measures for 2-3 trees; this will be sufficient for our
purposes. (All except for key-comparison cost are easily generalized to B-trees). In
defining the key-comparison cost of a 2-3 tree, we assume that a "reasonable" algorithm
such as Algorithm A.1 (see Appendix) is used. To calculate cg (i 1,..., K), the
number of key comparisons made in finding key i, note that one comparison is made at
each 1-node on the path from the root to key i. One comparison is also made at 2-nodes
if key lies in the left subtree or is the left key in the node. Otherwise, two comparisons
are required. The expected number of key-comparisons is then the average, i.e.,

* Received by the editors April 2, 1979, and in final revised form September 1, 1980. This work was
supported in part by the National Science Foundation under grant MCS 77-02705.

t Department of Computer Science, University of Texas, Austin, Texas 78712.
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DEFINITION. Let ng (i 1, , K) be the number of nodes on the path from the
root to the node in which key resides (i.e., its level plus 1). Then the node-visit cost is
Yg=x ng)/K. (The node-visit cost measures the average number of distinct nodes
accessed in finding a key, which gives an idea of how many pages must be brought in
during such a search if the tree is stored on disk.)

DEFINITION. The utilization of a 2-3 tree is K/2N (the ratio of the number of keys
to the number of possible keys). Note the utilization is bounded between 50% and
100%.

DEFINITION. The expansion of a 2-3 tree is 2N/K- 1 and is bounded between 0%
and 100%. Thus, a tree with an expansion of 50% takes 50% more space than is
theoretically necessary.

We study the utilization because it is a more intuitive measure and the expansion
because it allows a comparison with the bounds on the average expansion of random 2-3
trees. (Note that no nontrivial bounds are known for the utilization.)

DEFINITION. A 2-3 tree is kc-optimal (called minimal comparison in [1]) if and
-only if its key-comparison cost is minimal over all 2-3 trees having the same number of
keys.

DEFINITION. A 2-3 tree is respectively, bushy or scrawny if and only if its
node-visit cost is, respectively, minimal or maximal over all 2-3 trees with the same
number of keys.

DEFINITION. A 2-3 tree is compact if and only if its utilization is maximal over all
2-3 trees with the same number of keys. A new term, which this paper will discuss in
detail, is"

DEFINITION. A 2-3 tree is kcu-optimal if and only if it has maximum utilization
among all kc-optimal trees having the same number of keys.

1.2. Previous related results. Characterization theorems have been proved for
bushy and scrawny trees 3], kc-optimal trees [1] and compact trees [4]. We will only
make use of the characterization of kc-optimal trees"

THEOREM 1.1 (Rosenberg and Snyder [1 ]). A 2-3 tree is kc-optimal if and only if
no 2-node has a 2-node in either its middle or right subtrees.

Further, the relationships between the three different cost measures have been
studied. It has been shown [4] that compact trees have very good node-visit cost, at most
one more than the minimum node-visit cost required of any tree with the salve number
of keys. However, the utilization of a compact tree is significantly higher than that of
bushy trees with the same number of keys [4]. For large B-trees of order 3 (i.e., 2-3
trees), the utilization is higher by a multiplicative factor of, and for order 4, by a factor
of . (These factors are the largest for odd and even orders, respectively; the ratios for
B-trees of arbitrary order is given in [4].) Note that these ratios are extremely high. For
2-3 trees, the highest possible ratio is 2 (100% utilization versus 50%). Similarly, for
B-trees of order 4 the highest possible ratio is 3.

The relationship between node-visit cost and key-comparison cost has also been
studied [1]. Trying to optimize both these properties is quite difficult. The charac-
terization theorems prescribe that the 2-nodes be near the root in bushy trees and near
the leaves in kc-optimal trees. Kc-optimality and bushyness do sometimes coincide,
however, but only for small trees. There exists a 2-3 tree with L leaves which is both
kc-optimal and node-visit optimal iff L s{2... 7, 10... 15, 28... 31}. However,
coincidence between kc-optimal and scrawny trees is very common. Let A(L)=
[log2 L]. For L >-8, there exists a 2-3 tree with L leaves which is kc-optimal and
scrawny if and only if 2) -<L-<_ 3.2/- + 1. Further, for all L such that 2<) -<L =<
3.2)-, every scrawny tree with L leaves is kc-optimal.
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The relation between utilization and key-comparison cost has not yet been studied,
and this will be the focus of this paper.

1.3. Our results and their relation to previous work. From previous results, it
appears that low key-comparison cost and high utilization are not compatible. In [1],
Rosenberg and Synder gave an algorithm to construct a kc-optimal tree from a sorted
list of keys. This construction builds a tree whose 2-nodes occur only on the path from
the root to the leftmost leaf. Clearly, this will asymptotically give a utilization of 50%,
the minimum possible.

We show that these measures are compatible to some extent. In 2, we prove a
theorem characterizing kcu-optimal trees. Then, in 3, we calculate the "average"
utilization for large kcu-optimal trees and obtain a utilization of 64.7%, which is
significantly higher than 50%. To compare their space efficiency with random 2-3 trees,
we calculate the "average" expansion and obtain a result of 56.7% which compares
favorably with that of random 2-3 trees which is known to be bounded [5] between 40%
and 58%. Finally, in 4, we give a linear-time algorithm for construction of a
kcu-optimal tree from a sorted array of keys.

2. A characterization theorem for kcu-optimality. In this section, we prove a
characterization theorem for kcu-optimal trees. Obviously, kc-optimality is a necessary
condition. We will establish two additional simple and necessary conditions (Theorems
2.1 and 2.2) for kcu-optimality, then prove these three conditions to be sufficient.

THEOREM 2.1. In a kcu-optimal tree a 2-node cannot have a 1-node as its left son.
Proof. Suppose there is a 2-node having a 1-node as its left son. Apply the

transform shown in Fig. 2.1. This preserves the number of nodes in the tree and the fact
that the tree is kc-optimal (since $3, $4, $5 and $6 must be completely binary). However,

S
1 S2 S

3 s
4 s

5 s
6 SI S

3
S
4 S

2
S5 S

6

FIG. 2.1. A transformation that increases the number of 2-nodes.

the number of 2-nodes is increased by one, increasing the utilization. Therefore the
original tree did not have maximum utilization, a contradiction.

This theorem says that a kcu-optimal tree with a 2-node as its root must have a
special form"

DEFINITION. A 2-3 tree is full if and only if it has the form shown in Fig. 2.2.
LEMMA 2.1. A 2-node in a kcu-optimal tree must be the root of a full subtree.
Proof. By Theorem 2.1, every internal node on the path from the root to the

leftmost leaf must be a 2-node. Since the tree is kc-optimal, every other internal node
must be a 1-node.
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FIG. 2.2. A full tree. In this figure, the triangles are completely binary trees, and the squares are leaves.

A 2-node that has a 1-node for its father (and thus is not part of a larger full tree) is
of special interest, motivating the following definition.

DEFINITION. A leader is a 2-node or a leaf which has no 2-nodes as ancestors.
THEOREM 2.2. In a kcu-optimal tree, the levels of two leaders may differ by at

most one.
Proof. By Theorem 2. 1 we can assume that each 2-node has a leaf or a 2-node as its

left son. Suppose there are leaders (/1 and/2) at height and with -f > 1. Note that 11
cannot be an ancestor of 12, because/l’s subtree would then be full and 12 would not be a
leader. Also note that/2’s father must be a 1-node and that/’s and/2’s subtrees are full.
We assume without loss of generality that 12 is the right son of its father.

We now describe the transformation shown in Fig. 2.3, which will preserve tle
number of keys and the kc-optimality but will increase the utilization. Applying this

height i h I

SI
S
2

eight j+l

3 $4 $5 $6 $7

T
1

T2

Ight

T
3

T
4

T
5

j+l

FIG. 2.3. The two subtrees affected by the transformation are shown. Triangles represent completely binary
trees. Triangles with a stripe (such as $1) are full trees. Shaded trees may have arbitrary form.



562 JAMES R. BITNER AND SHOU-HSUAN HUANG

transformation to the original tree will then give a contradiction. Subtrees $1 and S4 are
not affected and become trees T1 and T3 respectively. The keys in $2 and S3 are merged
to form T2; then one key is deleted from l. There are 2j/ 2 keys in 12 and its subtrees.
(It is easily shown that a full tree of height h has 2h+t 2 keys.) These are redistributed
to form T4 and Ts. Finally, a key is added to/2’s father. (Note that the transformation
will work even if 12 is a leaf; then Ss, S6 and $7 are empty.) In total, the number of keys
remained the same, and the tree is still kc-optimal. However, the number of 2-nodes has
increased; originally there were + + x 2-nodes in the affected subtrees (where x is the
number of 2-nodes in $4) and now there are 2i-1 + x. Hence the utilization of a
kcu-optimal tree has been increased, a contradiction. V1

Trees satisfying the conditions of Theorems 2.1 and 2.2 have a very restricted form.
For some l, the first l- 1 levels are completely binary. Then, at level l, we have some
2-nodes (which must be leaders). The remaining nodes (if any) at lever must be
1-nodes that have two 2-nodes (also leaders) as sons. (Note that if is large enough we
will sometimes have to replace "2-node" by "leaf" in the above.) Every 2-node is, by
Lemma 2.1, the root of a full subtree (whose form is completely determined). Thus only
three parameters are needed to determine many properties such as number of keys,
2-nodes and utilization of such a tree, and these are given in the following definition.

DEFNq:ION. If a 2-3 tree satisfies the conditions of Theorems 2.1 and 2.2, it is said
to have a leader profile. Trees not satisfying either or both conditions do not have a
leader profile. A leader profile is an ordered triple (h, l, x) where h is the height of the
tree, is the level of the leader with lowest (i.e., numerically smallest) level, and x is the
number of leaders having lowest level. In addition, if the tree consists solely of 1-nodes
(and hence all leaders are leaves) it will be more convenient to define the leader profile
to be (h, h 1, 0) instead of (h, h, 2h). (Note that knowing x also determines the numbers
of nodes at the higher level.)

The remainder of this section will show that kc-optimality and the conditions in
Theorems 2.1 and 2.2 are sufficient for kcu-optimality. To do this, we show the leader
profile uniquely determines the number of keys in a 2-3 tree (provided it has a leader
profile) and its utilization. We then show two 2-3 trees have the same number of keys if
and only if they have the same leader profile. These two results will allow us to prove
sufficiency.

THEOREM 2.3. Let keys (h, l, x), nodes (h, l, x) and twos (h, l, x) be respectively the
number of keys, internal nodes and 2-nodes in a 2-3 tree having leader profile (h, l, x).
These functions are well defined and have the following values:

keys (h, l, x) 2h+l 2/+1 1 + x,

nodes (h, l, x)= 2h+1-- (h /)2/ + (h -l- 1)x 1,

twos(h, l, x) (h l- 1)21+- (h l-2)x.

Proof. The tree has the following form: For level 0,...,/-1, the tree is
completely brinary. At level l, there are x 2-nodes and at level + 1 there are 2(2I- x)
2-node leaders and x 2-nodes which are sons of 2-nodes. For level + 2, , h 1, the
population of nodes can be calculated by observing that a 2-node will have a 2-node and
two 1-nodes as its sons .and a 1-node will have two 1-nodes. Clearly, the functions are
well defined, since the population of nodes at each level is completely determined by the
leader profile.

These results are summarized in Table 2.1. Summing over each column proves the
theorem for < h 1. For h 1, the last two rows are zero, and it is easy to verify that
the theorem is also true. E
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TABLE 2.1.
A level-by-level analysis of the structure ofa 2- 3 tree with leader profile (h, l, x) when

< h 1. If h 1, the last two rows should be zero.

level number of nodes number of 2-nodes number of keys

O<-_i<-l-1 2 0 2
2 x 2+x

+ 2/+1 + x 2/+1- x 2/+2
+ 2- <_-h- 1 2i+1- 2TM + X 2/+1 X 2i+1

COROLLARY 2.1. /f a 2-3 tree has a leader profile, then its utilization is completely
determined by that leader profile.

Proof. By Theorem 2.3, the leader profile determines the number of keys, K and
nodes, N, and the utilization is K/2N.

To show that two 2-3 trees have the same number of keys if and only if they have
the same leader profile, i.e., the function keys (h, l, x) is one-to-one, we demonstrate an
order for sequencing through all the leader profiles such that keys (h, l, x) is mono-
tonically increasing. (This order is interesting in its own right.)

LEMMA 2.2. Let keys (h, l, x) be the number of keys in 2-3 tree with leader profile
(h, l, x). Then

keys (h, h 1, 1) keys (h, h 1, 0) ]’or h > O,

keys (h, l, x + l) keys (h, l, x) + l ]’or l_<-x_-<2/-1,
keys (h, 1, 1) keys (h, l, 21) + 1 for 1 <= <= h 1,

keys (h + 1, h, 0) keys (h, 0, 1) + 1 for h > O.

Proof. Obvious from the relations for keys (h, l, x) in Theorem 2.3. [3
The order of sequencing is obviously given by:

COROLLARY 2.2. For a given h, the sequence of leader profiles for K
2h- 1,""", 2h+l- 2 begins with (h, h- 1, O) and then consists ofh subsequences. The/th
subsequence from the end (1 h 1,..., O) consists of (h, l, 1), (h, l, 2),. , (h, l, 2).
(See Table 2.2 and Fig. 2.4.)

TIaEOREM 2.4. The function keys (h, l, x) is one-to-one; that is, two trees have the
same number of keys iff they have the same leader profile.

Proof. It is obvious that the order of sequencing given by Corollary 2.2 will include
all leader profiles and that the value of "keys" for these leader profiles will be

TABLE 2.2
The sequence of leader profiles for h 3.

K Leader profile

7 (3, 2, 0)
8 (3,2,1)
9 (3,2,2)
10 (3,2,3)
11 (3,2,4)
12 (3,1,1)
13 (3,1,2)
14 (3,0,1)
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K=7 K= 8

K= 9 K=I0

K= 11 K= 12

K= 13

K= 14

FIG. 2.4. kcu-optimal trees of height 3. For simplicity, the leaves are not shown.

monotonically increasing. Given two distinct leader profiles, (hi, 11, xx) and (h2, 12, x2),
one occurs first, say, (hi, 11, x), and hence keys (h, l, Xl) < keys (hE, 12, X2).

THEOREM 2.5. A 2-3 tree is kcu-optimal if and only if:
(1) It is kc-optimal.
(2) Every 2-node has a leaf or a 2-node as its left son.
(3) The heights of any two leaders differ by at most one.
Proof. Property (1) is necessary by the definition of kcu-optimality, and properties

(2) and (3) by Theorems 2.1 and 2.2 respectively. Suppose then that these are not
sufficient. Then there are two trees, T and T2, which satisfy properties (1)-(3) and have
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the same number of keys, but TlhaS higher utilization than T2. Since T1 and T2 satisfy
properties (2) and (3), they have leader profiles and, in fact, by Theorem 2.4, they have
the same leader profile. By Corollary 2.1, they must have the same utilization, a
contradiction. F1

3. Calculating the utilization and expansion. It is clear that we can now get the
utilization of a kcu-.optimal tree with K keys by finding the leader profile (h, l, x) with
keys (h, l, x)- K (this is easily done using Corollary 2.2) and then applying Theorem
2.3. However, this formula would be complex and rather unenlightening. We would
prefer a simple numerical estimate of how these trees perform on the average.
Unfortunately, the utilization does not approach a limit as K-oo. The graph of
utilization versus K does, however, have avery regular form (see Fig. 3.1). The K-axis
can be broken into regions where region h (h--1,2,...) consists of K=

utilizat ion

100%

75%

50% i7- -- ,,, ,,, ,,,
2H-I 2

H+I
-i 2

H+2
-I

K, number "of keys

FIG. 3.1. A graph of the utilization ofkcu-optimal trees versus K, the number o]’ keys in the tree (H is some
arbitrary, large integer).

2- 1,..., 2"+x- 2 (i.e., all values of K such that a kcu-optimal tree of K keys has
height h). The graph behaves nearly identically in each region: For the hth region, when
K- 2h- 1, the leader profile is (h, h- 1, 0). The tree is completely binary, and the
utilization is 50%. The utilization then increases linearly until K 2h + 2h-- 1 (i.e.,
the leader profile is (h, h 1, 2h-)). Here, the tree is completely binary except for level
h- 1, which consists solely of 2-nodes. This tree, then, has a utilization of approxi-
mately 75%. The utilization then decreases back down to 50% which is reached when
K 2h+- 1, and a new region begins. Since the form of the graph is identical for each
region, we can get a good idea of the average performance by calculating the average
over a region for some large h (i.e., over all trees of height h). (It can, in fact, be shown
that the utilization averaged over region h approaches a limit as h oo, and we will
calculate this limit.) First, two lemmas are required.

LEMMA 3.1. Ill(x) is monotone over [a, b] then

min (f(a), f(b)) + j[ f(x) dx <- f(/)<_-max (’(a), j(b)) + f(x) dx.

Hence
b

f(i)= (i f(x) dx)+e,
i=a

where min (f(a), f(b)) <= e _-<max (f(a), f(b)).
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LEMMA 3.2. Let be an integer >_-1, let r 0, and suppose -s/r [1, t]. Then

pi+q 1[ (PSr) (rt+sl
i=1 r;+s=; p(t-1)+ q- ln\r_t_/_l+e,

where

( -s) (+ q pt+J)min
P+q pt+q =<e--_<max
r+s’ rt+ +s rt+

Proof. Let f(x)= (px +q)/(rx + s). Then f’(s)= (ps-qr)/(rx + s)2, and the sign of
f’(x) depends only on ps-qr, not x. Hence f(x) is monotone over any region not
containing -s/r. The lemma then follows directly from Lemma 3.1 and the calculation
of I (px + q)/(rx + s) dx using the substitution y rx + s. [3

THEOREM 3.1. Let nodes (K) be the number of nodes in a kcu-optimal tree ofK
keys. Then ]:or large h, the utilization (-K/.(2. nodes(K))) averaged over K
2h 1," 2h+l- 2 is

5 1 [ ((m-1)2"+2+ 2)In ( 2+-2----(m- .+__2).] +)

 y-4m m 2m+2-(2m-1)]
2-(’

which can be numerically calculated as 64.7%.
Proof. We need to calculate

2"-2 K
nodes

By Corollary 2.2 this equals

( h-1 2 1 keys (h, l, x) / hkeys (h, h-l, 0)
+ . " n-ei-)]/22 :oods ii, -i O) /=0 x=l

We ignore the first term in the sum; when divided by 2h, it vanishes as h o. Then,
substituting rn for h -l- 1 and reversing the order of the first summation gives

(
h-1 2"-"-1 1 keys(h,h-m-l)/E E 2h.
,,=o ,,= 2 nodes(h,h-rn-,

Substituting the values from Theorem 2.3 for keys (h, h m 1, x) and nodes (h, h
m 1, x) gives

(1_) (hl 2h-11 2h+l--2h-m--l"-X )/2h.
o x-1 2h+a--(m + 1)2h-" +rex-- 1

Define ah,, to be the value of the inner sum for a given h and m. We want to take
the limit of Oth, as h - m, but the number of terms increases to infinity as h - m. Hence,
we will consider Cth, divided by the number of terms. Normalizing the sum in this
manner makes the limit exist. Define lh, Oth,m/2h-m-1 and a*m limh-. lh.m. (Note
that Cih.., is the average of a number of utilizations, and hence 1/2 <-CTh,. <-- 1. We use this

h-1 -(re+l)fact in Lemma 3.3.) (1) is then equal to Y.,=o fib,., 2 To calculate the limit as
h- oo, we use the identity

(2)
h-1

lim Y CTh,." 2-(’+)= Y’. a*2-(’+1)

h m=0 m=0

This equality is not obvious (suppose the summand were 8h,, =- I if h- m and
otherwise instead of ffh,, 2-("+)), and is proved in Lemma 3.3. We now calculate
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for all m. If m 0, O/.h,m simplifies to

1 2h-1 2h 1 + x 5 22h-2- 3 2h-1

x212 2h--1 2h+2--4
,Dividing by 2h-1 and taking the limit gives c o .

For m > 0, we use Lemma 3.2 to give

mm[2h-m- l +(2h+l--2h-m + l
2h+l--(m+l)2h-m

Ol h, m -1.)
(2h+l--(m+l)2h-r--l+m2h-m-l]x In 2h+l_(m + h--z-_,Z ,_--- ] + e

1 [2--_1+((m-1)2a++2/-+(m+l)),2m m

2h+l- (m + 2)2h-m-- 1 ]

where 1/2<-e <-1 (the minimum and maximum utilizations). Dividing by 2h-m-1 and
taking the limit as h oo gives

a* 1 [ ((m-1)2"*+2+ 2.)In 2+-2----(m .+__2_).]=mm 1 + for m > 0.
m \2"+2- (2m 1)]

Then substituting into (2) proves the theorem.
LEMMA 3.3. Let 1/2 < h., < 1 ]’or all h, m >= 0 and let a *m limh-,oo h,,. Then

lim th,m’2-(m+l)-- ’, iX*" 2-(re+l)

hx3 m=0 0

Proof. We know that for any e > 0, an Ho can be found such that

h-1

2-(m+) 2_(m+1(3) E tlh.m Y. , < e for all h ->_ Ho
m=0 m=0

For any given e, let Mo =-log e/2. Note that
h-1

2-(re+l)
eY. Cih,,, < Y 2-("+ <

=Mo+l =Mo+I 4"
,2_(m+Similarly, ,,=Mo+l a < e/4. NOW for this Mo choose Ho such that

E* 9--(re+l) th, 2-(’+1 < for all h > Ho, m <Mo.10 2Mo
Such an Ho must exist; for every m, there exists a suitable value for Ho, and we simply
pick the maximum of these values. We now have, for any h -> Ho,

h-1

2-(re+l)E llh, --E a*2
=0 =0

Mo
2-(’’+1) * 2-("+x) + Orb,m2-(re+l) + a* 2

m=0 m=Mo+l m=Mo+l

< Mo" 2Mo++<e

proving the lemma. V1
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THEOREM 3.2. Let nodes (K) be the number of nodes in a kcu-optimal tree of K
keys. Then for large h, the expansion (=2. nodes (K)/K-1) averaged, over K
2h- 1, , 2.h+l- 2 is

(2 [m_((m_l)2,+2+2)ln(2m+2-)]2m+2 2--(re+l)) 1,
m=0

which can be numerically calculated as 56.7%.
Proof. In a manner analogous to Theorem 3.1, we consider

(h-1 2 2h+l--(m + 1)2h-" +rex- 1)/2 2 2. -h --2--;= ZI- -- 2h 1,
m=0 x=l

and define Ch,,,, Cih,,, and c*,,. Using Lemma 3.2 gives

Ceh,,=2[m(2h-’-X--1) +(2h+X--(m + 1)2h-’--l--m(2h+X--2h---l))
+ 1)] +X In

where 1 <_- e <_- 2.
Dividing by 2h-m-1 and taking the limit as h oo gives

a* 2[m ((m -1)2"+2 + 2) In (2m+2-)]2m+2

and substituting into Y=0 a*. 2-("+1)- 1 proves the theorem. Note that the inter-
change of sum and limit is still valid; an analogue of Lemma 3.3 can easily be proved
because 1 _-< h,m 2. [3

In summary, the average utilization of 64.7% shows that it is possible to have
kc-optimality and reasonable utilization; these properties are not totally incompatible:
In addition, the average expansion of 56.7% is comparable to the expansion of a
random 2-3 tree, which is known to be bounded [5] between 40% and 58%. (Note that
the expansion must be used in this comparison because no such bounds on the
utilization are known.)

4. A tree construction algorithm. In this section we describe an O(n) algorithm to
construct a kcu-optimal 2-3 tree from a sorted array of keys (see Appendix). The
algorithm builds the tree top-down. If K, the number of keys in the tree to be built, is of
the form 2h/l 2, then a full tree must be constructed. This is done in lines 5-16. If K is
not of this form, (lines 17-25) the root of the tree must be a 1-node, and the other keys
must be partitioned into two subtrees. Many partitioning strategies are possible. Our
algorithm divides the keys as evenly as possible, with the leftover key (if there is one)
going into the left subtree. We now prove that the "even splitting" tree construction
algorithm actually does construct a kcu-optimal tree and that it requires time O(n).

THEOREM 4.1. The "even splitting" algorithm produces a kcu-optimal tree.

Proof. (by induction on K). Proving the theorem for K 1 is trivial, so consider
K > 1. If K is of the form 2h+l 2, the algorithm will construct a full tree, which is then
kcu-optimal. If K is not of this form, [(K-1)/2] keys form the left subtree and
[(K-1)/21 the right. Let (h- 1, ll, xl) and (h- 1, 12, x2) be, respectively, the leader
profiles of the left and right subtrees. If K is odd, [(K- 1)/2] [(K- 1)/2J, and the
structure of the subtrees will be identical. In this case, 11 12. All leaders are on level 11
or ll + 1 and the levels of two leaders can differ by at most one. Hence the tree is
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kcu-optimal. If K is even, the left subtree will have one more key than the right. It may
be the case that 11 12, in which case the proof for odd K holds. If 11 12, Corollary 3.1
states that the leader profiles must be (h- 1, l, 1) and (h- 1, 12, 2/2) with l 12-1,
because the number of keys in the subtrees differs by exactly one. The left subtree has
leaders on level 11 and l + 1. The right subtree has leaders on only level 12 (=/1 + 1), and
there can be no lower leaders at level 12 + 1. Again, the levels of the leaders differ by at
most one, and the tree is kcu-optimal. [3

THEOREM 4.2. The "even splitting" algorithm requires time O(n).
Proof. Since the algorithm has no loops, the time required for any invocation of

Build (ignoring any calls it makes) is bounded by a constant. Since each invocation puts
at least one key into the tree at most n invocations are required. [3

Appendix. Here, we give two algorithms is pseudo-PASCAL" Algorithm A.1 for
searching for a value in a 2-3 tree, and Algorithm A.2 for building a kcu-optimal tree
from a sorted array of keys. We assume the following global type declarations:

TYPE nodetype RECORD

onekey: BOOLEAN;
leftkey, rightkey: keytype;
leftson, middleson, rightson: ptnode

END;
ptnode ’nodetype;

Field "onekey" is true if and only if this node is a 1-node. For 2-nodes, the fields are
used in the obvious way. For 1-nodes, the single key is stored in "leftkey" and the
pointers to the sons are stored in "leftson" and "middleson" ("rightkey" and "right-
son" are ignored).

ALGORITHM A. 1. Searching for the key with value "keyval" in a 2-3 tree with root
pointed to by "root". A pointer to the desired node is returned in "p". For simplicity,
we assume "keyval" is in the tree. We also assume only one comparison is needed to
execute each pseudo-CASE statement.

PROCEDURE search (root: ptnode; keyval: keytype; VAR p: ptnode);
VAR found: BOOLEAN;
BEGIN
p := root;
found :- FALSE;
WHILE NOT found DO BEGIN

CASE
keyval < p’.leftkey: p := p’.leftson;
keyval p’.leftkey: found := TRUE;
keyval > p’.leftkey:

IF p’.onekey THEN p :- p’.middleson
ELSE BEGIN

CASE
keyval < p’.rightkey: p := p’.middleson;
keyval p’.rightkey: found := TRUE;
keyval > p’.rightkey: p := p’.rightson

ENDCASE
END

ENDCASE
END
END
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ALGORITHM A.2. The "even splitting" algorithm for constructing a kcu-optimal
tree from a given set of keys. We assume the K keys are stored in sorted order in
positions I through K of array "keys". We assume the original invocation is build (1, K,
TRUNC(log 2(k + 1))), which returns a pointer to the root of the tree.

2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

FUNCTION build (lower, upper, height: INTEGER): ptnode;
VAR kl, k2: INTEGER; node: ptnode;
BEGIN
IF height 0 THEN build := NIL
ELSE IF upper-lower + 1 2**(height + 1)-2 THEN BEGIN

NEW(node);
kl := lower + 2**height- 2;
k2 := lower + 2**height + 2**(height-I) 2;
node’.onekey := FALSE;
node’.leftkey := keys[kl];
node’.rightkey := keys[k2];
node’.leftson := build(lower, kl-1, height-l);
node’.middleson := build(kl + 1, k2-1, height-l);
node’.rightson := build(k2 + 1, upper, height-l);
build := node;

END
ELSE BEGIN

NEW(node);
kl := (lower+upper+ 1) DIV 2;
node’.onekey := TRUE;
node’.leftkey := keys[kl];
node’.leftson := build(lower, kl-1, height-l);
node’.middleson := build(kl + 1, upper, height-l);
build := node;

END
END
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PERFORMANCE BOUNDS FOR ORTHOGONAL ORIENTED
TWO-DIMENSIONAL PACKING ALGORITHMS*

IGAL GOLANt

Abstract. Two orthogonal oriented two-dimensional, packing algorithms are presented and their
behavior is analyzed under several assumptions. For one of the algorithms we show that the ratio of the height
used by the algorithm to the optimal height is asymptotically bounded by 34- This bound is an improvement
over similar bounds for previously proposed algorithms.

Key words. Two-dimensional packing

1. Introduction. Consider an "open-ended" rectangle R of width 1 and a finite
collection of rectangular pieces organized into a list L {P1, P2, , Pn }. Each piece is
defined by an ordered pair Pi (w(Pi), h(Pi)), 1 <-i <=n, corresponding to the width
w (Pi) and the height h (Pi) of the piece, w (P) -< 1 for all 1 -< -<_ n.

The problem is to pack the pieces into R so that no two pieces overlap and so that
the height to which R is filled (the maximum height attained by any piece) is as small as
possible. We shall assume that the rectangular pieces are oriented such that the sides of
the piece which correspond to its width have to be parallel to the bottom edge (B) of R.
The problem is a generalization of the one-dimensional bin packing problem studied in
[4] and has been considered in various forms in [1], [2] and [3].

For a list L of rectangular pieces all having width less or equal to 1, let OPT(L)
denote the minimum possible height necessary to pack all the pieces into R. Let A(L)
denote the height actually used by a packing algorithm A when applied to L. We
consider two types of bounds" absolute performance bounds of the form A(L)<-_ ce

OPT(L) and asymptotic performance bounds of the form A(L) <-- a OPT(L) + fl, where
c and/3 are constants such that c _>- 1, fl -> 0.

In 2 we present the split-algorithm and give absolute and asymptotic per-
formance bounds for the general case, and for the special case where all pieces are
squares. In 3 we present the mixed-algorithm and give an asymptotic bound for its
behavior.

We conjecture, on the basis of the analysis of these algorithms, and other
algorithms as well, (such as those described in [1], [2]) that the better performance of the
mixed-algorithm as compared to the split-algorithm is not accidental. More generally it
appears that algorithms treating all the components of L uniformly are outperformed
by those that handle "wide" and "narrow" pieces separately.

2. Performance bounds for split packing. We can split an "open-ended" rectangle
R into two "open-ended" rectangles R1, R2 and a "closed" rectangle M as in Fig. 1.
If B (the bottom edge of R) and O coincide, M will disappear.

A levelL will be any line parallel to the bottom edge B of R its value is its distance
from B. Let L={P, P2,...,Pn} be such that w(Pi)>-w(Pi+) for i<n (i.e., L is
arranged in decreasing-width order). The split algorithm (SP-algorithm) will be as
follows: the split algorithm packs the pieces in order of decreasing width. After packing
some pieces, those left to be packed are narrower and we can split the open-ended

* Received by the editors August 16, 1979, and in final form February 21, 1980.
"t" Armament Development Authority, Center for Military Analyses, P.O. Box 2250, Haifa, Israel.
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RI R2

M

FIG. 1. Splitting R into R 1, R2 and M.

rectangle R into two open-ended rectangles each being sufficiently wide as to accom-
modate any of the pieces left to be packed. Packing the two rectangles simultaneously,
we insert the next piece to be packed in the one with the minimum resulting overall
height. As soon as possible we continue to split each of the rectangles. As the pieces get
narrower we obtain more rectangles to place them in.
Begin SP-Algorithm
(1) Define R to be R. Place P1 on B touching the left edge of R 1. Define level S 0,

k=l,i=l.
While (k < n) Repeat

Begin We have already defined R1, Rz, , Ri. For each Ri with width W
let Pi be the last piece packed into it. Let b be the distance of the bottom
edge of Pi to B. Let a bi + h (P).

(2) Let J {R[ W. >_- w(Pi) + w(P+l)}
Comment J is the set of "open-ended" rectangles which can accomodate
the next piece to be placed (P+I) side by side with the last piece placed in it
(P).
If (J O) go to (8)

(3) Find Rj, J such that br--< bi for all R J (Resolve ties in any way you like).
(4) Insert Pk/I in Rr with its bottom edge at height br and its left edge touching

Pr on its right.
(5) Split Rr into Ri/l, Ri+2 and M., with a line parallel to the bottom edge of Rr

at height br and a vertical line touching Pr and Pk/I (see Fig. 2).
(6) Delete Rj, from the list of "open-ended" rectangles. Put Ri/l and Ri/2 in

the list. Relabel the List. + 1, k k + 1.
(7) Go to (10).
(8) Let j’ be such that ai, <_- ai for all 1 <- ] <_- (resolve ties in any way you like).

Place Pk+1 in Rr with its bottom edge on the top edge of Pi, and its left edge
touching the left edge of Rr.

(9) Define S ai,, k k + 1.
(10) End while.
(11) Stop
End SP-Algorithm.
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LEMMA 1. For any "closed" rectangle M let Pkl, Pk2,’’’, Pk_be the pieces
ofL inside M. Let the width ofM be W. Then for all 1 <- <- f w (Pk) > W/2.

Proof. The pieces inside M are placed on top of one another. If Pk, is the piece
placed on top of Pk,_l, 1 <i<-_f then w(Pk,)_-< w(Pg,_). If]’= 1 we have W(Pkl) W. If
f_--> 2 let us assume that W(Pke) --<-- if’/2. In this case a piece would be placed side by side
with Pkt using step (4) of SP and the split in step (5) would separate the pieces P_ and

Pkr" This is a contradiction and therefore, w(Pkr)> W/2. [3

P].,
Pk+l

FIG. 2. Splitting Rj,.

LEMMA 2. LetA be the region between B and S. ThenA is at least halfoccupied with
pieces (and parts of pieces) from L.

Proof. Initially the level S is at the bottom edge of R and obviously the lemma is
true. As long as we do not perform instruction (9) in the SP-algorithm the statement will
remain true. Let us assume that we have just executed instruction (9) and $ is driven to a
new height. Between B and S we have "closed" rectangles (and parts of "closed"
rectangles) and by Lemma 1 their area is at least half occupied. In addition we have in A
parts of "open-ended" rectangles Ri, Ri2, , R. For all 1 <-_ ] <-_ a, S <- aij (by step (8)
of the SP-Algorithm) and bj > Wj/2, for otherwise, at step (2), J # b and we would not
have arrived at step (9). It follows that these parts are also half occupied.

LEMMA 3. If h maxl<__i<__, (h (Pi)) then ]’or all Rj as defined by the SP-algorithm,
aj-S <-h.

Proof. Assume that there is an such that a S > h. It follows that bi S > 0 and
the Pi was inserted by using step (8). Then we would have used step (9) to move S to the
bottom of P and ai- S h(P). Thus, ai- S-_< h, a contradiction and the lemma is
proved.

THEOREM 1. For any list L {P1, ., P,}, SP(L) -<_ 3 OPT(L).
Proof.

SP(L) _-< S + h, h max (h(Pg)) by Lemma 3,
l<=i<-n

S<-_2 w(P) , h(P) byLemma2,
i=1

OPT(L) ->- max ( h, w(Pi)*h(Pi)).
i=1



574 IGAL GOLAN

Consider the two cases.

(1)

OPT(L) >= h,

h >- , w(Pi) * h(Pi),
i=1

SP(L) S + h
OPT(L)- h

<-1+
2 ,,= w(P) h(P)

SP(L)
OPT(L)

=< 3.

Thus, SP(L) <_- 3 OPT(L).

(2)
h < w(P,) h(P,),

i=1

OPT(L)->_ w(Pi) * h(Pi),
i=1

SP(L) S + h
OPT(L)-Zi=I w(Pi) * h(Pi)

SP(L)< 2 E,=l w(P) h(P)
OPT(L)- E/=I w(Pi) * h(P,)

h
Z,= w(P,) h(P)

Therefore, SP(L) <_- 3 OPT(L).
COROLLARY 1. For any list L {P1, P2," Pn} such that w(Pi), h(Pi) <- 1 ]:or all

1 _-< _-< n, SP(L) -<_ 2 OPT(L) + 1.
Proof.

SP(L) <_- S + h, h max (h(P)) <- 1,
l<=in

S <-_2 ., w(Pi) * h(P)<_-2 OPT(L).
i=1

Therefore, SP(L) <- 2 OPT(L) + 1. 71
Example 1. For any even k let L {P[i 1,. , k2/2 + k3/2 + k + 1}, where

1 <]<k2/2, p (2/k 2 2
-e, 2/k -e),

n .-[-- l ] . T.-[--T.-.l- k Pj

n =--+--+ k + 1 P.= -e,
k4.

Then an SP-packing of L will be as in Fig. 3, and the optimal packing will be as in Fig. 4.

2 3 3 1 SP(L) 7-2ek2

SP(L) -+-- e, OPT(L) -+-e, OPT(L--- 3
k 23 +--ek

COROLLARY 2. For any 6 >0 there exists a list L of rectangles arranged by
decreasing width, such that SP(L)> (3- 8) OPT(L).

Proof. Use Example 1. [-I
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Example 2. For any even k let L={Pili= 1,..., (kS/2)+k3+(k2/2)} where

k2

(2 2 )
ka k s k

n,=+l_-</<_-T+k3+T, P’= and e<<-.
The SP-packing will be similar to that in Fig. 3, and the optimal packing will be similar to
that in Fig. 4.

’2 _e)+k3 1
SP(L) =l-, -,
OPT(L)=

2 +k}*-+ -e

2
SP(L) k +-- e,

k 1 2
OPT(L) ++-- e.

P1

el R2

P2

FIG. 3. SP(L) 2/k + 3/2k e.

k

el

3k
.-- squares

Pnl-1

(- ) squares

k

FIG. 4. OPT(L)=3/k2+ 1/2k-e.
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COROLLARY 3. For any 3 >0 there exists a list L of rectangles arranged by
decreasing width, such that SP(L) > (2- 6)OPT(L) + Cfor any C.

Proof. Use Example 2.

2
SP(L) C

k +--C-e 4+2Ck2+4k 2k2

OPT(L) k 1 2
2- k3 + 2k +4- 2k2e

If k is large enough, (SP(L) C)/(OPT(L)) > 2 3. [3
When all the pieces are squares an improvement of the SP-algorithm can be

obtained.
The new algorithm, called the SPS-algorithm, does not insert the squares into R in

the order they appear in L. To get the SPS-algorithm replace step (8) in the SP-
algorithm by the following steps"
(8’) Begin Let j’ be such that a., _-< a. for all 1 _-< j _-< (resolve ties in any way you like).

Let d =0.
(81) e reV/, w(Pi,)- d. If there is no m, m > k + 1, such that w(P,) <= e go to

(82). Let l, > k + 1, be the smallest integer for which w(P) <= e. Insert PI
in Ri, with its bottom edge at distance br from B, and as far to the left as
possible. Let d d + w(P). Take P out of the list L, and relabel the
remaining pieces of L starting at k + 1. Let n n 1, go to (81).

(82) Insert Pk+l in Ri, with its bottom edge on the top edge of Pj, and its left
edge touching the left edge of R.,.

End
THEORZM 2. For any list L {PI, P2, , Pn} of squares arranged by decreasing-

width SPS(L) _-< 2 OPT(L).
Proof. Let Pt be the largest square with top at height SPS(L). Define level

$’ w(Pt) and level S SPS(L)-w(P). By the definition of S, S->_ $1. Let A be the
area between levels S’ and S. Lemma 2 holds also for.the SPS--algorithm and hence, A
is at least half occupied.

Consider the area A between B and $’. There are pieces of L on B arranged in
decreasing width order from left to right. Let Pq be the square farthest to the right which
is still greater than Pt. The distance z between the right edge of Pq and the right edge of
R, is less than w(P), otherwise, Pt would have been placed on B using step (81). The
occupied area of A is at least w(Pt) * (l-z). Consider the area A2 between $1 and
SPS(L). The occupied area of A2 is at least w(Pt) * w(P). The occupied area of both A
and A2 is at least half the area, because w(Pt) * (1 z) + w(P) * w(Pt) w(P). Thus,
SPS(L) _-< 2 OPT(L). [-1

COROLLARY 4. For any 6 > O, there exists a listL ofsquares arranged by decreasing
width, such that SPS(L) > (2- 6)OPT(L).

Proof. Use Example 1 without the last piece. El

3. Performance bound or mixed packing. Most of the packing algorithms (see
[1], [2] and [3]) packed all the pieces in the same way, an exception is [2, split-fit
algorithm]. The mixed algorithm divided the pieces into several sets and packed the
pieces in the sets in different ways. By not packing the pieces in decreasing-width order,
it is possible to fill the gaps created by packing wide pieces, with smaller pieces and thus
save space.
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Given a list L {P1, P2,’ ", P,} of rectangular pieces, such that w (Pi), h (Pi) <- 1,
for all l<-i<-n, divide L into 5 sets: A={PIw(P)>1/2}, B={e,l<w(e,)<-_1/2}, c=
{Pi l1/4 < w(Pi) <= 1/2}, D1 {Pi I< w(Pi) <= 1/4}, D2 {Pi w(Pi) -<} and let D D1U D2. A
piece from the A set will be called an A-piece and similarly for B, C, D1, D2 and D.

The mixed-algorithm (M-algorithm) is as follows:
Begin M-algorithm.
Step (1)
(1.1) Arrange all A-pieces in decreasing width order; A ={ax, a:,..., alal}. Set

/1=0, i=1.
(1.2) Place a in R on level l left justified (as far to the left edge of R as possible).
(1.3) li+l l + h(ai), + 1.
(1.4) _-< IAI then go to (1.2).
Step (2)
(2.1) Define LE=IIAI+I. Arrange all B-pieces in decreasing width order; B=

{bl, bE,’’’, blBI}. Set level [= 0.
(2.2) Let

k min {[BI + 1, f Ibm. B, b. is not marked, b. will fit on level f, f + h (bj) <- L2).
I_-<j_-<IBI

If (k IBI/ 1) then go to (2.4).
(2.3) Place bk in R on level f right justified. Mark bk, f =f+ h(bk), go to (2.2).
(2.4) Find i=minl<__i<_lAl+l (jilt>f).

I (i _-< IAI) then f= l,, go to (2.2).
(2.5) Move up the last B-piece placed in R, until its top will be at level L2. Move,

successively, all other B-pieces, until the top of each one will touch the bottom of
the B-piece above it. Let L1 be the height of the bottom of the lowest B-piece
in R.

Step (3)
(3.1) Find i=maxl<_<__lAl+l(O, jlw(a)>1/4). Let Hl-li+l, if (HI>=L1) then go to

(6). Find i=maxl<_i<__lAl+l(O,]lw(a)>). Let H2=min(Ll, li+l). Find i=
maxl_-<i_lAl+l (0, ]1 w(ai) > ). Let H3 min

Step (4)
(4.1) If(H2 H1) then goto (5). Construct a rectangle R1 inside R, between height H1

and height H2, having width 1/4, right justified (see Fig. 5). Use FFDH-algorithm
[2], to pack as many of the remaining pieces as possible into R. If a piece does
not fit completely into R 1, then don’t pack it.

(4.2) If (H3 H2) then go to (5). Construct a rectangle R2 inside R, between height H2
and height Ha, having width 1/2 right justified (see Fig. 5). Use FFDH-algorithm
[2], to pack as many of the remaining pieces as possible into R. If a piece does
not fit completely into R2, then don’t pack it.

Step (5)
(5.1) Arrange all C-pieces not yet packed in decreasing-width order; C=

(5.2)
(5.3)
(5.4)
(5.5)

{1, 2,’’’, ICI}" H4 n3, 1.
If (i > ICI) then go to (5.5).
If (H4 + h(ci) > L1) then + 1, go to (5.2).
Put ci in R on level H4 right justified, H4 Ha + h (ci), + 1, go to (5.2).
I| (n4 + 1 _-> L 1) then go to (6).
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(5.6) Arrange all Dx-pieces not yet packed in decreasing-width order; Dx
{dl, d2," , dloll}. Use [1, bottom up right justified algorithm] to pack as many
of the Da-pieces as possible, starting at height Ha, but do not pack above Lx. Let
the height of the top of the highest Dx-piece be Hs.

A- pieces

R3

L2

B- pieces

L

D2-pieces

D1- pieces

H4

C- pieces

H3

Hi

FIG. 5. M-packing steps (1)-(5).

(5.7) If (Hs+ l_->Lx) then go to (6).
(5.8) Construct a rectangle R3 inside R, between height H5 and height Lx, having

width right justified (see Fig. 5). Use FFDH-algorithm [2], to pack as many of
the remaining D2-pieces as possible into R3. If a piece does not fit completely
into R3, then do.n’t pack it.

Step (6)
(6.1) Use FFDH-algorithm [2] to pack the remaining B-pieces left justified. The

pieces will be packed starting at height L2 and ending at height L4.
(6.2) Rearrange the levels of this part of the packing in such a way that all levels having

total width more than 4
3- will be below all other levels. Let L3 be the highest level

having total width more than 4
3-

Step (7)
(7.1) If (L3 L4) then go to (8). Construct a rectangle R4 inside R, between height L3

and height L4, having width 1/4 right justified. Use FFDH-algorithm [2], to pack as
many of the remaining pieces as possible into R4. If a piece does not fit
completely into R4, then don’t pack it.
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Step (8)
(8.1) Use FFDH-algorithm [2], to pack all remaining pieces left justified, starting at

height L4.
End M-algorithm.

THEOREM 3. For any list L {P1, , Pn}, such that w (Pi), h (Pi) <- 1 for all
1 <- <-_ n, M(L) <- OPT(L) +7.

OPT(L)

HX

SB

SA

Section 3

Section 2

Section

FIG. 6. M-packing divided into sections.

M(L)

L2

Proof.
Case 1. No D-piece left to be packed after step (7). Let OPT(L) be the height of

the optimal packing. Divide the optimal packing into blocks, by passing levels at the top
and bottom of each A-piece. Each adjacent pair of such levels defines a block. Let a
block containing an A-piece be called an A-block, and any other block a B-block. Let
SA be the sum ot the heights of all A-blocks and SB the sum of the heights of all
B-blocks. Then

OPT(L) SA + SB.

Let H(Y) be the sum of the heights of all Y-pieces, where Y is A, B or C. Let
HH H(A).+H(B) +H(C). It is clear that SA H(A) L2.

Divide the M-packing into 3 sections as follows: section I between the bottom ofR
and L2, section 2 between L2 and OPT(L) and section 3 between OPT(L) and M(L)
(Fig. 6). Let X(B) be the sum of the heights of all B-pieces or parts of B-pieces,
included in section 3. Let X(C) be the sum of the heights of all C-pieces or parts of
C-pieces, included in section 3. Let HX be the height of section 3, M(L)=
OPT(L) +HX. Clearly the height of section 2 is SB.

In any packing, a level line can pass through at most 3 pieces from B (.J C. If a level
line passes through an A-piece, it can pass, at most, through one more piece from B C.
Thus HH <- 2SA + 3SB.

In the second section of the M-packing, FFDH-packing was used in steps (6) and
(8). In each block of the FFDH-packing, in steps (6) and (8), we have at least two pieces
from B (.J C, except maybe, the last block in each step. In a FFDH-packing of height L, if
each block, except possibly the last one, contains at least K pieces, then the sum $ of the
heights of all pieces, satisfies S >-_KL-(L-1)H, H being the height of the highest
piece.
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Hence, X(B)+X(C)<-H(B)+H(C)-(2SB-2). But H(B)+H(C)=HH-
H(A), and HH <-_ 2SA + 3SB. Therefore X(B) +X(C) <-_ 2SA + 3SB SA
2SB +2. Hence X(B)+X(C)<-$A +SB +2. But OPT(L)=SA +SB. Thus X(B)+
X(C)<-OPT(L)+2.

Compare the packing of the B-pieces in the M-packing with that in the optimal
packing. In step (2) of. the M-algorithm, B-pieces are placed side by side with A-pieces.
The B-pieces are ordered in decreasing-width order (2.1), and the k in step (2.2) is
minimal, thus we always place the current widest B-piece. The cumulative height of the
B-pieces put in step (2) can differ from the maximum possible only because of the
additional condition f+ h(b/)<=L2 in step (2.2). This implies that there might be an
additional B-piece that will fit near an A-piece, but will violate the above restriction.
We conclude that the cumulative height of the B-pieces placed in the first section is not
less than the cumulative height of the B-pieces, and parts of B-pieces, in the A-blocks
minus i. If OPT(L) ->L4 we have X(B) 0. Assume OFT(L) < L4; then the cumulative
height of the B-pieces, and parts of B-pieces, placed in step (6) up to height OPT(L), is
at least 2SB- I. This is because the FFDH-algorithm will put 2=pieces in each level,
except maybe the last one. The cumulative height of the B-pieces, and parts of
B-pieces, packed by the optimal algorithm in the B-blocks, is not more than 25B.
Therefore, X(B) <= 2.

Divide the third section of the M packing into blocks, by passing levels at the top
and bottom of each B-piece, or part of a B-piece. Each block will be between two near
levels. Call a block containing a B-piece, or part of a B-piece, a BM-block and any
other block a CM-block. Let SBM be the sum of the heights of all BM-blocks, and
$CM the sum of the heights of all CM-blocks. Then

HX SBM+ SCM, SBM <-_X(B <- 2.

Using step (8) we pack the C-pieces, placing them three on a level except maybe the last
one. Thus

X(C) X(C)
SCM <-... + 2, nx <- + 4.

3 3

But X(B) +X(C) <- OPT(L) + 2. Therefore HX <-_ (OPT(L))/3 + 432-,

M(L) OPT(L)+ns <-3a-OPT(L)+ 432-.
Case 2. There are D-pieces left to be packed after step (7). We will use an area size

argument in this case. In each of the 10 parts of the proof we will show that the area S,
between two line levels,, covered by pieces, satisfies S >-aH + where a >_-43-, H the
distance between the levels, and/ a constant.

(i) From the bottom of R to level H1, the area $1 covered by the A-pieces
satisfies Sl =>1/4H1 (definition of H in step (3) of the M-algorithm).

(ii) From level H to level H2, the area S’2 covered by the A-pieces satisfies
S’2=> (H2 Hx) (definition of H2 in step (3) of the M-algorithm). The area S"2
covered by pieces inside R satisfies S"2 >= 1/4((H2- H)/2 1) ([2, Thm. 1 and

$2 S + S{ -> (32- + )(H2 HI) 1/4 => 43-(H2 H) 1/4.

(iii) From level H2 to level H3, the area S covered by the A-pieces satisfies
S --> (H3-H2) (definition of H3 in step (3) of the M-algorithm). The area
SJ covered by pieces inside R2 satisfies S’ >-1/2((H3-H2)/2-1) [2, Thm. 1].
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Thus,

S3 S +S >_- (1 +)(H3 H2) 1/2->- 1/4(H3 H2) 1/2.
(iv) From level H3 to level H4, the area S[ covered by the A-pieces satisfies

S[ >_-1/2(H4-H3). The area S[ covered by the C-pieces satisfies S[->_
1/4(Ha- H3). Thus,

S4 S +S (+ 1/4)(H4 n3) --> 1/4(H4 n3).

(v) Look at any level line between levels Ha and H5-1. It passes through an
A-piece on the left, and through a Dl-piece on the right. In between there is a
gap filled with at most one additional D1-piece. If the width of the gap is at
least 1/4, then because the D1-pieces have width less than 1/4, the bottom up right
justified algorithm used in step (5.6) will certainly place another Dl-piece
into the gap. Let $5 be the area covered by pieces from level Ha to level Hs,
then

$5 ->_ 43-((H5 1)-H4)+1/2>-_-(Hs-H4)-1/4.
(vi) From level Hs to level L1, the area S covered by the A-pieces, satisfies

S’6 >=1/2(L1-H). The area S covered by pieces inside R satisfies S->
((L1-H)- 21/4. ). (The width of R is . The D-pieces used to pack R
have a width of at most . We use a result from the proof [2, Thin. 3] for the
bound.) Thus,

$6- S’6 + S,>- (1/2 +)(L1-H)-->=1/4(L1-Hs)--.
(vii) From level L1 to level L, the area S covered by the A-pieces satisfies

L SS _->( 2-L1).Thearea coveredbytheB-piecessatisfiesS>=1/2(L2-L1).
Thus,

$7 S q-- S (1/2 -[- )(L2 L1) >-- 1/4(L2 L 1).

(viii) From level L2 to level L3, the area Ss covered by the B-pieces satisfies

Ss >_-1/4(L-L)- 1 (definition of L in step (6) of the M-algorithm).
(ix) From level L to level L4, the area S covered by the B-pieces satisfies

S’9 >-(L4-L)-1. (There are 2 B-pieces in each level except possibly the
last one.) The area S covered by pieces inside R4 satisfies S =>
1/4((L4-L3)/2-1) [2, Thm. 1]. Thus,

S9 S -1- S (32- q- )(t4 t3) 1/4 -> 1/4(t4 Z3) 1/4.
(x) All pieces placed from level L4 to the end of the packing M(L) have width

less than 1/2. Using again the result from the proof of [2, Thm. 3] we get"
$1o ->- (M(L) L4) " . Thus,

Slo>1/4(M(L) L4) 19

Adding the results from (i) to (x) we get OPT (L)>-l Si>=1/4M(L)-4 Thus,
M(L) <= ]OPT(L) + 78.
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AN AVERAGE TIME ANALYSIS OF BACKTRACKING*

CYNTHIA A. BROWN5. AND PAUL WALTON PURDOM, Jr.5.

Abstract. Formulas are given for the expected number of nodes in the backtrack tree that is generated
while searching for all the solutions of a random predicate. The most general formulas apply to selection from
any set of predicates that obeys the following conditions. Each predicate is the conjunction of terms selected
from a set of terms T. For any subset T’ -< T, the probability that the predicate contains only terms from T’
depends only on the size of T’. The set T must remain unchanged if each variable xi is replaced by pi(xi),
where pi is a permutation function. The time needed to evaluate the general formulas is proportional to v, the
number of variables in the predicate. More detailed consideration is given to predicates whose terms are
random disjunctive clauses with s literals, v for some < a < s, and the random selections are done with
repetition. For this case the expected number of nodes is exp[O(v(S-)/(s-1))]. (Complete enumeration
results in exp [O(v)] nodes.) Thus the average time for backtracking in this model is exponential with a
sublinear exponent.

Key words, backtracking, analysis of algorithms, NP-completeness

1. Introduction. Many problems can be regarded as a search for all the solutions
to an equation of the form P(xl, , x) true, where P is a v-ary predicate and each xi
has a finite set of possible values. The most straightforward way to solve such a problem
is by enumerating and testing each combination of possible values of the variables. If
each variable has values, there are possible solutions, so the exponential time
required for complete enumeration makes this method impractical for all but the
smallest problems.

Suppose that, in addition to P, there are intern]ediate predicates
{Pk(Xl,""" Xk )}l -<_ / -<_ where P=P, such that if P/-l(Xl,’’’ ,x/-l) is false, then
Pk (xl,. , x) is false for all values of x. Then the technique of backtracking can be
used to try to reduce the size of the space to be searched. The basic backtracking
algorithm can be stated as follows:

1. [Initialize] Set k -0.
2. [Test] If P (Xi,""", Xk) is false, go to 6.
3. [New Level] Set k k + 1.
4. [Solution?] If k > v, then xl, , x is a solution. Go to 7.
5. [First value] Set x -the first value of xk and go to 2.
6. [Next value] If x has more values, set x the next value for x and go to 2.
7. [Backtrack] Set k k- 1. If k > 0, go to 6; otherwise stop.
The values that are tested can be represented by a tree, as shown in Fig. 1. Knuth

[5] gives a more complete introduction to backtracking.
p {x1, -’ix1} V {x1, x2} V {x1, -"ix2}

P {’xl, x2} P {x, 2} P {x2, -x2}

FIG. 1. The backtrack trees for six simple predicates. The false branch is to the left. Each node where a
term is false is marked with an asterisk.

* Received by the editors December 19, 1979, and in revised form October 6, 1980. This research was
supported in part by the National Science Foundation under grant MCS 79 06110.

5" Computer Science Department, Indiana University, Bloomington, Indiana 47405.
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If the intermediate predicates can be evaluated quickly and are often false for small
values of k, then backtracking takes considerably less time than complete enumeration,
but if the intermediate predicates are ineffective, backtracking can take considerably
longer. Although there are effective intermediate predicates for many problems, no
general theory has been developed for finding them, and the dependence of the running
time on the intermediate predicates as well as on the original predicate makes it difficult
to do realistic analyses. In particular, a naive worst-case analysis, where each inter-
mediate predicate for k < v is true, is uninteresting.

The first problem in studying backtracking is to choose a model domain of
problems that are both representative and amenable to analysis. Since there is no
consensus on what constitutes a typical backtracking problem, we avoid introducing
arbitrary assumptions into the analysis as long as possible. Our first requirement is that
the sets of predicates we consider have natural intermediate predicates. Each predicate
P is the conjunction of terms. The corresponding kth intermediate predicate is the
conjunction of those terms from P that contain only variables xl through xk. Some of
these sets of predicates contain NP-complete problems and have (R)(2 v) worst-case
solution time when using backtracking. We obtain quite general formulas for the
average solution time for these predicates. The formulas can be evaluated in time O(v).

As a concrete illustration for our formulas, and as a model for more detailed
investigation, we use the problem of finding all solutions of conjunctive normal form
formulas. These sets of formulas fit our general model, and their natural intermediate
predicates have a simple form that lends itself to analysis. They contain NP-complete
problems. Moreover, the trees generated by these formulas have a shape typical of
those encountered by the authors in our own experience with backtracking. Thus, these
sets of formulas are a good model for analysis.

It is difficult to grasp the behavior of our general formulas as and v become large.
Therefore, for one type of random conjunctive normal form predicate, we derive
asymptotic results, using v for some a. These results show that for such problems
the average solution time using backtracking is exponential in v to a power that is less
than one. Comparing this with the time exponential in v required for exhaustive search,
it is evident that backtracking saves considerable time for nearly all problems in
the class.

We foresee two main uses for our results. To obtain an accurate estimate for the
running time of a given backtrack program, the method of Knuth [5] as modified by
Purdom [8] should be used. But to decide whether it will be useful to attack a problem
by backtracking, before investing the effort in writing a program, the formulas in this
paper provide a rough guide. The second use for these results will be in a theoretical
comparison of ordinary backtracking to various modifications of backtracking [1], [9],
[0].

2. Notation and desedpt|on of model. In our model each predicate P is the
conjunction of terms selected randomly from a set T of possible terms. Intermediate
predicate Pk is the conjunction of the terms of P that use only variables xl, , x. The
random process for selecting terms must be such that the probability that P contains
only terms from the set T1, where T1 e T, is proportional to O(ITll, t) for some function
O. (The generalization to weighted sets is straightforward.) Two important cases are

(1)
Q(ITI[ t)= 1flTl[rtt

(selection with replacement),

(2) ([ 11), (selection without replacement).
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Here O is the number of ways the terms of P can be chosen; in all cases the probability is
O(ITI, t)/O(IT[, t),

Let di be the number of possible values for variable xi. The set of terms T must be
invariant under any operation that replaces each variable x with pi(xi), where p is a
permutation. (For binary variables each pi is either the not or identity function.) Let
F(k) be the number of terms in T that use only variables xl, ’, xk and that are false
when those variables have each been assigned some value. The invariant condition on T
implies that the same number of terms are false for any set of values of the variables
XI, Xk.

Let E be the total number of terms in T. If T consists of disjunctive clauses, where
each clause contains s litera]s randomly selected from the v variables and their
negations, then

G(k)=
k G=

(4) (), k>O, 2
S

(selection with replacement),

(selection without replacement),

with Fs(-1)=0 in both cases. For (3), selection with replacement, each of the s
positions may be filled with any one of the 2v possible literals (the v variables and their
negations). In (4), s different variables are chosen for the term and each may appear
either negated or not negated. We call this protocol selection without replacement,
though it differs slightly from the ordinary usage of that term.

Fig. 1 shows a set of predicates over two variables with two terms, where the terms
have been selected without replacement. The terms are clauses with one literal per
clause. The backtrack tree for each predicate is also shown.

3. Tree size. What is the expected number of nodes in a backtrack tree? Consider
the tree in which each node on level has degree di/l (the root is level 0). The node
corresponding to Xl yl, x2 y2, ’, Xk y (X/I," ", Xv not set) is reached by
exactly those predicates that have no terms that are false for those particular values of
the variables. There are Q(E-F(k 1), t) such predicates. Altogether level k contains
I-l<_i<_kdi nodes. (If dg =d for all i, then level k has d k nodes.) The uniformity
conditions on the set of predicates imply that the total number of nodes in all the
backtrack trees is the product of the number of predicates and the number of nodes,
summed over k. Dividing this by Q(E, t), the number of backtrack trees, gives the
expected number of nodes in a tree:

Q(E, t)

The expected number of solutions is

(6) S(v, t)=( <VI< d) Q(E-F(v)’ t)
Q(E,t)

As illustrated in Fig. 1, processes consistent with the assumptions of this section
may generate some predicates with less than v variables. Appendix A treats the case of
formulas having exactly v variables.

Formulas (5) and (6) apply to any method of selecting predicates that obeys the
restrictions of 2. Formulas for particular cases are obtained by using appropriate
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versions of Q and F. The following examples are for terms consisting of disjunctive
clauses with s literals per term.

(7)

(8)

(9)

(10)

As(v,t)=

1+ 2k(l_(k-1)s) (terms and literals

l<--_k<=v 2v selected with
replacement),

1+ E
l<=kNv

1+

2k(2svs-(k- 1))/(27 s)

l<=k<=v S

(terms selected
without replacement,
literals with),

(terms selected
with replacement,
literals without),

s s
(terms andliterals
selected without
replacement).

4. Asymptotic results. For the asymptotic analysis we consider formulas in con-
junctive normal form, where each clause has s literals and t, the number of terms, is v.
We require that both literals and terms be selected randomly with replacement. The
expected tree size is therefore given by (7). We compute an asymptotic expression for
the number of nodes in the backtrack tree for fixed a and s as v becomes large. Cook’s
construction in his NP-completeness paper [2] produces predicates in conjunctive
normal form, where the number of terms increases as v 3/2. The number of literals per
term also increases with v, but Cook’s predicates can easily be converted to a form with
three literals per term, and with the number of terms proportional to the number of
variables. The set of predicates we consider in this section is NP-complete. This does
not, of course, necessarily imply that the average time to solve a problem in the set will
be large" the average time for any NP-complete set of problems can be made arbitrarily
low by adding enough easy problems to the set. The set we analyze is interesting because
it is natural and because it contains hard problems.

Using v, formula (7) can be rewritten as

(11) As(v,v)=1+ exp /’ln2+vln 1-
O<j<=v

Let k be the value of ] that maximizes the summand, and let x (k- 1)/2v. The value of
x can be found by setting the derivative of the summand to zero (if the maximum is not
at an endpoint), giving

(12) qxs+xs-l-q =0, whereq
(2 ln2)v a-

the left-hand side of (12) is monotonically increasing for x > 0. Also, when x is 0, the
1.h.s. is -q, which is less than zero; when x qa/(s-), the 1.h.s. is q(2S-x)/s-> O. Hence a
solution to (12) exists and we have the upper bound

(13) x O(q I/(s-)) O(I)(1-a)/(s-1)).
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The value of the maximum term is

(14) exp [2vx In 2 + v In (1-xS)] exp [O(v(S-<)/(s-1))].
Since (11) has only v terms, all of which are positive, we also have

(15) As(v, v) =exp [O(v(s-a)/(s-1))].
In Appendix B we show that

As(v,v")

(16) 1/2 Z (21n2) ((zq-2p-l)s+2)/(2(s-l))wpqv
p>-o s
q>-_o

((1-2p)/2)((s-c)/(s-1))+qs (1-a)/(s- 1)

exp[ (s-1)2-i ej(s)(2 ln,,2)
is/(s-1)

j_>_ S

(is/(s-1))(1-a )+o]
where es and Wpq are given in Tables 1 and 2. The tables were calculated using
REDUCE programs and also checked by hand.

TABLE
Coefficients for formula (16)

el(s)
e2(s) -1/2
e3(s)=(s+2)
e4(s)=-(s2+4s+3)
es(s) 12-(6s + 37s + 58s + 24)
e6(s) 6-26(2s4 + 17s + 42s + 37 + 10)
e7(s) 5o--(120s + 1318s4 + 4553s + 6388s + 3708s + 720)
es(s) --3o(45s6 + 612s + 276l s4 + 5456s + 507 l s + 2124s + 315)
e9(s) o3(560s + 9148s6 + 51540s + 133769s’l + 175804s + 118236s + 37904s +4480)

exo(S) -(504s + 9666s + 65881s + 214554s + 371550s’ + 354106s + 182529s
+46674s +4536)

TABLE 2
Coefficients for formula" (16)

((s2 ))x/w=2 ’ 1/2=_(s+,) 2
W01

\S--’ (S(’ ’ i))
wo =

4 [s 2 s/2 6 [s 2
Wl=

2’ 23’4’ (S(S ’1)) ’+3’26’3’ (S(S-l)
=[_1(2s+6s+1 2 5/2 s ( 2 ]

,/2

W,l k4’ S--1 (:)](s(s- i)) +[(3)(2;) -l’s-5(s’]
w=-3!2sk6) s(sZl +4!27[k4} +2

3 5 ss] +4!6!21 ](s-l)
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When s 3 and a 23-, this gives

(17)
A3(v, v 3/:) 1 + e’6:z8248:661v3/414.725676293v3/8- 0.9010567850v -3/8

+ 0.3756198156v -9/8 + O(/)-15/8)].

In work of this type checking is important to avoid errors. Formulas (7)-(10) were
checked for small values of v, and s by comparison with programs that generated all
predicates in a class and counted the number of nodes in the backtrack trees. Special
cases for formula (6) were checked in the same way. Formulas (16) and (17) were
checked using numerical comparison with formula (7). In formula (16), s 3, 4, 5 and
6 were checked with a varying from 1 to s in 20 steps. For s 3 and 4, the formula
checked. For s 5 and 6, overflow errors prevented setting v large enough (a few
thousand) for a definitive test. The successful tests check for all errors in the values given
in Table 2, except in the terms in w20 that are multiplied by () or ().

Mr. Khaled Bugrara is currently investigating formulas (8)-(10). Preliminary
results indicate that these formulas have similar asymptotic behavior to formula (7).

5. Conclusions. Formulas (5), (6) and (21) (Appendix A) are general formulas
that can be used to predict the average time required for backtracking over many classes
of randomly selected predicates. Formulas (5) and (6) can be evaluated exactly in time
proportional to v, the number of variables. The largest term in formula (5) determines
the value to within a factor of v 1/2. For such exponential problems this accuracy is often
adequate.

The asymptotic result for random conjunctive normal form predicates, given in
(16), shows that backtracking can save substantial time over exhaustive search on the
average. Although the average time for backtracking is exponential in v, the depen-
dence of the exponent on v is sublinear. For random problems backtracking does best
on problems with low direct interdependence (small s) and on problems with a lot of
restrictions (large a).

It is important to consider whether studies of random conjunctive normal form
predicates lead to valid conclusions about typical backtracking problems. Certainly in
our experience the typical backtracking problem is not in conjunctive normal form.
Nevertheless, the random conjunctive normal form predicates do have many properties
that we regard as typical. The constraints are initially not very effective, but they
become more so as one goes down the search tree, so that the number of nodes per level
shows a rapid increase up to a rounded peak followed by a rapid decrease. There is some
correlation between adjacent branches of the search tree, but it is not very significant.
On the other hand, real problems often have solutions, while random conjunctive
normal form predicates with enough terms to mimic what we consider to be a typical
problem almost never have solutions. The existence of solutions, however, does not
have much effect on the size of the search tree. Our model, which is qualitatively correct
on the important aspects of the problem, can be expected to give qualitatively
correct results.

Goldberg [4] analyzed the average time for a variant of the Putnam-Davis
procedure on a class of conjunctive normal form predicates. The time he obtained was
polynomial. For a further discussion of Goldberg’s results, see [11].

We have analyzed only the most straightforward backtracking algorithm. There
are variations on backtracking [1 ], [9] that are careful about which variable to introduce
at each step in the search. The investigations of Bitner and Reingold [1] as well as our
own numerical studies with random conjunctive normal form predicates show that
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these variations can be much more efficient than traditional backtracking. All these
backtracking methods maintain the advantage of treating the predicate as a black box:
the algorithms are controlled only by the results of evaluating the predicate for selected
values of the variables. We are now analyzing these methods [10].

Appendix A. As illustrated in Fig. 1, processes consistent with the assumptions of
3 may generate some predicates with less than v variables. To study predicates with

exactly v variables we replace the requirement that the set T be invariant under
permutations of the values of the variables with a more restrictive assumption: the
number F(k) of terms that are false when any k variables are set is independent of
which variables are set and of the values assigned to the variables. We also require that
the number of terms that use no more than k particular variables be E(k), independent
of which k variables are considered. Under these assumptions the number of predicates
that reach a particular node on level k and that do not use variable x. is

(18)
Q(E(v-1)-F(k-2),t) for]__< k- 1,

Q(E(v-1)-F(k-1),t) for ]__> k.

The number of predicates that reach a particular node on level k and that do not use ] of
the variables, where of the j variables have indices less than k, is

(19)
I \l \[k-lllv-k+l}o(E(v-j)-F(k-i-1), t)
\//i]-1

where the binomials account for the number of ways the variables less than k and the
j- variables greater than or equal to k can be selected. From the principle of inclusion
and exclusion, the number of predicates that use all v variables and reach a particular
node on level k is (for k -> 1)

(20)
E (_ l)V-( k -1) ( v k + l) o(E(v f) F(k l),
i.j 1

=, (-1)J(k-1)(v-k + l)o(E(])-F(i), t).
i, I-i

Multiplying by 1-II_-<i_-<k di, summing over k and dividing by the number of predicates
gives the average number of nodes for the backtrack trees for predicates that use all v
variables:

1---k=<

_
_k i, 1(21) A(v,t)=l+

Appendix B. This appendix gives a derivation of (16). As we will show, the
summands in (7) are approximately Gaussian. We asymptotically sum the series by
finding the position of the peak, expanding the deviation from a Gaussian in a power
series, and summing the power series times the Gaussian using the Euler summation
formula [6, p. 110]. Using either successive approximations or power series methods [7,
pp. 444-450] on (12) gives

(2 1 2)
1/(s-l)

,if/.((2)
,s/(s-l,

(22) x /.)(1-a)/(s-1) y. (S 1 S)
2 In is(-)/(s-)

j_->o S
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The coefficients are given by the relations

fo(S)= 1, go(s)= 1, g(s)=-l,

(23) (s)= E |
l<=j<--k [ (S 1)k

1 gi(s)f_i(s)(s 1)’,

g(s) Y [(s + 1)j
<=i<__- k-1 1]fi(s)g_i(s)(s- 1)i.

The gj(s) are coefficients in a power series expansion for 1- x s. Values through rio(S)
are given in Table 3. The power series converges only for a > 1. (For a < 1, we have
k > v.) Only the first few values of f(s) are needed unless a is near one.

TABLE 3
Coefficients for formula (22)

f)_ 1/2(s +2)
f3=-1/2(sZ+4s+3)
f4 2(6s3 + 37s + 58s + 24)

f5 -(2s4 + 17s3 +42s2 + 37s + 10)

f6 7-o(120s + 1318s4 + 4553s + 6388s + 3708s + 720)

f7 3-}3(45s +612s + 2761s4 + 5456s + 5071s + 2124s + 315)

f8 44--2g-d(560s + 9148s6 + 51540s + 133769s4 + 175804s + 118236s + 37904s +4480)

f9 45-(504s + 9666s + 65881s + 214554s + 371550s4 + 354106s + 182529s + 46674s +4536)
flo 3628oo(362880s + 8026416s + 64621692s + 255644668s + 557061609s

+ 700870638s4 + 512539012s + 210852936s + 44339040s + 3628800)

(24)

where

The value of the maximum term is

exp (2vx In 2 + v In (1- xS))

=exp(jl(S-1)2-iei(s)(21n2)s
is/(s

V js(1-)/(s-1)+)

(s- 1)2-’ ei(s)= sf/’-l(S)- E 1

l<=k<=j " hj-k’k (S )’

hok (s) 1,

hik(S)=-- _, ((k + l)--]-l)gi+l(S)hi_ik(S).
lji

The hik are coefficients in the power series expansion of x ks. Values of ei(s) are given in
Table 2.
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Replacing the/" in (11) by + k and expanding the natural logarithm in a power
series gives

As(v,v)

(25) + Z
-k<jv-k

(26)

exp[(]+k)ln2+v’In(l-(j+k-2v 1)s)]
=1+ Z

-k<j-v-k
2exp [(]+2vx)In 2-v’ ( f(inS)x-")(v)"].

The factor independent of j is

2 exp (2vx In 2- v lxi). 2 exp (2vx In 2 + v In (1- x*)).
i_>1

This is the value of the maximum term; it can be moved outside the sum over j. The
terms in the exponent that are proportional to/" are

is-1 s-1
SX SI) X

(27) In 2- v Y In 2
iNl 2V 2v 1- x

This is zero by (12). Using (26) and (27) and separating the ]2 term from the rest gives

A(v, v) 1 + 2 exp (2vx In 2 + v In (1 x))
(28)

where

is- 1 is--2

8
a=v s ,x

il U

t.:-V t17( is) x
i__>1 n

for n >_--3.

Now

(29) exp ( tnfn) l + bi] i,
n3 i3

where

(30) b
R n>--3 /n!’ n3

For example, b3--t3, b4--t4, b5 t5 and b6-/’6+ t/2. This reduces the problem to
evaluating sums of the form -k<’_<-v-k bd exp (-af2).

Using/,, (y) b,y" exp (-ay 2) in the Euler summation formula 1-6, p.ll0] gives

Z b.]" exp (-a]2)
-k<i<_v-k

v-k+l

(31) f f.(y) dy +
a-k+1

SpE . (f(np-l) (V- k + 1)- f(f-1) (-k + 1))
lNpNrn

(_1),-+ [
,-,+a

B.. ({y })/(,.’’) (y) dy.
m! a-k+
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where parenthesized superscripts indicate derivatives, the Bi are Bernoulli numbers
and polynomials, and {. } is the sawtooth function. The error term is Otvln (z)), where
z is the value of y that maximizes f")(y). Now f(ff)(y) has the form
a(m-n)/2R,+,(al/2y), where R,(y) is e

-y times an nth degree polynomial. The
coefficients of the polynomial are numbers and do not change with a, so the maximum of
R+,(a/2y) is independent of a. Therefore the error term is O(am-")/2v). Since
a O(v-2xS-2)= O(v-s/s-), the error term is O(v+m--/2s-). For <s
and m suciently large, the error term becomes small faster than any term we retain, so
we will be able to neglect it if we can show that there is no problem in making m large.

To do this we show that the terms from (31) in the sum over p can be neglected.
Consider f-(-k + 1). Its asymptotic behavior as v becomes large depends on its
exponent, which is

a(-k + 1)2= O(v(a-s)/(s-1)V2+2(1-a)/(s-1)) O(v(s-a)/(s-1)).
Therefore f(-l)(-k + 1) becomes exponentially small for a < s. If a > 1, then f(-)
(v-k + 1) also becomes exponentially small as v increases. Since the final answer is
polynomial with fractional powers, the exponentially small terms in the sum over p can
be neglected, so m can be made as large as desired.

This leaves _+ f, (y) dy to be evaluated. For 1 < a < s, this integral differs only
by exponentially small terms from

This gives, from (28) and (29),

(33)

a-(n+l)/2bn for n even,

for n odd.

1/2[ -1/2 i! _(i+l)/2b,]As(v, v) 1 + 27r a + Y’. 2iai>__3 (i/2)

exp (2vx In 2 + v In (1 xS)).

Expanding the factor of (33) that is in square brackets in a power series gives, using
(22), (28) (for a and t,), and (29),

(34) Wpql)
((1-2p)/2)((s )/(s 1))+qs (1 )/(s 1),

p0 s
q-0

where the first few values for Wpq are given in Table 3. In the power series expansion Woq
is obtained from a -1/2 and Wpq for p -> 1 is obtained from all factors containing

(35) a-((r’’’*)/) l-I t",

where ul=0, //2=0, ,_o(r-2)Ur=2p, and ur_->0 for all r. For example, wlq is
obtained from t4 and t32, and W2q is obtained from t6, tst3, t24 and t. Substituting (34) into
(33) gives (16).
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DEADLOCK-FREE PACKET SWITCHING NETWORKS*

SAM TOUEG" AND JEFFREY D. ULLMAN

Abstract. Deadlock states have been observed in existing computer networks, emphasizing the need for
carefully designed flow control procedures (controllers) to avoid deadlocks. Such a deadlock-free controller
is readily found if we allow it global information about the overall network state. Generally, this assumption is
not realistic, and we must resort to deadlock-free local controllers using only packet and node information.
We present here several types of such controllers, we study their relationship and give a proof of their
optimality with respect to deadlock-free controllers using the same set of local parameters.

Key words, packet switching, uniform controller, flow control, deadlock-freedom, communication
network, forward-backward controller, fixed-adaptive routing

1. Introduction.
1.1. Basic definitions. A packet switching network is a directed graph G (V, E);

the vertices V present processors and the edges E represent communication links. We
assume messages, called packets, are to be passed between processors. Each network
has an associated constant b, the number of buffers at each vertex; a buffer can hold
exactly one packet. Associated with each packet is an acyclic route vl, v2 vq, which
is a path in G. Vertex vl is the source and vq is the destination vertex for the packet. We
assume a fixed routing procedure [KL], where a packet’s route is determined at the
source node. We show later how our results can be used with adaptive routingprocedures
[KL], where the packet’s route is dynamically computed at each node of the path
according to such factors as channel availability or channel and node congestion. We
may also assume that the route of a packet is included as part of the message in the
packet, although in practice the packet could hold only the source and destination, with
each processor in the network responsible for deducing the next vertex to which the
packet is to be passed. Also associated with a network G is the constant k, the length of
the longest route taken by a packet in G. If we want to state explicitly the two constants
associated with a network G we write that G is a (b, k)-network. Note that k need not be
the length of the longest path in the network; we may never wish to send messages
between distant nodes.

The moves made by the network are of three types.
1. Generation. A vertex v accepts, and places in an empty buffer, a packet p

created by a process P residing in v.
2. Passing. A vertex v transfers a packet in one of its buffers to an empty buffer of

vertex w, where v w is an edge, and the route for the packet has w following v. The
buffer of v holding the packet becomes empty.

3. Consumption. A packet in a buffer of v, such that the destination for the packet
is v, is removed from that buffer and the buffer is made empty.

1.2. Controllers. A controller for a network is an algorithm that permits or
forbids various moves in the network. One of the key problems in packet switching is

* Received by the editors July 11, 1979, and in final form August 25, 1980. This work was completed
while the authors were at the Department of Electrical Engineering and Computer Science, Princeton
University, Princeton, New Jersey 08544. The original version of this paper appeared in the Proceedings of
the llth annual ACM Symposium on Theory of Computing, Atlanta, Georgia, April 1979, pp. 89-98.
Copyright 1980, Association for Computing Machinery, Inc. Used by permission.

" Department of Computer Science, Cornell University, Ithaca, New York 14853. The work of this
author was supported in part by the National Science Foundation under Grant GK-42048, and in part by the
U.S. Army Research Office, Durham, NC under Grant DAAG29-75-0192.

t Department of Computer Science, Stanford University, Stanford, California 94305. The work of this

author was partially supported by the National Science Foundation under grant MCS-76-15255.
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preventing deadlocks, which are situations in which one or more packets can never
reach their destination no matter what sequence of moves is subsequently performed.
For example, in the network of Fig. 1, if all physically possible moves are permitted by
the controller, vt generates b packets with destination v2, v2 does the same with
destination v3 and v3 does the same with destination v; then all buffers of all vertices
will be full, no consumption moves can take place without a pass move, and no
generation can take place. It is not hard to see that the network is deadlocked.

FIG.1. A network exhibiting deadlock with a trivial controller.

However, if we use a controller that simply prohibits the generation (but not
passing) of a packet into the last empty buffer at a vertex, then we can show that at least
one empty buffer must exist somewhere in the network. Hence it is always possible to
pass or consume some packet if there are any packets in the network, and this controller
is deadlock-free.

In what follows, deadlock is assumed to occur with respect to some controller. That
is, a controller is deadlock-]ree (or DF) for a given network if it does not permit this
network to enter a state in which one or more packets can never make a move permitted
by that controller, as long as no additional packets are generated.

1.3. Fundamental questions. We have assumed that each packet is generated with
a fixed route to travel. There are still several options left to us.

1. Is the network given, or are we designing a network of N vertices and the routes
between each pair of vertices?2 In each case, we could consider the optimal controller,
the one that is deadlock-free and puts the least restriction on moves.

2. Are we looking for a (b, k) DF uniform controller, one that is deadlock-free for
any (b, k)-network, or are we designing a controller for one particular network?

We shall consider uniform controllers first and then examine some particular
networks.

1.4. Local controllers. Whereas in general a controller can examine the state of
the entire network, we do not consider that this is a reasonable assumption. There has to
be at least one vertex at which the controller resides, and this vertex would have to be

The condition that no additional packets enter the network is essential, else we could have, for some
strange controllers, a situation where a packet can move, but only if some other packet is generated; that
packet can only move when a third is generated, and so on.

Many of these design problems are difficult to solve. The following related problems are both
NP-Complete [TS1]:

1. Given a network and a set of source-destination pairs, is there a corresponding set of routes such that
the unrestricted flow of packets is deadlock-free?

2. Given a network and a set of source-destination routes with corresponding end-to-end window flow
controls, is the network exposed to deadlock?
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connected directly to every other vertex, which requires an arbitrary number of
connections to one processor, or packets informing the controller of local conditions
would have to be passed around the network, and this information would itself alter the
state of the network (and generate too much messsage traffic).

Thus we shall restrict ourselves to local controllers, where each processor decides
on the legality of accepting a packet and the decision is made according to local
information alone. To this purpose, we shall consider the following local information
defining node and packet states in a (b, k)-network G. We characterize the local state of
a node v of G by (any subset of) the following parameters:

m, the number of free buffers in the node v,
n, the number of packets stored in v’s buffers,

(i0, il, ’, ik), where i, (0 <= <= k), is the number of packets in v whose source
distance to v is j, and
j=(j0, h,"" ,jk), where j, (O<-i<-_k), is the number of packets in v whose
destination distance from v is i.

Note that we have the following relations:

k k

n= Z it= Z j,.,
r=0 r-----O

m=b-n.

Similarly, any packet p asking access to a node v has a packet state relative to v
characterized by (any subset of) the following parameters"

i, the distance from the source of p to the node v,
j, the distance from the node v to the destination of p.

Clearly +j is the length of p’s route; therefore +j -< k. Note that, with our assumption
of fixed routing policy, all the local information listed above is readily available to any
node v when it is considering whether to accept a packet p.

In our formalism, we shall define an (a, fl) controller S to be a set of (a, fl)-tuples
where a denotes the information about a node state used and/5 denotes the information
about a packet state used. (a0,/50) is in $ if and only if it is permissible for an a0-state
vertex to accept a/0-state packet.

We shall study the following four types of controllers, each one of them using
different local information: the (m, j) or forward-count controllers, the (, j) or forward-
state controllers, the (n, i) or backward-count controllers and the (i, i) or backward-
state controllers. For each of these four classes of controllers, and for b > k, we shall
present a (b, k) DF uniform controller in the sense that it is deadlock-free for any
(b, k)-network G. We later show that for b =<k there are no (b, k) DF uniform
controllers of these types: if we want to use a (m,/’), (, j), (n, i) or (i, i) DF uniform
controller in networks G where the longest packet route is of length k, then in general G
must be provided with a minimal node buffer capacity of k + 1. This is not a serious
practical limitation: in most, if not all, of the implemented packet switching networks
the number of available buffers in each node far exceeds the length of the longest path
taken by a packet in these networks (for example, in ARPANET the node buffer
capacity is greater than 50 [KL]). We also look at the relation between the proposed DF
uniform controllers,3 and we show their optimality in the sense that any other DF
uniform controller of the same type (i.e., using the same local information) must be a
subset of the corresponding controller proposed.

We shall omit the parameters (b, k) whenever they are understood: "uniform controller" stands for
"(b, k) uniform controller."
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2. Local DF uniform controllers.
2.1. A simple DF uniform controller: the forward-count controller. We begin our

study of uniform controllers by considering a forward-count controller. As we saw
before, these controllers use only the following local information when deciding
whether or not a node w should accept a packet p:

1) the length / of the path from w to the destination of p along p’s route, and
2) the number m of empty buffers that w currently has.
Formally, for b > k, let FC(b, k), or just FC when (b, k) is understood, stand for

{(m,j)[(j<m) and (O<=/<-k) and (l=<m _<-b)}.

That is,. FC permits a packet to be generated in or passed to a vertex w, provided w has
more free buffers than the packet has steps to go.

THEOREM 1. FC is a DF uniform controller.
Proof. Suppose FC is not a DF controller for a (b, k)-network G. After reaching a

deadlock condition, make whatever moves can be made without generating any new
packets. Now we have a state of G in which there is at least one packet, and no packets
can move. Let Pl be a blocked packet; pl is in the node v, and Vl is distance d away
from pl’s destination node (note that d => 1, else p is consumed in vl). Let ve be the next
node in pl’s route, and let m2 be the number of free buffers in re. Surely dl < b, else pl

could not have been accepted at v, and (d 1) >= me, else pl could be passed to v2. So
m2 < b and there is at least one blocked packet in re. Let de be the distance to the
destination of the last packet p2 to enter node v2. Since pe was accepted by ve then
d2 < me q- 1, thus de < d. By reductio ad absurdum we can show there is a deadlocked
packet with zero moves to go; but surely such a packet would be consumed.

2.2. A DF forward-state uniform controller. If we use more information about
the packets in the receiving node, we may do better than FC. In particular, suppose we
want to pass from v to w a packet p with steps to go (from w), but w has fewer than
+ 1 empty buffers. We may still be able to pass p if when we consider the set consisting

of p and the packets already in w’s buffers, we can find some order in which they could
have arrived at w according to the controller FC. To formalize the above idea, we define
the following forward-state controller. For b > k let FS(b, k), or just FS when (b, k) is
understood, be the set

(,])lforalli, O-i<-_],i<b- ].andO<-]<-k, andO<-_ . ]<-b-1
r=i r=0

In the above, we assume j= (jo, jl,’’’,
THEOREM 2. FS is a DF forwar.d-smte uniform controller.
Proof. Suppose FS is not a DF controller for a (b, k)-network G. As in Theorem 1

we can show the existence of a deadlocked packetp in a node v which is dl away from
p’s destination (d -> 1). Let ve be the next node in p’s route and let (jo, j, ,
be the state of ve. Since pl was accepted in v we have dl < b. We can then deduce that

kYr=o jr - 0, else (j, d 1) is in FS and p would be accepted by v2. So, there is at least
one deadlocked packet in re. Let P2 be a packet in Ve whose distance de to its destination
is minimal with respect to the other deadlocked packets in re,

d2 min {d ]/’d > 0}.

That is o ]d- 0 and the state of v2 is



598 s. TOUEG AND J. D. ULLMAN

Note that d2 - 0, else P2 is consumed at v.. We now show that d2 <dl. Let Ps be the last
packet accepted by v2. Let ds be the distance from/)2 to the destination node of p. By
our definition of d2 we have dE -< ds. Since p was accepted by/)2 then

((o,..., o, j, j , j),

is in FS. So, for all i, 0 <-i _-< d, we have

i<b--(jg+’’’+(jd--l)+’’’+jk),

for i= d2 we have

and therefore

r=d2

k

(,) dE<-b , ft.
r=d2

Since pl is not accepted by /)2, then

((0, &2, jd2+l, &s,’’’, jk), dl- 1) FS,

so there exists i0, 0-< io<= dl- 1 such that io ->_ b--Y,rio L" Suppose, for contradiction,
that d2 > d 1. In this case io <- d 1 < d2 and since 0 /’d2-1 0, it follows that

-Y_- rooJ j. Therefore, there exists io, 0<io<dl 1, such that io>b-=a2
But d2 > dl 1 => io, so d2 > b )=a= ]r, contradicting (.). We conclude that d2 -< da 1,
or d2 < dl. As in the previous proof, we can use reductio ad absurdum to prove the
existence of a deadlocked packet with zero moves to go. Iq

2.3. A backward-count controller. [G], [RH], [GHKP], [MS] discuss a controller
in which the number of free buffers in the receiving vertex and the number of steps made
so far (as opposed to the number of steps to go) govern the legality of a move. In our
formalism, for b > k, a similar backward-count controller can be expressed as the
following BC(b, k) set (we call it BC whenever the parameters are understood).

{(n,i)[i>-_n-b+(k+l)andO<-i<-k and 0_-<n <-_b- 1}.

With the BC controller, in the special case that b k + 1, a packet that has made moves
from its source to a node w is accepted by w only if w has at most nonempty buffers.

THEOREM 3. BC is a DF backward-count uniform controller.
Proof. Similar to the proof of Theorem 1.

2.4. A backward-state controller. Similarly to the case for forward-state con-
trollers we can use more information about packets in the receiving node to define the
following backward-state controller. For b > k, let BS(b, k) stand for

(i,i)[forallj, i<-j<=k,j >- ir-b+(k+l)andO<-i<-_k andO<= ir<-b-1
r=O r=O

THEOREM 4.BS is a DF backward-state uniform controller.
Proof. Similar to the proof of Theorem 2. ]

3. The optimality of FC, FS, BC and BS.
3.1. The relation between FC, FS, BC and BS controllers. We introduce a partial

order on the family of DF uniform controllers in the following way. Let S and $2 be two
DF uniform controllers. We say that $1 is at least as good as S2 if $1 is not more
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restrictive than $2, that is, if in any network G, any move allowed by $2 is also allowed by
$1. We write $2

_
$1. Also, $1 is better than $2 if S is strictly less restrictive than $2. In

our notation we write $2 c $1 (but it is not necessary for two arbitrary DF uniform
controllers to be comparable).

To compare FC, FS, BC and BS we must first put them in an equivalent [(i, j), (i, ])]
normalform. This is best explained with an example. The normal form of FC is given by
the following set"

[(i,j),(i,j)]lj<b- 2 ]rand l<-i+J <=k and0=< 2 ir 2 jr<=b -1
r=0 r=0 r=0

In this form, FC has all the i, j, and j local information available but it uses only the j
k

and m (i.e., b Y.r--0 jr) parameters to decide on the acceptance of a packet. It turns out
that the relation between FC, FS, BC and BS can be described by the lattice shown in
Fig. 2, where an edge represents the c relation.

THEOREM 5. FC FS.
k

Proof. If [(i, j), (i,/’)] is in FC then ]<b-.r=o]r. So, for O<=i<=], we have i<
b--y.kr=i]r. Therefore [(i, j), (i, ])] is in FS, and FC FS. Now consider a (b 2, k 1)-
network G. Let v be a node of G with the state (i, j) where (1, 0) (i.e., a buffer of v
contains a packet whose destination is v). Let p be a packet with a state (i, ]) where/" 1
(i.e., the destination of p is a node adjacent to v). With FC the packet p cannot be
generated or passed into v since j b -(fo +]), and therefore [(i, (1, 0)), (i, 1)] is not in
FC. With the controller FS the packet p can be accepted in the node v since both
inequalities O<b-(jo+h) and 1 <b-h hold, so [(i, (1, 0)), (i, 1)] is in FS. El

FS

BS

FIG. 2. Relations between controllers.

THEOREM 6. BC BS.
k

proof. If [(i, j), (i, ])] is in BC then _-> r--0 ir b + (k + 1). So, for -</" -< k, we have
]>=Ir=oir-b+(k+l), and therefore [(i, j), (i,f)] BS. For b=2 and k= 1, we have
[((0, 1), j), (0,/’)] is in BS but not in BC. El

THEOREM 7. BC = FC.
Proof. If [(i,j),.(i,j)]BC then i=,r=oir-b+(k+l). Note that i+j=k and

therefore/" _-< k [Y-=o ir b + (k + 1)]. k k k
.Since Yr=o ir r=o fi, then/" _-< b Yr=o ]r 1,

k
or, equivalently, ] < b Y.r=o fi, and [(i, ), (i, ])] is in FC. Suppose now that b 3, k 2,
i= (1, 0, 0), (0, 1, 0), 0, and/" 1. In this case it is easy to check that [(i, ), (i, ])] is
in FC but not in BC. ]

The example given in the proof of Theorem 7 shows why a "forward" controller
can be less restrictive than a "backward" controller. Informally, with a "backward"
controller a packet may be "penalized" (i.e., its acceptance into a node may be subject
to very restrictive conditions) just because the source of the packet is not far away, even
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if the destination node for the packet is very near (in our example we have 0 and
] 1). The forward controllers follow the "intuitive" guess that the nearer a packet
is to its destination (and to its eventual consumption and removal from the
network), the "safer" it is for a node to accept such a packet without the danger of
causing a deadlock. In the limit, it is clear that a node v can be allowed to fill all its
buffers with packets whose destination is v without creating a deadlock, since the
removal of these packets within finite time is guaranteed.4 Among the controllers we
present here, only the forward controllers permit such node states.

THEOREM 8. BS c FS.
Proof. Suppose [(i, j), (i, ])] is in BS. Note first that i+]<-k, so i<=k-j. Let

g k h, then 0 _<- g _<- j implies <- h _-< k, and, since I.(i, j), (i, )] BS, this implies
h

h -> r=0 ir- b + (k + 1). Since g k h, then g =< k [--o ir b’+ (k + 1)]. Therefore
we have

h

(.) g<b- Y. ir for allg, 0<_-g<_-].
r=0

We claim that h k
r=0 ir >= Zr=g jr. Consider a node v with a state (i, j). The left sum is the

number of packets in v whose source node is at distance at most h away from v; the
right sum is the number of packets in v whose destination node is at least g away from v.
We note that any packet whose destination is at least g away is at most (k- g) away
from its source node (no route is longer than k), and k g h. Then any packet counted
in the right sum is also counted once in the left sum, and the claim is proved. With (.) we
now have

k

g<b- jr for allg, 0<_-g-<_/’,
r=g

and [(i, j), (i, ])] is in FS. Then BS
_
FS, and the example given in the proof of Theorem 7

can be also used here to prove that BS c FS.

3.2. Node state reaehaMlity, useless elements. We now introduce the formal
concept of the reachability of node states with respect to (a, fl) DF uniform controllers.
Let S be such a controller and let (a0,/30) S. Suppose the acceptance of a 3o-state
packet into an ao-state node results in an a node state; we denote this state change by

Co-a;.
s

Similarly, if a/3o-state packet leaves an ao-state node and this results in a new state a o,

then we denote this change by

to$
o ---- 6 o.s

In both cases, if we are only interested in the state transition we just write ao -s
s is a "state transition" relation in the set of states.

For example, if S is a (j,f) DF forward-state uniform controller and
((]o," , ]k), d) S, then we can write

{jo,"" ,"" j)J-(jo,"" j,,+’" )"

4 In this case it is clear that the location of the source nodes for these packets is not relevant information.
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provided that ]d > 0, we can also write

(fo,’’" fa,’’" j)--(/’o,"’ fa-1 j)

The transitive closure of the relation -s is denoted by -s*. The composition of s
with itself n times is -.

Let S be an (or,/3) DF uniform controller and a0 and cr be node states. We say that
a is reachable from Co with respect to S if and only if Co s* c . If c0 is the "empty node"
state, then we simply say that c is reachable with respect to S and we denote this fact by

* or. (The empty node state cro is the state description of a node without any packet
stored in its buffers; with our parameters, ao is characterized by the values i=
(0, 0,. ., 0), m b and n 0.) Note that this definition of state reachability is totally
"syntactical." In particular, the syntactical reachability of a node state c does not seem
to imply the "network reachability" of this state, and the latter concept is probably of
more interest to us. A node state c is network-reachable with respect to a (b, k) DF
uniform controller $ if there exist a (b, k)-network G (V, E) and a node v V such
that, the network being initially empty, there is a sequence of moves allowed by S
resulting in a node state a in the node v. We denote this by c.

LEMMA 1.

implies t c.

Proof. Immediate.
We now show the converse is also true for a certain class of local DF uniform

controllers. This class includes all the DF uniform controllers described in this paper.
LEMMA 2. Let $ be an (c, DF uniform controller where the packet state is given

by (any subset of) the distances and j. Then

c is equivalent to ce.

Proof. Let $ be a (b, k) DF uniform controller as above, and suppose that s* c. By
the definition of s* there exists an integer n such that c. Let G (V, E) be a
(k + 1)-node directed cycle Vo--> v l-->’’’--> Vk--> V0 with b buffers in each node. The
routes of G are the k(k + 1) unique acyclic routes between any two distinct nodes in G
(all the routes are of length less or equal to k). By induction on n, we now show
implies that, with G initially empty, we can reach a network state in which Vo has the
sta.te a and all the other nodes of G are empty (implying s* a). For n O, c implies
that c is the "empty node" state. Clearly, the initial empty state of G satisfies the
induction statement, so c. Suppose the induction hypothesis holds for n, and let

n+ls c. Then there exists a state y such that sy and y sa. By the induction
hypothesis, with G initially empty, we can first reach the network state in which Vo has
the state , and all the other nodes of G are empty. Since y s c, either 3’ st c or
y - s c, for some packet state/. If 3’ - s’ ce, then (%/3) e S. By hypothesis,/ is of the
form (i,]) with l<-i+]<=k. For any such (i,]) there is a (unique) pair v, w of
source-destination nodes in G such that a packet generated in v with destination w
passes through Vo with an (i, ]) local state. Since

1) all the nodes, except v0, are empty (they have b free buffers),
2) (%/3) $ and
3) $ is a (b, k) DF uniform controller,

it is permissible to generate such a packet in v and move it along its v. --> w route up to
its acceptance by Vo, changing v0’s state to
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If 3’ -s* a, then the state change results from the drop of a B-state packet from a
T-state node. Again, once we reach the state 3, in v0 we can drop the B-state packet by
moving it along its route up to its destination where the packet is consumed (in this
route, all the nodes except v0 are empty). In both cases, a packet cannot be blocked
along its route; this would contradict our assumption that S is a (b, k) DF controller.

Let S be a (b, k) DF uniform controller, A tuple (a,/3) of S is said to be useless if
one or more of the following conditions holds.

1. The packet state fl implies a route of length d which is not in the [0, k] range.
2. The node state a implies a current free buffer capacity c which is not in the [1, b

range.
3. The node state c is not reachable with respect to S.

From Lemma 1, it is now clear that S’= S-{(a, fl)} is equivalent to S in the sense that
for any node state a we have s* a if and only if s*, a. Therefore, the useless tuples can
be removed from S without altering the controller. From now on, we assume that all the
DF uniform controllers are free of useless elements.

3.3. Closure properties of forward and backward-count controllers. To prove the
optimality of FC and of BC we can use some interesting closure properties of DF
forward and backward-count controllers. The first property states that if, with such a
controller, a node with m free buffers accepts a packet, then with m + 1 free buffers it
can still safely accept it.

THEOREM 9. LetS be a DFforward-count uniform controller and let (m, ]) S. Then
S’ S tA {(m + 1, ])} is also a DF uniform controller.

Proof. S is free of useless elements, so 1 -< m <_- b and - s* m. If m b then (m + 1,
is a useless element which can be omitted from S’, and the theorem is obviously true. If
m < b, then s* m implies the existence of an element (m + 1, fo) S such that

bl * (m+l)l m with 0 <= ]o <= k.
S S

Suppose S’ is not deadlock-free for a (b, k)-network G. We append at each node v of G
a new directed k-cycle with routes as in Lemma 2. This results in a new (b, k)-network
G’ with a reachable deadlock when the controller $’ is used. We now show how we can
reach the same deadlock state in G’ when using the DF controller S. In G’, every move
allowed by S’ is also allowed by S with the exception of packets accepted in certain
nodes because of the tuple (m + 1, ]) s S’. Let p be a f-state packet allowed by S’ to enter
a node v with m + 1 free buffers. Using S we can simulate this move in the following
way.

1. In the k-cycle attached to v we generate and pass to v a packet q whose state is
]o at v. Since (m + 1,/’o) S, this packet is granted access to v; there are now m free
buffers left in v.

2. Since (m,/’) s S, the packet p is now allowed by S to enter v; (m 1) free buffers
are left in v.

3. Cause the packet q to traverse the k-cycle and be consumed; the packet p
remains in the node v, which now has rn free buffers.

The generation, moves and consumption of q along the k-cycle are permissible by
S, since S is a (b, k) DF uniform controller. It is now clear that S is not DF for the
(b, k)-network G’, contradicting our hypothesis. [3

THZORZM 10. Let S be a DF backward-count uniform controller and let (n, i) S.
Then S’= S (.J {(n- 1, )} is also a DF uniform controller.

Proof. Similar to the proof of Theorem 9. [3
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The second closure property of these controllers emphasizes the fact that a packet
must gather "privileges" as it travels and gets. closer to its destination; a "privilege" is
the right to be passed to a vertex with a small number of free buffers.

THEOREM l 1. Let S be a DF forward-count uniform controller. Then

S’= {(m, f’)lfor some j, 0 <- ’ <- , (m, j) S}

is also a DF uniform controller.
Proof. Suppose $’ is not deadlock-free for a (b, k)-network G. We append at each

node v of G a new directed k-cycle. In this new (b, k)-network G’ we can reach, with $’,
the same deadlock state as in G in the following way. Let v be a node of G, let cv be the
state of v when the deadlock state is reached in G. Then s* cv, and we can use packets
generated and passed along the k-cycle appended to v, to reach the state co in v. This
was shown in the proof of Lemma 2. We also alter the destination of all the packets
remaining in v when the state av is reached; these destinations are now the ones packets
in v have when the deadlock state is .reached in G.5 This simulation can be done
independently with all the nodes v of G, and we reach using S’ the same deadlock state
as in G. We show how we can reach this deadlock in a slightly modified (b, k)-
network G’, when using the DF controller S. Every move allowed by $’ in G’ is also
allowed by S with the exception of packets accepted in certain nodes because of tuples
of the form (m,/") S’, where (m, ]) S and 0 <_- j’ < ]. Let p be an ]’-state packet allowed
by S’ to enter a m-state node of G. Using S we can simulate this move in the following
way. We add a (j-/")-long route segment at the end of p’s route. If p’s destination is in
the k-cycle, then a simple redefinition of p’s destination along this cycle is sufficient;
otherwise we must append a new route segment to p’s destination in G. The state of p is
now /’, and, since (m, ])S, v can now accept p according to the controller S.
Furthermore, if p is deadlocked in G’ when S’ is used, then p is also deadlocked in the
modified G’ when S is used. In fact, suppose p is deadlocked in G’ when S’ is used; then
(too,/’-1) S’, where mo is the state of the next node in p’s route. But this implies
(m0, ]- 1) S and p is also deadlocked in the modified G’ when S is used. It is now clear
that S is not a DF uniform controller, contradicting our hypothesis.

We now state the corresponding theorem for backward-count controllers.
THEOREM 12. Let S be a DF backward-count uniform controller. Then

S’= {(n, i’) for some i, <= i’ <= k, (n, i) e S}
is also a DF controller.

Proof. Similar to the proof of Theorem 11.
A DF forward-count uniform controller S has closure S* defined as the set

{(m’, j’) for some (m, j) S, m -<_ m’ -< b and 0 <= j’ <= j}.

COROLLARY 1. The closure S* ofa DFforward-count uniform controller S is also a
DF uniform controller.

Proof. Immediate consequence of Theorems 9 and 11.
Similarly, a DF backward-count controller defined by a set S has the following

closure $*:

{(n’, i’)1 for some (n, i) e S, 0 -< n’ -< n and -< i’ -< k}.

COROLLARY 2. The closure $* ofa DF backward-count uniform controller S is also
a DF uniform controller.

Proof. Immediate from Theorems 10 and 12. I-1

Note that while routes may appear to be determined dynamically, once we carry out the simulation to

determine the correct routes, we can fix the routes initially.
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3.4. Optimality of FC and BC. We first show that there are no forward or
backward-count DF uniform controllers for networks G whose node buffer capacity is
less than or equal to the length k of the longest route taken by a packet in G. We also
prove that, for (b, k)-networks, where b > k, the optimal forward and backward-count
controllers are respectively FC and BC.

THEOREM 13.
(a) There are no (b, k) DF forward-count uniform controllers for b <= k.
(b) For b > k, any (b, k) DF forward-count uniform controller is a subset of FC.
Proof. Suppose S is a (b, k) DF forward-count uniform controller contradicting (a)

or (b). We claim that for some (m,/’) in S we have m -< . In fact, if $ contradicts (a) then
b -< k, and (b, k) must be in S. If S contradicts (b) then for some (m,/3 in S, (m, ) is not in
FC. Either [0, k ], or rn [1, b ], or rn <= j. We can exclude the first two possibilities (S
is free of useless elements) and the claim is proved. Now let S* be the closure of S and
define o as

jo min {Jl for some m, (m, j) S* and rn -< j}.

If jo 0 then rn <_- 0 and (m, jo) cannot be in S* (S* is free of useless elements). Then
jo->-1 and we can construct a directed cycle of jo+ 1 vertices with b buffers in each
vertex. Since (m, jo)e S* then

(m + 1, jo), (m + 2, jo), ", (b, jo) e S*

and we can successively generate, in each vertex of the cycle, b-m + 1 packets with
routes of length jo around the cycle. Then, the only permissible moves require
(m 1, j0 1) S*, and this is not possible by the minimality of/’o. The network is now in
a deadlock state, contradicting the fact that, according to Corollary 1, S* is a DF
uniform controller. [3

The theorem’s "intuitive" meaning is that if a controller uses the same local
information as FC and it permits a move which is not allowed in FC, then this controller
is not deadlock-free.

We can similarly prove the following theorem about backward-count controllers:
THEOREM 14.
(a) There are no (b, k) DF backward-count uniform controllers for b <- k.
(b) For b > k, any (b, k) DF backward-count uniform controller is a subset of BC.
Proof. Similar to the proof of Theorem 13. [3

3.$. Optimality of FS and BS. As before, we could first define and prove some
closure properties of forward and backward-state controllers and then use the results to
prove the optimality of FS and BS. These closure properties and their proofs being
somewhat more complicated for state controllers than for count controllers, we use a
more direct approach instead.

THEOREM 15.
(a) There are no (b, k) DF forward-state uniform controllers for b <-k.
(b) For b > k, any (b, k) DF forward-state uniform controller is a subset of FS.
Proof. Suppose S is a (b, k) DF forward-state uniform controller contradicting (a)

or (b). We claim that for some tuple (j (jo, jl,’ jk), ]) in S we have

k

(*) b- Y. fi-<_io for someio, O_-<io_-<j.
io

In fact, if S is a contradiction to (a), then b <_- k and the tuple (j (0, O, , 0), k) must
be in S, and (,) is satisfied With io k. If S contradicts (b) then, using the definition of FS,
it is easy to check that the condition (,) must be satisfied for some tuple (j, j) in S. Note
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that io > 0 or else S would contain a useless element. We now defined d as

d min {/’l for some (fo, jl,’ , fk) the tuple (j,/’) is in S and
the condition (,) for the (], ]) tuple is satisfied}.

k
If d 0 then b r=0 jr <- 0. Such a i-state node has no available free buffers. Therefore
(], 0) is not in S. We can now assume that d_-> 1, and we consider the network G
illustrated in Fig. 3. All the vertices have b buffers and packet routes have a maximal
length of k (the routes are specified in the figure).

/92 /91 Wl

/93 W3

\ !

Packet routes Length

Up Z)q

Wp Wq
where 0 _-< p q _--< k

19 Wq
w __/gq
where 0 _-< q _-< k

l<__l=q+l<_k

FIG. 3. The network G in the proof of Theorem 3.

We now show how we can reach a deadlock state using the controller S in this
(b, k)-network G. Since (j, d) S and S is free of useless elements then s* j. By Lemma
2, this implies s* and the state can actually be reached independently in both Vo and
Wo by generating and moving packets along each of the Vo and Wo k-cycles. Moreover,
when the state is reached in Vo and Wo, all the other nodes of the network are empty
(see the proof of Lemma 2). In what follows, any move taken on the Vo side is also taken,
symmetrically, on the Wo side.

1. We first reach in the node Vo the state (o, ]1,""", fk) as we just described
above.

2. Then we generate in Vo a packet whose route is Vo Wd-1. Since (j, d) is in S,
this generation is permissible. The state of Vo is now j(l Io".(1),/.1,..., J:(a) with

=jr forr#d,

d =ja+l forr=d.

3. We successively exit and consume along the vok-cycle all the 0, 1,. , (io- 1)-
state packets which are in Vo. The state of Vo is now i(2) I0".2), ](2),..., Ik’(2)) with

=0 forO--<_r--<_io-1,
(2) :(1)

=It forio-<_r-<_k;
that is,

(2) "-0
(2)

for 0 _<- r _-< io- 1,

for io _-< r _-< k and r d,

j2) ]a + 1 for io --< r -< k and r d.
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The destination of the remaining packets in Vo is changed so that packets with state q, for
io-< q -< k, are now directed to the Vo’" Wq-1 route (their new destination is Wq-1).

4. Finally, we successively try to generate in Vo d, (d + 1),..., k-state packets
whose route are Vo Wq_ for d <- q <- k. We stop when we reach in Vo a state j(3) such
that

(**) (j(3), q) S for d <_- q -<_ k

and these packet generations are not permissible anymore. The state j(3)._
.(3) (3) (3)I0,] ,... ] is such that

3) _.(2)
"-’lr

that is,

for0<=r<_-d-1,

for d <-r<-k;

=0 for O<-_r<_-io- 1,

j(r3) jr for io <= r -< k and r d,

a =ja+l forio<=r <kandr=d.

;(3)Since ) > 1, there is at least one packet in Vo. Since io > 1 then j o 0 and all the
packets in Vo are directed toward Wo. It is now clear that G is in a deadlock state if and
only if

(***) (j(3), q) S for all q, io- 1 <_- q <- k 1.

Since (**) holds, it suffices to show that

(j(3), q) S for all q, io- 1 _-< q -< d 1.

The proof is the following. Let q be in the interval io-1 <_-q <-d- 1. We have

k

b E j3) b /.(3) _.(3) :(3)
--tlio-1 +1io -k-’’’’k-lk )"

r=io-1

Since lio-X =0, ]r >--jr and -->]e+ 1, we have

k

b- E f3) <--b--(Jio+" "+(fd+l)+" "+fl),
r=io--1

SO

k

r=io--1

using the (,) inequality, we have

j(3) < b- 1;

k

b E f(r3) -< io- 1.
r=io--1

Then for all q, 0<_-io 1-<q <_-d-1, the condition (*) for the tuple ((3), q) is
satisfied; but q < d, so, by the minimality of d, (j3), q) cannot be in S. Therefore (***) is
proved, and the (b, k)-network G is in a deadlock state, a contradiction to the fact that S
is a (b, k) DF uniform controller. [3

We can also prove a similar theorem for the controller BS.
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THEOREM 16.
(a) There are no (b, k) DF backward-state uniform controllers for b <- k.
(b) For b > k, any (b, k) DF backward-state uniform controller is a subset of BS.
Proof. Similar to the proof of Theorem 15. [3

4. Computational efficiency of the FC, BC, FS and BS controllers. It is clear that
DF controllers should be as simple and efficient as possible to prevent overhead in the
processors handling the traffic of packets. We consider the computational complexity of
the count and state controllers when executing the following two tasks.

(1) Node state update. To update a node state when a state change is caused by the
arrival or departure of a packet ("bookkeeping").

(2) Membership decision. To determine whether an arbitrary (a,/3) tuple is in the
set defined by a controller.6

With the BC, BS, FC and FS controllers it is clear that only one addition (or
subtraction) is needed for node state updates. With the BC and FC count controllers,
no more than five comparisons are required for each membership decision. With the BS
and FS state controllers, the same task requires at most k + 1 comparisons and k + 1
additions, i.e., a total of 2(k + 1) operations. However, the efficiency of state controllers
can usually be improved in the following way. Let n be the number of packets in the
buffers of a node. From the definition of the FS and BS state controllers, it is easy to
verify that if n is less than b k then any packet can be accepted in the node, regardless
of packet and node states.7 Therefore nodes can store and update the value of n, and as
long as n is less than b k they can accept any packet without further checking. In this
case, two additions (or subtractions) are needed for each node state update, and only
one comparison (and no addition) is required for membership decisions. When n >=
b k, a node is considered to be congested, the danger of a deadlock involving this node
rises, and membership decisions require up to 2(k + 1) operations. In actual network
implementations k is usually much smaller than the number of buffers provided to each
node; therefore it is hoped that node congestion will generally be avoided, and very
efficient one-comparison membership decisions will usually be made.

5. Individual controllers and minimal buffer requirements. Let G be a network
and k be the length of the longest route in G. If we want to use any one of the DF
controllers we defined it is usually not necessary to provide every node of G with b
buffers such that b > k. In fact, FC, BC, FS and BS can each be "tailored" to the
particular characteristics of any specific node in G, and with these individual controllers
minimal buffer requirements for the nodes may be significantly smaller than k. We show
how to derive an individual forward-count controller from FC, and very similar
derivations can be made from FS, BC and BD. Let vi be a node in the network G, and let
do < dl <" < dk, (ki <= k) be the ordered list of all the different distances from vi. If we
assume this list is known to the node, then vi can define the monotonic bijection
b b (dj) j, for 0 <- j <_- k, between the set of distances {dj I0 <- j <- ki} and a set {j[0 _-< j _-<
k} called the set of internal distance representations. Since b is a monotonic mapping,
then b(d)-> b(d’) if and only if d => d’, for any two distances d and d’ in the set of
distances for the node vi. If we provide the node vi with bi >k buffers,8 then an

6 Obviously, a membership decision is needed each time a packet asks access to a node.
This property holds also for the FC and BC count controllers. For individual controllers the condition

becomes n < bi ki for any node v; the definitions of "individual controllers", of b, and ki are given in the
next section.

Note that k can be significantly smaller than k.
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Individual Forward-Count (or IFC) controller for Vi can be derived from the FC(bi,
controller where distances are substituted With corresponding internal distance
representations. The IFC controller for vi is the set

{(m,j)[b(j)<m and 0 <- b (j) _-< ki and l<_-m -<_bi}.

TI-IEOREM 17. The IFC controller described above is a DF uniform controller.
Proof. Thanks to the monotonicity of the bijection b which preserves all the

relations needed, this proof is very similar to the proof of Theorem 1. Suppose we reach
a deadlock in a network G. Let pl be a blocked packet; pl is in the node Vx, and vl is
distance dl-away from px’s destination node (note that dx -> 1, else px is consumed in/31).
Let v2 be the next node in p’s route; v2 is provided with b2 buffers and the cardinality of
the distance set of v2 is (k2 + 1) -<_ b2. Let b be the distance bijection of the node v2 and
m2 be the number of free buffers in v2. Surely b(dl- 1) _-> m2, else pa could be passed to
v2; since b2> k2 and k2->b(dl 1), then b2> m2 and there is at least one blocked
packet in v2. Let d2 be the distance from v2 to the destination of the last packet p2 to
enter the node v2. Since p2 was accepted by v2, then b(d2)< m2+ 1; combined with
t(dx- 1)_->m2 we have b (da- 1)_>-b(d2). Since b is monotonic we have dl- 1 _->d2 or,
equivalently, d2 < dx. By reductio ad absurdum we can show that there is a deadlocked
packet with zero moves to go; but such a packet would be consumed. D

With the help of the monotonic bijection b between distances and their internal
representations, individual forward-state, backward-count and backward-state DF
uniform controllers can be derived similarly from FS, BC and BS, respectively. The
proofs follow closely the proofs of Theorems 2, 3 and 4.

6. Adaptive routing. The local information needed by the controllers we presen-
ted can be easily obtained and updated under the assumption of fixed routing for
packets. We now show how to incorporate adaptive routing procedures [KL] in DF
local controllers. With adaptive routing the destination node for any packet p is
included in the packet, with each processor in the network responsible for dynamically
deducing the next vertex to which the packet is to be passed according to such factors as
destination address, channel availability, channel’ and node congestion, etc.

The conversion of backward controllers to adaptive routing is straightforward.
Consider a packet p asking access to a node v. The distance from the source of p to the
node v, along the adaptive route taken so far by the packet, is readily available, and it
does not depend on the remaining segment of p’s route. As far as the node v is
concerned, the fact that p followed a fixed or a dynamically computed route does not
make any difference, and no changes are necessary in the definition of the parameters
and used in the BC and BS controllers. The only difficulty created by adaptive routing
involves the value of k, which is defined as the length of the longest route taken by a
packet in the network. With an adaptive routing procedure we may not know the exact
value of k, but with BC and BS our only concern is that the number of buffers in each
node must be greater than k.9 In actual network implementations this condition will
usually be satisfied if reasonable adaptive routing procedures that guarantee bounded
finite-length routes are used (several descriptions of adaptive routing algorithms
resulting in acyclic routes can be found in the literature [SE1], [SMG], [MES]).

It is slightly more complicated to integrate adaptive routing with forward
controllers. Between any two nodes v and w in a network a fixed emergency route, i.e. a

9 With the individual controllers discussed in the previous section, in each node/)i we should have at least

ki + buffers, where ki + is the cardinality of the distance set of vi.
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fixed path in the network connecting the two nodes, is defined. It will become clear later
that it is better for the emergency routes to be as short as possible, and it is convenient to
think of the emergency route between two nodes in a network G as a shortest path
between these two nodes in G.1 Packets do not necessarily follow the emergency routes
when traversing the network. These routes are used occasionally, only when the danger
of a deadlock seems imminent and some action must be taken to prevent it. Every
processor v keeps a table which lists the following information for each possible
destination node w,

1. the length of the v w emergency route and
2. the node that follows v in this emergency route.
Let p be a packet with destination w waiting to access a node v. With adaptive

routing procedures, the state ofp relative to the node v is given by the parameter f, where
/" is redefined to be the length of the v... w emergency route. The length of the
longest emergency route in the network is denoted by k, and the state ofa node v is given
by the vector (jo, jl, , jk), where j, for 0 --<_ <-- k, is the number of packets in the
node v whose emergency route from v to destination is of length i. The definition of the
FC and FS controllers is not changed, and their use as DF uniform controllers with
adaptive routing is described below. A packet p, with destination w, residing in a node v,
can be dynamically directed, by adaptive routing, to any adjacent node u; the packet p
is accepted or rejected by the node u according to the rules of the forward controller
chosen (with respect to the emergency routes out of u), exactly as with fixed routing"
but if p does not leave the node v after a certain predefined time interval to, then the
danger of a deadlock involving the packet p appears to be imminent, and the packet is
directed toward the v w emergency route. It is now clear that any deadlock would
involve packets deadlocked along emergency routes, but such deadlocks are surely
prevented by a DF uniform controller applied relative to these routes.

We may note that several obvious generalizations of this scheme can be made. For
example, a node v may have a set of emergency routes for each destination, and a
packet p that is directed to its emergency route may still be passed to any node which
accepts p. Some of these generalizations may improve the throughput of particular
network implementations.

7. Controllers for particular networks. We might ask, given a number of vertices
N, what is the least number of buffers per vertex for which we can select a route for any
two nodes and select a deadlock-free controller for this network with these routes. The
next theorems give an answer to this question.

THEOREM 18. Let C be a local controller for a one-buffer network G (V, E) such
that for any vertex v there is a vertex w such that (v, w) is an edge. Then either C allows
deadlock or does not permit packets with arbitrary acyclic routes to be generated.

Proof. C either forbids or allows a packet with a route of length one to be
generated into an empty buffer. In the first case, no packet with a route of length one can
be generated. In the second case, we may generate into each buffer a packet destined for
some other vertex, producing a deadlock. [3

THEOREM 19. The cycle ofNvertices with two buffers per vertex has a local controller
that prevents deadlock.

lo However this is not a necessary assumption, and any path connecting the two nodes in G can be chosen
for an emergency route as well.

11 It should be clear by now that shorter emergency routes correspond to less restrictive conditions for the
admission of packets into nodes.
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Proof. We discussed the working of this controller in 1.2. Note that this
controller, while local, is not in any of the classes we have studied. 1

A binary tree network is another two-buffer network that has a limited degree, yet
for which routes and a controller can be devised to prevent deadlock [MS]. However,
these networks have the property that on the order of N2 routes pass through some of
the vertices, which may well be more traffic than one processor can handle. If we wish to
limit to d the degree of any vertex in the network, to avoid excessive connections to any
processor, then some route must be at least logan long. The problem of finding graphs
with limited degree and small diameter (maximum shortest path length between any
two vertices) has been studied by [AK], fAIl, [FR], [STOR], [TS2].

If the maximum path length is k, we can use b > k buffers and the controller
FS(b, k) to achieve our ends. For example, the perfect shuffle interconnection of
[STONE] allows us to connect N vertices 0, 1, , N- 1, where N is a power of 2, with
edges from to + 1 and back, for even i, and an edge from to 2i mod N. Then there is a
path from to ] of length at most 2 log2 N- 1 for any and ]. Therefore, 2 log2 N- 1
buffers suffice to give us total interconnection through fixed routes, with vertices of
degree 3 and no more than 2N log2 N routes passing through any vertex.

The buffer graphs technique described in [MS] can also be applied to particular
networks to derive deadlock-free controllers. However, there are very few schemes for
constructing buffer graphs taking advantage of the specific topology of a particular
network. Schemes for tree and mesh networks are given in [MS].

As a final remark, we note that the deadlock-free controllers presented here do not
prevent another kind of network failure: livelock, i.e., a situation in which unfair
scheduling of packets prevents one or more packets from reaching their destination. A
deadlock- and livelock-free controller is described in [T]; it guarantees that every
packet reaches its destination within a finite amount of time from the moment of its
creation.
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CORRIGENDUM:
SOUNDNESS AND COMPLETENESS OF AN AXIOM SYSTEM

FOR PROGRAM VERIFICATION*

STEPHEN A. COOK’

K. R. Apt pointed out to me that Theorem 3 (completeness) is technically false,
because of a problem with initializing newly declared variables. For example, the
formula

true {begin begin new x; x := 1 end; begin new x; y := x end end} y 1

is valid according to the semantics given (because the second declaration of x assigns the
same register to x as the first), but it is not provable in .

Perhaps the simplest way to fix this is to require all newly declared variables to be
initialized to some distinguished value 0 e D. This would involve changing the first case
(that of variable declaration) in the definition of Comp (A, s, 3, 7r) on p. 74, so that the
computation proceeds with a new state s’. Here s’ is the same as s except for
s’(X,/x) 0. To make Y( complete we would slightly modify Rule 1 (Rule of variable
declarations) of the system Y to read

x 0 & P--Y{begin D*; A* end}O-y
X X

P {begin new x D*; A* end}

A second possible fix, suggested in Apt 1], requires no changes in the proof system, but changes the semantics so that becomes complete. The idea is that each newly
declared variable is assigned a register that has never been used before. A state s would
be redefined so that it assigns a member of D {0, 1} to each register X instead of
simply a member of the domain D. The second component of s(X,) indicates whether
X has been assigned previously. We would only consider pairs (s, 6) in the definition of
Comp (A, s, 3, r), P(s, 6), etc. such that (s(6(x)))z 1 for each variable x in the domain
of 3, indicating that register 6(X) has been assigned. The first case in the definition of
Comp would be changed so that ’(x)= X, where X is the first register for which
(s(X,))z O. Also the computation would continue in a new state s’ such that (s’(X,))
1. The other cases of Comp would be unchanged except for minor editing.
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EXEGESIS OF SELF-ORGANIZING LINEAR SEARCH*

GASTON H. GONNET’, J. IAN MUNROt AND HENDRA SUWANDA{

Abstract. We consider techniques for self-organizing linear search, examining the behavior of methods
under arbitrary and specific probability distributions.

The notion of moving an element forward after it has been accessed k times in a row is introduced.
One implementation performs the transformation after any k identical requests. A second essentially
groups requests into batches of k, and performs the action only if all requests of a batch are the same.

Adopting as the transformation, the move to front heuristic, the second approach is shown in general to

be superior. We show that the batched approach, with k 2, leads to an average search time no

greater than 1.21... times that of the optimal ordering. For the more direct approach, a ratio of 1.36...
is shown under the same constraints.

The simple move to front heuristic (i.e., k 1) is also examined. It is shown that for a particular
distribution this scheme can lead to an average number of probes -/2 times that of the optimal order.
Within an interesting class of distributions, this is shown to be the worst average behavior.

Key words, self organizing files, linear search, move to front, transpose rule, complexity analysis,
asymptotic analysis, heuristics

1. Introduction and preliminary results. Suppose we have a file which must be
searched sequentially, and that the probabilities of accessing the various elements
are fixed and independent, but unfortunately, unknown. The obvious approach to
the problem of finding a good ordering for the list is to count requests and dynam-
ically keep the file in decreasing order by request count. Given enough time, by the
law of large numbers we will clearly arrive at the best possible ordering. The cost
of maintaining such counters is very often prohibitive, and so heuristics for rear-
ranging the file without the use of extra ordering information have been studied
(Bitner [3], Hendricks [8], Knuth [9], McCabe [10], Rivest [11], Tanenbaum [12]).
The basic approach of such methods is to consider a set of n permutations (for a
list of length n), rl rn. If the element currently in position is requested,
then r is applied to the list. We will call such a technique a memory-free self-
organizing heuristic. The most obvious such heuristic is the transposition of the
requested element with the one in front of it. Another, more drastic approach is to
move the requested element to the front of the list, and effectively slide the others
back one position. This method, while asymptotically not as effective as the tran-
sposition rule, has proven more amenable to analysis.

Our contribution is, first, to continue the study of such memory-free heuristics,
comparing their behavior with that of an optimally ordered list. Secondly, but
perhaps more significantly, we show that the use of even a very small amount of
storage, to "remember" the location of records which have been requested, can lead
to expected search costs arbitrarily close to that of the optimal ordering. The pre-
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vious known results most relevant to our problem may be summarized as follows:
(i) If we count access requests, the law of large numbers will permit us to order

the file optimally.
(ii) Let Pi (i 1,n) denote the probability of a request for the ith most frequently

accessed element and hence we observe the convention that Pi >Pi + 1. We
will say that a distribution " is trivial if Pi Pj for all nonzero probabilities
or if p; 0 for >_ 3. Otherwise the distribution is nontrivial. Further-
more, if T) denotes (the asymptotic value of) expected number of probes
under the transposition rule, F*) the expected number under the move to
front rule, and Opt--) ipi the expected number under the optimal ord-
ering, then

i= lj Pi + Pj

and for all nontrivial distributions T*) < F < 2Opt--) (Rivest [11]).
(iii) While the move to front heuristic is known to produce a system with cost no

more than twice that of the optimal ordering, the greatest value of
F)/Opt-) which has been demonstrated is 21n2(,-’ 1. 386). This occurs
under Zipf’s law, i.e. Pi 1/(iHn) where Hn denotes the nth harmonic
number (Knuth [9]).

(iv) If any single memory-free heuristic has asymptotic behavior at least as good
as every other such method for every probability distribution, it is the tran-
sposition rule (A. Yao as reported by Rivest [11]).

A casual glance at the results cited above indicates that the measure of effec-
tiveness of a heuristic which has been used primarily is the (asymptotic) ratio of the
expected behavior of the heuristic to that of the optimal ordering. This seems ap-
propriate in studying classes of distributions under which the average cost of search-
ing an optimally ordered list is not bounded by a constant as the list becomes longer
(e.g. Zipf’s law). It is not clear that this is a good measure for specific distribu-
tions, such as Pi vzi, under which the expected search time is bounded by a
constant. Indeed we feel, and in 3 give "evidence", that this latter case may be
the reason that we do not as yet have tight bounds on the behavior of even the move
to front heuristic relative to the optimal ordering.

Yao’s observation (that if any memory-free heuristic is better than all others
over all possible distributions, it is the transposition rule) is perhaps the most in-
triguing fact known about the self organization of linear files. A definition of op-
timality for such a class must, however, be made carefully. Rivest [11] informally
suggested such a definition, saying that a set of permutations was an optimal heuris-
tic if, over all distributions and all initial orderings of the file, the expected number
of probes to perform a search under the heuristic was (asymptotically) no greater
than that under any other scheme using the same distribution and initial configura-
tion. This wording is, unfortunately, a bit too strong, in that the "do nothing"
heuristic outperforms all others (under most distributions) if it is fortunate enough
to find its keys in decreasing order of probability. There is, then, under this de-
finition, no optimal memory-free heuristic. We prefer to make a slight modification
saying: A set of permutations is an optimal memory-free heuristic if for all pro-
bability distributions the maximum over all initial configurations of the asymptotic
value of the average search cost is no greater than that for any other such scheme.



EXEGESIS OF SELF-ORGANIZING LINEAR SEARCH 615

A slightly weaker, but equally satisfactory, definition is obtained by insisting that
the expected asymptotic behavior be independent of the initial configuration, which
appears to have been Rivest’s intention. Under either definition the theorems of
Rivest and observations of Yao regarding an optimal heuristic hold. With the fol-
lowing definition, we can make a more general statement about such methods.

Let G denote the class of all memory-free self-organizing heuristics for which:
(i) When the element in position is requested, that element is moved to position

"/’i (’ri ( if and r 1), and all elements in positions ri through i-
are moved back one position.

(ii) No other elements are moved.
(iii) If <j then ri <rj.

THEOREM 1.1. The asymptotic behavior of a reorganization technique in G is
independent of the initial configuration.

Proof. First we ignore the elements with probability 0 of being accessed since
they will eventually percolate to the end of the list and be of no concern. We note
that any configuration is reachable after at most n accesses (we simply access each
element enough times to bring it to position in the reverse of the desired order).
The probability of such a sequence of requests is nonzero; consequently, given
enough time, each configuration is reachable with probability 1. The theorem then
follows. 121

We feel that the class G provides a reasonable framework within which to study
memory-free heuristics, and strongly conjecture that if H and H2 are heuristics in
G such that H CH_ and ri(H) < ri(n2) for all i, then, for all nontrivial distri-
butions, H1 converges to its asymptotic behavior more quickly than H2, but the
expected search time under H is, asymptotically, less than that of H1.

Next to the asymptotic behavior of a heuristic, we feel that the rate of con-
vergence to this behavior is its most interesting property. We are able to demon-
strate the following results on convergence rates of the transposition and move to
front heuristics.

THEOREM 1.2. The transposition rule can take f(n) accesses to reach within
factor + of the steady state behavior.

Proof To construct such an example, let n be the total number of elements, k
of which have accessing probabilities (1-6)/k and the n- k remaining have pro-
bability 6/(n k ).

Let 6 be small enough so that 6/(n-k) < (1-6)/k; then the cost of the
optimal configuration is

Opt_) k(k / 1)(1-6)
-t-

n(n + 1)-k(k + 1) 6
2k 2 n -k

The worst case (the reverse of the optimal) has a cost

n(n + l)-(n-k)(n-k + l) 1-6
worst-case

2 k
(n k)(n k + 1) 6

2 n-k"
Each access to the file either maintains the average cost, or increases or de-

creases it by (1 6)/k 6/ (n k ).
Since the steady state cost of the transposition rule is less than twice the op-

timal, the least number of accesses to reach a factor of +e, (0 < e < 1) of the
steady state is
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min-accesses >
worst-case- 2(1 + e)Opt-)

(1-6)/k -6/(n -k)
> (n 1/2 {)k (3/2 + ,)2 + o ()

iff k an; then, for any a such that a-5a2/2>0 or 0<a<2/5,

min-accesses f(n2). 121

Following Bitner [3], we define the overwork of a heuristic after steps as the
difference between the expected cost of searches when the elements are in random
order and the asymptotic cost of searches. For the move to front rule this over-
work is shown in [3] to be

(Pi _pj)2
-pc -p;)’.Ow(t)

2 <_i <j<_ Pi +Pj

TI-IOR 1.3. The overwork at time in the move to front rule is O(n2/t).
Proof Using the fact that for the chosen summation range pj <_p, we can

rewrite the above as

Ow(t) _< 1/2pi(1-pi)t(n-i).
i=l

For a given t, since this expression is maximized for Pi (t q-1)-1,

pi(l_pi)t <
t+l t+l

(t/(t q-1)) is a monotonically decreasing function of t. Consequently

pi(1--pi)t<
2(t + 1)

for t>l, and

Ow(t) < (n-1)n n 2

8(t + 1) O(-). []

This bound is tight in the sense that we can find a file such that, for any > 0,
Ow(t) 2(n 1-’) for o(n +’). Consider the table with

2n -i
Pi 2+,

2 < < n/2,
n

2n -i
Pi 3+, n/2 < < n

n

and

Pl . Pi
i>1

with n large enough such that Pl > P2. Then
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n/2 (pi pj)2
Ow(t) >_

2 i=2j>n/2 Pi+Pj

>_ (n 1)(n -2) O(n_( +,))(1- O(n_( +,))),"
8

For o (n +) we derive

Ow(t f(n -’).
For this example we also find that

Ow(t )
F) f(1).

2. k in a row heuristics. As we have noted, keeping a count on the number of
accesses made on each element does enable us to order a table optimally. The
objection, of course, is the storage requirement. In this section we propose a class
of heuristics, closely akin to the memory-free techniques which use (log n +logk)
(for fixed k) extra bits of storage rather than the O(n) or more bits required for
counter schemes. These techniques yield near optimal behavior.

The basic approach is simple, we apply the transposition (move to front or any
other) heuristic only if the same element is accessed k times in a row. We first
analyze the simple k heuristic and later a slight modification of it.

2.1. Simple k heuristics. We first analyze the simple k heuristic with the move
to front rule. Let bk(j,i) denote the (asymptotic) probability that record j precedes
record in the list. This value can be found by considering the Markov chain
shown in Fig. 1. State denotes the fact that record is ahead of record j, but
the last r requests have been for record j; i0 is the initial state where record pre-
cedes record j. In this state, record j is accessed with probability pj and causes a
transition to state il. Otherwise, with probability 1-p; we remain in state i0. If
record j is accessed k times in a row, the move to front rule is applied and we will
arrive at state J0 where record j precedes record i. The probability of record j
preceding record in the list is given by the sum of the probabilities of states
Jo,J Jk-. The probabilities of the states satisfy the following equations as
can be seen from the diagram.

pie + pj
g=0

pi pjePi
and

PJe piepjo 0 <_ g, < k

k-1

pi pipj - + (1 pj) . pi
g=0

k-1

PYo PjPik_, + (1 -p) . pj,
g=O
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l-pj

Pj

Fig. 1. Markov chain for the simple k heuristic.

The solution of this system of equations is

k -1 k -1

P[ Pi
e + Pi E pie

g =0 g=0

p
k -1 k -1

Pf E Pi +pi E pje
=0 g=0

as can be easily verified.
LEMMA 2.1.1.

Thus we present the following lemma"

b,(j,i

k-1

pf pie
e=0

k -1 k -1

pf . pie+ pi pje
=o e=o

Let Fk--) denote the (asymptotic) value of the expected number of probes
necessary to perform a search in a table ordered under the simple k heuristic with
the move to front rule. Then
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i--lj--1

k -1 k -1

PfPi . Pie+ pikpj . Pf
g=O g=O

k -1 k -1

P? . Pie+ pi
k . Pf

g=O g=O

Noting that the average search cost under the optimal ordering is
OptS-’) = ipi and that we would like to bound the ratio of these expressions,
we consider the ratio of the ruth terms of the two expressions, which can be sim-
plified as

k -1 k -1

Pf . P em + P;Pm - Z Pi
g

g=O g=O

k -1 k -1

Pf . P em + Pm Z Pi
e

=0 =0

< max,
OptS---’) m

This term is, .of course, bounded by the maximum of the terms in the summation.
In other words, it is bounded by the maximum of

pk(1 +q + qk-1)+pq-(1 +p + 4-pk-)
pk(1 4- q + + qk 1) + qk(1 4- p + + pk 1)

subject to 0<q<p_<l.

Opt--)

pk +pq
k-1,_ l+p+ +p
k-1l+q+ +q

pk+qk +p + +p’-I
k-1l+q+-.. +q

p’ +pq’ -k
pk + q’k

(p/q ) + (p/q )k x ’ + kx

(p/q ) + k x k + k
where x =p/q>l.

Since this function is unimodal in the relevant range, it is maximized when x
satisfies the equation

(1-k)xk+kxk-+k O.

LEMMA 2.1.2. The polynomial (1- k )xk + kxk- + k has a zero at

x 1+
14- w (k/e ) + O (k Z(ln k )2),

where w(x) is the transcendental function defined by w(x)eW(X)= x, and hence
from 4 w(x)=lnx-ln(lnx))+o(1).

Proof The proof follows from substituting x + (1 + w (k/e))/k +
aw(k/e)/k 2 in the above polynomial. After some routine asymptotic calculations
we find

(1 k )x + kx + k (V2 a )w (k/e )2 + 0 (w (k/e )).
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For any a > 1/2 the polynomial becomes negative for a sufficiently large k and
similarly for a < 1/2 the polynomial becomes positive. Consequently the root of the
polynomial occurs for

+w(k/e) )x 1+ +O(k 2(lnk) El
k

By substituting this asymptotic value of the root we have:
THEOREM 2.1.3. The ratio of the expected number of probes required to per-

form a linear search on a table ordered by the simple k heuristic with the move to

front rule, Fk), to the search cost under the optimal ordering is bounded by

Fk -) w (k/e )
Opt@_)

_< 1+
k

+O(k-2(lnk)2).

The analogous substitution of the zeros of the function for small values of k
yield what may be considered even more interesting:

THEORFM 2.1.4.

X/3+l
F2@-) _< Opt--) 36602..Opt),

2

F3@*) < 1. 27388... Opt),
and

F4-) _< 1. 22788... Opt-).

We will now show that the behavior strictly improves as k is increased.
LWMMA 2.1.5. For k > and Pi >- Pj

pj(1 4-Pi + 4-P-1)( 4-Pj 4- 4-p;-2)
<_ pi(l +pj 4- +pjk-1)(14-pi4- 4-p-2).

Proof. The proof is by induction on k.
Assume that the inequality holds for k, i.e.,

For k 2, pj(1 +Pi) < Pi( +&).

(*) pja (b -pf -1) < pib (a -pik-l),
where a l+pi+ +P-I and b l+pj+ +pf-1

We also know that pf(1-p) < p/(1-pf) or

(**) pf(1 --pi)a

Adding (*) and (**) we obtain

_< p(1 -pj)b.

pjab apip < piab bp[pj
or

pjb (a + pik) <_ pi(b + p)a. El

COROLLARY 2.1.6. For k > and Pi >- Pj, then

pj(1--pik)(1--pf -1) < pi(1--pJ’)(1--pik-1).
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THEOREM 2.1.7. For k > 1, Fk-) <_ Fk_ 1-). Furthermore, the inequality
is strict for nontrivial distributions.

Proof For < j and therefore Pi > Pj, the following is valid. By Corollary
2.1.6, pj(1-pi)(1-pf -) <_ pi(1-pf)(1-pi-1) or

<_ pipJ’-(1-pf)(1-pi-)
and hence

l-p? l-p? - 1-pik 1--p -1

pff -’ + p?
--Pi --Pi --Pi

--pi 1--pf -< pj2k-I + p?pfi-1
-Pi -Pi -pj -Pi

or

1-pf 1-pf -Pi
pf-I

-Pi

1-pi 1-pf l-p? -pf + pi pf + pi
-Pi -pj -Pi

and therefore

bk(j,i) <_ bk_(j,i).

The theorem follows from [8, Thm. 2]. r3

Now we turn to the simple k heuristic with transposition rule.
THEOREM 2.1.8. Under the simple k heuristic with transposition rule the sta-

tionary probabilities obey:

Prb[Ri,Ri...Ri;Ri ,...Ri.]
Prb[RiRi;..Ri R...Ri.]

k-1

:j+

k-1
for _<j < n if pc#0 for _<g_<n.

Proof Consider the Markov chain given in Fig. 2 which describes the transpo-
sition rule under the simple k heuristic from the configuration RiRi2...Ri.. For the
sake of clarity some edges are not drawn. It is not difficult to fill in the edges
because of symmetry. The probability of the configuration Ril...Ri. is the sum of
the probabilities of each state in the big dotted square. Let I1 denote the state
representing the initial configuration of Ri...Ri. I2 denote the state representing the
initial configuration of RiRiRi3...Ri,,, etc.. X1 is the probability of being in the
state I1, X2 is the probability of being in the state 12, etc.. Starting at I1, m
consecutive requests for R5 (each with probability p) will lead us to the state I ljm.
The probability of being n state I ljm is denoted by X ljm. Hence, we get the
following equations:

k -1 k -1 )Xl Pi XI+ Xl2j+ + Xlnj +PilX21,k_l+ +pi._,Xnn_l.k_l.
j=l j=l
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State Ii

initial configuration of

RilRi2 R.

1131 llnl

lln2

Pi2 /

| initial configuration of

Pil Pi3 Pi Pi

Pi Pi

State 13 State In

initial configuration of initial configuration of
R R R R R R. R R. R R.

I 12 n-2 n n-i

Fig. 2. Markov chain for the transposition rule under the simple k heuristic.

(2.2)
k -1 k -1

X121 pi XI+ ,Xlgj-t- + ,Xln,k-
j=l j=l

k -1 k -1

(2.n) XI,1 pi,(Xl+ X12j+ + XI,,_I,,_),
j=0 j=l

(3) Xljm Pi,. -Xlj <m <k-l, 2<j <n.

From (2.2) (2.n) and (3) we obtain

(4) p(l+ +pikm-)Ylml Pim(l + +p-l)Xlj.
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From (1), (2.2) and (3) we obtain

k-1

(5) p6X Pi p/X 121 + Pifl 1X 211 "1" pik2X 321 q- q" Pizpikn_ 1Xnn -1, 1.
j=0

j=oP//pi2)X121. From (4) and (2.2) we obtainNotice that Prob[Ri...Ri.] k-i

Comparing (5) and (6) and noting that Pi, 1-Pi2 Pi we get

k-I

pik._ E P/.Pi22121 j =0

’Ann , k
k

j=0

Hence,

X32
j=O

k-1

P/’3 E
j=0

Pi !

Prob[Ri,...Ri.Rij ,...Ri.]
Prob[Ri,...Ri. Ri...Ri,]

k-1

k-1

Following [11, Thm. 2], we note that the stationary probabilities must satisfy the
equations stated in the theorem. []

COgOLLAgV 2.1.9.

Prob[R1...R Ri...R + e...Rn]
Prob[R...Ri_ 1Ri + e..,Ri...Rn]

k-1

Pi , P/+e
j=0

k-1

j=0

Now we can show that the transposition rule is better than the move to front
rule under the simple k heuristic. Let T,*) denote the asymptotic value of the
expected number of probes necessary to perform a search in a table ordered under
a simple k heuristic with the transposition rule, then"
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THEOREM 2.1.10. T,@) <F,(_p*) for all distributions; furthermore, the ine-

quality is strict for nontrivial distributions.

Proof

Prob [record j precedes record i]

k-1

P EPie
=0

k -1 k -1

pf pi
e 4"pi pje

=0 e=O

for the simple k heuristic with move to front. For the simple k heuristic with the
transposition rule we have

n-2

Prob [j precedes i] Prob[a],
g=Oc

where a is a configuration for which record j precedes record i, with exactly g items
between them or

n-2

Prob [j precedes i]
g=0

k -1 g+l

Py E Pi
h=O

k-1

Pi P
h=O

Prob[fl],

where /3 is a configuration identical to a except that record j and record are in-
terchanged or

k-1

Pf EPi
h=O

Prob [j precedes < (1 Prob [j precedes ]).

Pi G P?
h=O

Thus,

Prob [record j precedes record i] <

k-1

Pf . Pi
h=O

k -1 k -1

Pi E Pf + P? E Pi
h

h =0 h =0

E!

Although we are not able to compare the average search cost of transposition
rule under the simple k heuristic to the optimal one, we can show that the cost
decreases as k increases. The idea of the proof is that for a given probability dis-
tribution and i<j (or Pi >-Pj), if b(j,i), the probability that record j precedes
record i, is smaller for heuristic A than for heuristic B, then the average search cost
for heuristic A is smaller than the one for heuristic B [8]. For a list of n records,
we have n! configurations. Record j precedes record in n!/2 of them and vice
versa. Consider a pair of identical configurations except that record j and are
interchanged. There are exactly n!/2 pairs of such configurations. Each satisfies
the ratio described in Corollary 2.1.9. First we show the following lemma:
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LEMMA 2.1.1 1. For Pi >-pj and k > 1"

k -1 k -2

=0 =0
.<

k -1 k -2

Pi E Pf P-’ E Pf
g=0 g=0

Proof Follows from Lemma 2.1.3.
Let C C! denote the n! possible configurations. C Cn!/2 are the

configurations where record j precedes record i, C+!/2 C,! are the
corresponding identical configurations with record j and record interchanged.
Note that Ci and Ci+t/z make a pair of configurations as mentioned above. Let
Xl x! be the stationary probabilities of C1 C! under heuristic A and
y y,! be the stationary probabilities under heuristic B. x 4- -t-x!/2 and

Yl + q’Yn!/2 are the probabilities of record j preceding record in heuristic A
and B respectively.

LEMMA 2.1.12. Let Xi/X +n!/2 ai and Yi/Yi +n!/2 bi.
n!/2If bi <--ai then .i=,Yi <- ;"/=21xi.

Proof
n! n!

xi Yi and
i=1 =1

!/2 n !/2

(l+ai)xi+,72 (l+bi)Yi+,72
i=1 i=1

Since a > hi, thus

n!/2 n!/2 n!/2 n!/2

EXi+n’/2 EYi+n’/2 or Exi Z EYi" WI

i=1 i’-1 i--1 =1

Now we are ready to prove the following theorem.
THEOREM 2.1.13. For k > 1, Tk@ <- Tk 1*). Furthermore, the inequality

is strict for nontrivial distributions.
Proof The proof follows from Corollary 2.1.9 and Lemmas 2.1.11 and

2.1.12. rn

2.2. Batehed k heuristics. A slightly different approach is to view requests as
(for purposes of reorganization) being batched into groups of k consecutive requests.
A reordering permutation is then applied only if all k requests in a batch were for
the same element. The effect of such schemes may seem to be equivalent to the
simple k approach. However, if an element is accessed and subsequently not moved
forward because of the access of some other (unknown) element, the original ele-
ment has a lower probability of being moved forward than in the case of the basic
k in a row scheme. Intuitively these heuristics are better than their simple k
heuristics counterparts, because these heuristics perform fewer changes.

For a batched k heuristic with the move to front rule, the probability that
record j precedes record (b’(j,i)) can be derived in an analogous manner to that
for bk(j,i) (in 2.1). Indeed, the Markov chain in Fig. 3 describes this process.
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_k

Pi Pj

J

k
Pj

Fig. 3. Markov chain for batched k algorithm.

It can be easily verified from this Markov chain that

bk

Intuitively, the effect of the batched k heuristics is to raise the probability of access
of each record to the power k which after normalization makes the large probabi-
lities larger and the small probabilities even smaller.

Define Fk’-’) and Tk’-) for the batched schemes in the same way that F)
and Tk) were defined for the simple k schemes.

THEOREM 2.2.1. For k > 1, Fk’-) <_ Fk-).
nontrivial distributions.

Proof For <j and thus Pi > Pj

Thus

or

The inequality is strict for all

k -1 k-1 k-1 k -1

P’ , Pi + PimP? Pf <- PiPf Pi’ .at- pj2k . pig..
e=O g=O g=O g=O

k-1

pf P; E Pi’
e=0

k -1 k -1

Pi + Pf Pf 2 Pi
e + Pi

k E Pi
e

=0 =0

b,’(j,i) < b, (j,i) for < j.

The theorem follows from [8, Thm. 2]. El
THEOREM 2.2.2. For k > 1, T’-) < T_ 1’-). The inequality is strict for

all nontrivial distributions.
Proof Similar to that of Theorem 2.1.13.
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THEOREM 2.2.3. For k > 1, Tk’) <_ Tk--). The inequality is strict for all
nontrivial distributions.

Proof For the batched k heuristic with transposition rule

Prob[...Rj...Ri... pf pf(1 + +pik

Prb[’"Ri’"RJ pi
k p?(1 + +pf

for Pi >-pj. The theorem follows from Lemma 2.1.12 and [8].
LEMMA 2.2.4. The polynomial (1- k )x k + kx +1 has a root at

x l+a/k+O(k-2), where a is the root of (a-1)e a 1, a =l+w(e-1).
Proof Let x + a/k + b/k 2 q_ 0 (k- 3). Then

2a 2b -a
lnx --+ +O(k-3),

k 2k 2

and

X ea(1 +
2b a 2

+ o(-)),
2k

k-1 x 2b a 2- 2a
ea(1 + + O(k -)).

x 2k

Substituting x k and x k-1

e a 1/(a 1), we obtain
in the original polynomial, and using the fact that

(1--k)xk+kxk-+ a(a(a + 1)- 2b)
2(a 1)k

+ O(k-).

For b > a (a + 1)/2, the polynomial will be negative for sufficiently large k, while
for b < a(a + 1)/2 the polynomial will be positive. Consequently the root of the
polynomial is located at x +a/k + O(k-2). tn

THEOREM 2.2.5. The ratio of the expected number of probes required to per-
form a linear search on a table ordered by the batched k heuristic with the move
to front rule, Fk’), to the search cost under the optimal ordering is bounded by

_< -4- + O(k-2),Opt--) k

where a is the solution ofea(a-1) or a l+w(e -1) 1.27846
Proof.

b’(j,i) , and

Fk’) Pi
i=1 #j pf q-p?

PiP;q-pikpj
i=l j=l p[+pf

Noting that the average search cost under the optimal ordering is
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Opt@*) = ipi and considering the ratio of the mth terms of the two expres-
sions, we get

rnax P+Pkm ’P
m j=,

This term is bounded by the maximum of the terms in the summation.
words, it is bounded by the maximum of

or

p, + q, -lp

xk+x
x,+l

0_<q <p < 1,

xkl.

In other

This ratio is unimodal in the relevant range and so maximized when the numerator
of its derivative (1-k)x*+kx*-+ is 0. By Lemma 2.2.4, this occurs when
x l+a/k+O(k-2). Thus,

a--a-- + O(k -2)x+x x k
1+ < 1+x’+ x* + ea(1 + O(k-1))+

a

k< + + O(k -2)
ea+l
a--1

+ +O(k-2). El
k

In particular, solving the polynomial exactly for k 2, 3 and 4 we obtain
THFORVM 2.2.6.

1+/
F2’) _< Opt-) 1. 20710... OptS),

2

F3’-) _< 1. 11843... Opt-),

F4’-) N 1. 08302... Opt---).

THEOREM 2.2.7. Under the batched k heuristic with transposition rule the
stationary probabilities obey."

Prb[RiRi2...RRi ...Ri,] P
Prb[Ri,Ri2...Ri lRij."’Rin]

Proof.
Prob[Ri...Ri,]

for <_j < n

(1 Pik2 pi* pf)Prob[Ri,...Ri. + pProb[Ri,...Ri.+,Ri;...Ri.].
l<_j <n
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With the equations stated in the theorem, this implies

Prob[Ri,...Rin] Prob[Ri,...Rin].
Following [11, Thm. 2], we note that the stationary probabilities must satisfy the

E!equations stated in the theorem.
COROLLARY 2.2.8.

Prob[R1...Ri 1Ri...Ri + e...Rn]
Prob[R...Ri 1Ri + e...Ri...Rn] Pi+

THEOREM 2.2.9. Tk’) <_ Fk’-) for all distributions; furthermore, the ine-

quality is strict for nontrivial distributions.

Proof

Prob[record j precedes record
pi + pf

for the batched k heuristic with move to front rule. For the batched k heuristic
with transposition rule we have

n-2

Prob[record j precedes record i] Prob[a],
e=0

where a is a configuration for which record j precedes record i, with exactly items

Prob[j precedes i]

e+l

EProb[]

between them, or

where /3 is a configuration identical to a except that record j and record are in-
terchanged, or

Prob[j precedes i] < (1 Prob[ record j precedes record i]).

Thus

Prob[record j precedes record i] <

2.3. A brief disgression to self-organizing binary search trees. In the case of the
self-organizing linear list, the k heuristics applied to the move to front rule perform
uniformly better than the move to front heuristic. But, in the case of self-
organizing binary search trees [2], the batched k scheme applied to the move to root
heuristic is not always better than the simple move to root heuristic. For example,
ifpl 0.4, p2 0.3 andp3 0.3, the cost for move to root is 1.88286... and
the cost for the batched 2 scheme applied to the move to root is 1.88306 The
intuitive explanation for this fact is that under the batched scheme applied to the
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Optimal tree
Cost 1.7

The two likeliest trees of the
batched 2 scheme applied to move to
root heuristic.

Fig. 4. Three possible trees.

move to root heuristic, the key with the largest probability of access is more inclined
to become the root of the tree than in the case for the simple move to root. How-
ever, having the most frequently accessed key as the root of the tree does not
necessarily produce the best tree. The trees are depicted in Fig. 4.

Furthermore, although we are able to decrease the cost of the batched k
scheme as k increases in the case of linear list, the cost of the tree obtained by the
batched k scheme applied to the move to root heuristic will not necessarily decrease
as k increases. This occurs, for example, in the three key tree noted above and also
in the case in which n keys have equal probability of being accessed. In the latter
example the move to root heuristic both with and without a batched scheme produce
a tree with a cost of about (21n2)logn. We note that this is the worst possible
behavior relative to the optimal solution for the simple move to root heuristic.

3. More on the move to front heuristic. In this section our attention returns to
memory-free heuristics, and in particular to the move to front rule. We analyze the
expected behavior of this rule for a number of distributions and demonstrate what
is apparently a rather tight upper bound on the ratio F-’)/Opt-) for a class of
distributions. This leads to the observation that this ratio can be as large, and no
larger than, r/2 1.57 for an interesting class of distributions. It also gives us
some intuition as to the difficulty of closing the gap between the worst known case
of this ratio, and the best known upper bound, 2. Finally, an expression for arbi-
trary moments of the number of accesses required by the move to front heuristic
under any distribution is given.

3.1. Analyses of the costs of the move to front rule under several distributions.
Knuth [9] analyzed the expected cost of a search under the move to front rule. We
present the results of such an analysis for this and several other interesting distri-
butions. The most interesting observation is that the ratio F-’)/Opt-) for Lotka’s
law is r/2 (Hn denotes the nth harmonic number, H,,(e denotes = li-e). We are
interested primarily in the case in which n, the number of elements in the list, tends
to

(i) Zipf’s law. Under Zipf’s law elements have accessing probabilities
Pi 1/(iH,,). The optimal ordering has a cost Opt-) n/H,,. The simple
move to front rule has a cost [9]
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n
F( 21n2 t-o(1),

H,, 2

F()
Opt+)

< 21n2 1.38629

In this case we can also compute

F2’-)
2
+

H, j i= i2 +j2

+ ,j
7rcoth(rj)-- H,j= 2j--+ 2j

coth(Trj)- tan-(j/n)) +0(1)
=l j=l

n 7r. In 2 n
( --) 1.13197...
H, 4 2 Hn

< 1. 13197
Opt+)

(ii) For Lotka’s law the accessing probabilities are Pi (i2Hn(2))-l, and the
optimal arrangement has cost Opt+) Hn/Hn(2),

F)
2 Hn(2) j=li=l +j2

( rcoth(orj)
2 H,(2) 2j 2 2jj=l =n+l i2 +j2

(rcoth(rj) tan-(j/n) +O(n_2))Hn(2) 2j jj=l

31n n + 33’ + 6C 63(2) + O ( ..In .n
71" 71-2 n

3 lnn
nlnn -0. 00206339... + O( ),

where C -.oln(1-e-2’J) 0.001872... and /3(2) 0.91596... is Catalan’s
constant [1],

F(ff) <
r

1.57080...
OptS) 2

(iii) For the exponential distribution we consider that n--- and
Pi (1- a )a . Consequently Opt) 1/(l-a).

(! a )a’a

j i= a (a + aj)

(l-a) ( a--+ a 2(l--a)
+ 2 . . ai +j

j= i= +aj

aj

1+2= l+aj"
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Using the modified Euler-Maclaurin summation formula [5] we obtain

21n 2 In a
F-)

lna 2 24
I-O(ln3a),

< 21n2 1.38629
Opt-)

(iv) For the wedge distribution Pi 2(n+l-i)/((n+l)n) and
Opt--) n/3 + 2/3. It is straightforward to compute

F-’)- 4(1 In 2) 5(1 In 2)
n-Hn+ + O(1),

3 3

F--) _< 4(1-1n2) 1.22741
Opt)

3.2. Upper bounds on F-’)/Opt-’) for a class of distributions. Rivest [11] has
shown that the average cost of the move to front rule is at most twice that of the
optimal ordering. It has been conjectured that this bound is not tight, and indeed
the worst value known for this ratio is 7r/2, as seen in the preceding subsection. In
this subsection we derive an upper bound for the ratio, F-’)/Opt, for the class
of distributions pii -x. Observing that Opt-) is bounded by a constant when
3‘ > 2, we will see that over the distributions of the above form for which the aver-
age search time is not bounded, Lotka’s law is the distribution which maximizes the
ratio F-)/Opt-). Our analysis seems very good in the range 0_<3‘_<2, but
weakens above this range.

Case (i). 0<3,<2.

PiPj

F-) j pi +pj
Opt@

ipi
i=1

Taking the mth term of the numerator and denominator we have

2
PmPj

mF@ < j= P +P 2 Pj

Opt@ mp m j= p +p
By definition, p/p (m/j)x; consequently

F 2 m x

Opt@ m= mx+jx
2 m

rn j +(jim

Opt) rn mX + xx dX - + O(m

t_ O(m l_x)<_ 2
l+y

xdy- 2----"

From the last expression we can easily verify that the bound is a monotonically
increasing function of 3‘ in the given range. Applying the Euler-Maclaurin sum-
mation formula and the method proposed in [5] for the evaluation of the constant,
we conclude that
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Using well-known definite integrals [7, 3.241, 8.370] and ignoring the negative term
we obtain"

-XTHEOREM 3.1. Over the class of probability distributions of the form pio:i

for 0<X<2,

F (X+IOpt-)
< ( )-(

X 2X --where p(x r’ (x )/ I’(x is the psi function ].
(Note that Opt---) is not bounded in this case.) As we noted before, in the

relevant range this bound is a monotonic increasing function of X and we have
COROLLARY 3.2. For probability distributions of the form Pi i

x such that
Opt--) diverges: F-)/Opt-) < r/2. Equality is achieved when X 2.

It is interesting to note a few other values for X and the upper bound on the
ratio; see Table 1.

TABLE

X Upper bound on ratio

0 (Uniform)

__1 4(1-1n2) 1.2274...
2

(Zipf) 21n2 1. 3863...

3 4 7i-
--(-ln2) 1.4942...
.5

2 (Lotka) 7r
1.5708...

We note that these bounds are tight for X 0, and 2, which are the only values
in the range for which we have a precise analysis.

Consider now the other case:
Case (ii). X > 2.
Our analysis is made easier if we let n---o; then it can be shown for this

range that

Pi
’(X)i x

(where f denotes the Riemann zeta function). Thus

and

’(X-- 1)OptO’) ipi
;= ’(x)

PiPj
F(P-) --f + . E== pi+p

2

(k) j. i=j -I-
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Asymptotic analysis using the Euler-Maclaurin summation formula shows that the
fourth term is negative in the range 2 < X < 4; hence taking the first three terms we
find an upper bound:

f <
’(X) j=I

-1 xX +1

and finally, dividing both sides by Opt),

Opt)

-t-
X X(X2- 4) )4j- + 48jx+

+
5760jx+3

[ 27r X+I ] ’(X)
< - sin(r/X)

7’(
2X +k(--) +

2’(X-1)

X’(X + 1) X(X2 4)’(X + 3)+ +
48 ’(X 1) 5760’(X 1)

The limit of this function for X 2 is r/2. For X 2. this value is roughly
1.500. Then it decreases monotonically to X 4, where it is about 1.095. The
bound appears to be reasonably good, although we have discarded terms and so it
is not tight.

For X>4 the summation that defines F) becomes rapidly convergent, and
using simple arguments we can bound it by

2 2
F-) < + + 32-x.

’(X)(1 + 2x) X- 2

_< 1.21981... for X>_4

equivalently, since Opt-) > 1,

F---) _< + 2 + 2 3__ x
Opt-) ’() (1 + 2x) X 2

Consequently, for any X > 0, if pioi- x then F-)/Opt-) _< r/2. Note that all
"folklore" probability distributions (e.g., 80-20, Zipf’s, Bradford) asymptotically
coincide with the above for values of X close to [6, Ch. 8].

3.3. Worst eases of the move to front rule. From the above discussion one
wonders which is the worst possible case for the move to front rule. There are two
interesting worst cases, one given by the distribution that maximizes F-)/Opt--)
and the second given by the one that maximizes F-)-Opt--). Let

Ok = Pk+P
then:

TI-IOR 3.3.1. The probability distribution that maximizes the ratio follows:
a, -a F)
k -1 2Opt)

Proof By taking partial derivatives of F--)/Opt--) with respect to p.
TI-IOR 3.3.2. The probability distribution that maximizes the difference

F Opt-) follows
ak -a
k-1 2
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5 I0 15 19

worst difference

worst ratio

Fig. 5. Worst ratio and worst dif]’erence for move to front rule.

Proof By taking partial derivatives of F@-Opt--) with respect of Pk. []

Unfortunately we do not know an explicit form for the worst cases, although we
can compute the distributions for small n. The two graphs of Fig. 5 show the worst
ratio and the worst difference for small values of n.

3.4. Arbitrary moments of the move to front rule. A closed form for the average
cost of the memory-free move to front heuristic is given by Rivest [11] and used
extensively in this paper. Also of interest are higher moments of this value and of
course the variance, which can be derived as follows.

Let Bij be the random variable defined by

Then let E [Bij]

if record precedes record j,
otherwise.

b(i,j) Pi/(Pi +Pj),

E[(accesses)m] E

(m)Let Si(m ) i >_j j

i#y

We derive
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Finally, using the expression for the probability of a given permutation [8, eq. 3] we
conclude

THEOrtEM 3.3. The mth moment of the distribution is given by

E [(accesses)m]

--1+2S1(m)
PiPj

<j Pi q-Pj

+ 4S_(m + + +
<k <j Pi +Pk +Pj Pj +Pk Pi +Pj Pi +Pk

pilPi2 pi

+ 2r !Sr(m
i, < i: < < < +1 Pi h" pi -I" q- pi

+1

where

I (pi,Pi pi ,),

l (a,a2 ae) .
ai q- ai2 ai -I- ai2 + ai3 ai + ai2+ + aie-1

the summation being over all permutations il,i2 ie- of the integers 1-.-g.

In particular, for m 1,

PiPj
F--) 1+2

<j Pi +Pj

and for m 2,

PiPj
E[(accesses)] 1+6

<j Pi +Pj

PiPkPj
+4

<k <j Pi +Pk

From this we can demonstrate
COROLL,r 3.4. The variance of the move to front heuristic is

var) (2-F---))(F) 1)

PiP,Pj
+4

<k <j Pi +Pk +1

+ +
Pj +Pk Pi -t- pj Pi + Pk

+ +
Pi q- Pj pj + p, pk -t- Pi

The form of this value is different from the expression for the variance given by
McCabe [10].

4. Conclusion. We have demonstrated a technique for maintaining self-
organizing linear files in near optimal order without significant memory require-
ments. Although the analysis given can probably be tightened, it is sufficient to
demonstrate the value of the approach. The behavior of the simple move to front
heuristic has been analyzed for a class of distributions. It is shown that over all
distributions in this class the ratio of the cost of the move to front scheme to that
of optimal ordering is at most 7r/2, and that this bound can be achieved. We
conjecture that this is the maximum value this ratio can achieve over any class of
distributions whose optimal search cost is unbounded.
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COMPUTING SEQUENCES WITH ADDITION CHAINS*

PETER DOWNEYf, BENTON LEONG:I: AND RAVI SETHI

Abstract. Given a sequence n l, ,nm of positive integers, what is the smallest number of additions
needed to compute all m integers starting with 1? This generalization of the addition chain (m= 1) problem
will be called the addition-sequence problem. We show that the sequence {2,21, ,2n-1,2n- 1} can be
computed with n+ 2.13/-n+ logn additions, and that n+-n-2 is a lower bound. This lower bound result
is applied to show that the addition-sequence problem is NP-complete.

Key words, expression evaluation, addition chains, NP-complete problems

1. Introduction. How can one compute X
n from x with fewest multiplications?

Since Scholz [8] raised this problem of optimal addition chains, it has received consid-
erable attention [1], [3], [5], [6], [7]. The term "addition chain" comes from the
observation that computations involving multiplication and a single variable x are iso-
morphic to computations involving addition and the integer 1.

As yet no efficient general algorithm or expression is known for/(n), the fewest
additions needed to compute n starting from 1. It is known that

(1) log n + log v(n)- 2.13 -< l(n) <- [log n] + v(n)- 1,

where v(n) is the number of l’s in the binary representation of n. (All logarithms in
this paper are base 2.) The lower bound is given in [9]; the upper bound in [5]. A
better upper bound of

logn + (logn/loglogn) + o(logn/loglogn)

is given in [1]; this bound is tight for almost all n [3].
A problem posed by Knuth [5, 4.6.3, problem 32], called here the addition-

sequence problem, is to find the optimal number of additions to compute an arbitrary
sequence {nl, ,nm} of positive integers. The bounds in (1) have been extended to
upper and lower bounds for arbitrary sequences [7].

Dobkin and Lipton [2] have considered the problem of finding addition chains
for particular sequences of integers, showing that for a class of polynomials p(x),
evaluating the sequence {p(1),p(2), ,p(n)} requires n+ n2/3- additions. In partic-
ular, the sequence {lk,2k, ,nk} requires this many additions; for k=2 the sequence
can be computed in n + O(n//log n) additions.

This paper contains results on both particular and arbitrary sequences. We show
(Theorem 2.1) that the particular sequence {2,21, ,2n-1,2n-l} requires at least
n +-2 additions, and (Theorem 2.2) that it can be computed in n + 2.13/-n + logn
additions.

We then turn to the question of optimal chains for addition sequences. We show
that the problem of fewest additions for an arbitrarily given sequence of integers is
NP-complete (Theorems 3.1, 3.2). While there remain interesting problems in
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optimally evaluating particular sequences [2], the results in 3 suggest that no general
optimal algorithm will be found.

2. Lower and upper bounds. Let n be a positive integer.
n is a sequence of integers

An addition chain for

(2) 1 ao a ar n

with the property that

(3) ai aj + ak

for somek-<j < i, foralli 1,2,. ,r. The length of the chain isr.
Since the ordering of an addition chain is somewhat arbitrary, we prefer to regard

(2) as represented by a directed acyclic graph (dag) having a single leaf node labelled
1 and a distinguished root node labelled n, called the output node. Each nonleaf node
p will have exactly two successors (its sons). The label of p is the sum of its sons’
labels. It will be convenient in the sequel to refer to a node by its label.

Such dags can be generalized to compute several numbers simultaneously. An
addition dag for {n1,’’" ,rim} is a dag D as described above, but having m output
nodes labelled nx," ,nm. The length of D is the number of nonleaf nodes. Note
that computations may be shared when computing several integers simultaneously.

Example 2.1. The dag representing an optimal addition chain for 15, given by
1,2,3,6,12,15 is depicted in Fig. 2.1(a). 1,2,4,5,10,15 is another optimal addition
chain for 15. An optimal addition dag for the sequence {1,2,4,8,15} is depicted in
Fig. 2.1(b). []

2

12

6

(a) (b)

FIG. 2.1. Each nonleaf node represents the result of an addition. Output nodes are circled.

If p is a node, define h(p) [log p] as the highest power of two contained in p.
A node p is a doubling if both sons are identical (and then p is twice the label of the
son node). Suppose node p has sons q and r. Then p is a minor node if k(p) is either
h(q) or h(r) and a major node if h(q) and h(r) are both less than h(p). Since
p q+ r, it is clear that every node is either major or minor, and that for a major
node p, either X(q) or h(r) must equal X(p)-1.
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An n-necklace is an addition chain computing 2 from 20 using only doubling
nodes. We will need the following observation on n-necklaces.

PROPOSITION 2.1. Let D be an addition dag computing 20,21, ,2n, among other
integers. Then, without loss of generality, we may assume that D has an n-necklace.

Proof. Let the largest necklace in D compute 2 for s < n. Since D computes
all of 20,21, ,2n, it computes 2s/l somewhere. Rearrange both edges out of 2s+l

to point to 2 and leave all edges into 2s+l untouched. The number of nodes in the
resulting dag D’ remains the same, but there is an (s+l)-necklace. Repeat this
transformation as often as needed. []

The following lower bound result may be interpreted as follows: even if we have
precomputed all the 1-bit numbers 2i, computing a number with many 1-bits requires
many additions just for assembly.

THEOREM 2.1. The computation of the sequence {20,21, ,2y-1,2y- 1} requires at
least y + VTy 2 additions, starting from 1.

Proof. Consider an addition dag that computes the given sequence. Then the
addition dag computes n 2y- 1, and by Proposition 2.1 we can assume that the dag
has a (y-1)-necklace. There are y nodes in the necklace: we will prove the theorem
by showing that there are at least X/-fy-1 non-necklace nodes in the subdag below
noden 2y-1.

The subdag below node n is an addition chain computing n. This addition chain
contains certain necklace nodes. If we delete all edges of the subdag which leave
necklace nodes and discard all necklace nodes which are thus rendered isolated, we
obtain a dag F which we shall call the off-necklace chain. The leaves of F are nodes
of the necklace. See Fig. 2.2. (We started with a subdag in which the only leaf was
labelled 1. By deleting all edges leaving necklace nodes, we have converted every
necklace node into a leaf.)

Since all nodes in F are below n, there are at most y bits in the binary numeral
for each node. Let us assume that every node is represented by its binary numeral,
with leading zeros being supplied to assure a y-bit numeral. For example, node 2 is
represented as 0y-210.

Define gap(b) to be the length of the longest substring of zeros in b. For
b 00101Y-50, gap(b) 2. (Note that here the gap is determined by the leading
zeros).

A cut in F is a set of edges disconnecting n from the necklace. Let Co, the initial
cut, be the set of edges of F entering leaf nodes. For convenience we imagine a final
cut C containing a special edge entering n.

Given a cut C, 0 -< -< r define the nodes in F below C and above C in an
obvious manner. The gap of cut Ci, written gap(C/), is the gap of the binary numeral
obtained by taking the logical "or" of all nodes below Ci. That is,

gap(C/) gap( v {z: z is below Ci} )
Clearly gap(Cr) gap(1y) O.

Any traversal of F can be represented as a sequence of cuts starting with Co and
ending with Cr. A cut Ci is said to advance to cut Ci/l across p by picking a node p
above Ci whose out-edges are in Ci, deleting these edges, and replacing them in Ci/
by all edges entering p.

CLAnV 1. If cut C is advanced to cut Ci+l, gap(C/+l) gap(C/)-1.
Proof of claim. Let Ci+l result by advancing Ci across node p. Let nl, n2 be the

sons of p. Then p nl+ n2. Now the binary numeral (nl+ n2) v (na v n2) can differ
from (nl v n2) only in having (possibly) a single extra 1-bit to the left of each substring
of l’s in (n v n2). Thus gap(p v n v n2) _> gap(nl v n2)--1. Since nl and n2 are
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FIG. 2.2. Off-necklace chain F and some cuts.

below Ci, it follows that gap(C/+ 1) -> gap(C/)-1. []

CLAIM 2. Let g gap(C0). Then F has at least [y/(g+ 1)] + (g-1) edges.
Proof of claim. Consider the edges of Co. Some edge enters node 20 in the neck-

lace, since F computes the integer n which has its lowest bit set to 1. Since
g gap(C0), an edge of Co enters a necklace node at least every g + 1 nodes in the
sequence 20,21, ,2y-1. Therefore Co has -> [y/(g+ 1)] edges.

Consider a sequence of cuts Co,C1,’’’,Cr where Ci advances to Ci+l across
some node. Each advance, except the last from Cr-1 to Cr, involves enumerating at
least one edge of F that is not in Co. Thus there are at least r-1 edges of F outside

Co. Since gap(Cr) 0 and gap(C0) g, Claim 1 implies that r -> g. Thus there are
at least g-1 edges of F outside Co. []

CLAIM 3. Computing n requires at least -}y-1 nodes off the necklace.
Proof of claim. By Claim 2, F has >- [y/(g+ 1)] + (g-1) edges. Note that

[yl(g+l)l + g- 1 >_ yl(g+l)+ g- 1,

which is minimized for g N/Ty 1, so that F has at least 2-y-2 edges. Pairing
each off-necklace node in F with the two edges leaving it, we conclude that F has
>- Vy- 1 nodes off the necklace. []

The last claim concludes the proof of Theorem 2.1. []

A slight alteration of the the above proof proves:
COROLLARY 2.1. Computation of the sequence

{20, ,2m,2m+l, ,2m+,-1,2m(2,_ 1)}

requires at least rn + n + X/-n 2 additions. []
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THEOREM 2.2. The sequence {20, ,2n-l,2n-1} can be computed with
n+3N/-+logn additions. (Note that 3/V<2.13.) If n=22j for some j, then
n + 2Vn + (logn)/2- 3 additions are enough.

Proof. Compute the sequence {2, ,2n-l} using an n-1 necklace.
Case n= 22j for some j. We suggest how a node computing 2n- 1 can be added

to the necklace, by showing how a node for 216-1 can be added.
Partition the 22j bits into U blocks of 2 bits each. After U-1 additions to set

the lowest order bits of each block we get:

(4) 0001 0001 0001 0001

For i=0 we now have node Pi in (4) consisting of 2j+i blocks of 2j-i bits each,
with the lowest order bit of each block set. The idea is to double the number of
blocks and halve the number of bits in a block at each step. At the + 1st step, start
with Pi, repeatedly double 2j-i-1 times and add the result to Pi, yielding Pi+. From
(4) we get

01 01 01 01 O1 01 01 01.

The process stops with p=2n- 1.
There are 2j- 1 -1 additions to construct P0. The steps contain

2J-1+2J-2+ +20= U--1 /-n-- 1

doublings. There is an addition in each of the j steps, leading to a subtotal of
j= (logn )/2. The total of these operations is 2-n + (logn)/2- 2, which together
with the n-1 additions in the necklace yields the desired upper bound for the case
n 22J for some j.

Case 22J- < n -< 22J+ for some j. The approach is the same as in the previous
case. Let n =k.2j+ 10, where U-l-<k_<2j+l and 0-</0<U. Start with P0 containing
k.2 blocks of U- bits each, and 0-</0<U-. There are k-1 initial additions to set
the lowest order bits in each block. For n 19, we start with

(5) 000 0001 0001 0001 0001.

Not only will we double the number of blocks and halve the number of bits in
each block at every step, we will check the remainder li to see if a new block should
be started. Doubling the number of blocks in (5) yields

000 01 01 01 01 01 01 01 01.

With n= 19, I0 is 3, so we start a new block and set to 3-2= 1"

(6) 0 01 01 01 01 01 01 01 01 01.

We leave it to the reader to formalize the argument.
In this case there are k-1 initial additions; 2g- 1 doublings; j additions to split

blocks; and at most j additions to start new blocks. We will be careful in bounding
k/ 2. Let k=w.2. From the definition of k we get 1/2 -< w -< 2. Note that w need
not be an integer. Now,

k + 2g w.U + 2 2JX/-w(X/Tw + l/X/--w) _< -n(-w + l/N/Tw).
In the interval 1/2 -< w -< 2, the quantity (X/Tw + l/vw) is maximized for w= 1/2 or
w=2. Therefore,

k + 2j + 2j-2 -< 3/-n--+ logn,

thereby proving the theorem. []
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3. Complexity of the addition-sequence problem. We leave the problem of
bounding computation for sequences and consider the problem of actually finding the
optimal addition dag, given an arbitrary sequence of integers. This "addition-
sequence problem" will be seen to be hard; probably we shall have to settle for tight
bounds on computation and not exact optimality (unless, of course, P and NP turn out
to be equal).

Consider the following problem, which we shall prove to be NP-complete.
Addition-Sequence (AS)
Instance: A sequence nl, ,nm of positive integers and a positive integer L.
Question: Does there exist an addition dag D with output nodes n l, ,nm hav-
ing length --<L?
THEOREM 3.1. Problem AS is in NP.
Proof. Given an instance IAS <nl, ,nm,L >, the upper bound (1) in 1

tells us that the optimal addition dag for n l, ,nm has at most
m

B 1 + 2 log n
i=1

nodes (the 1 is for the single leaf). Since each dag with -< B nodes has outdegree at
most two, we can "guess" a dag for nl,...,nm in O(B) space and time. Then in
time polynomial in B we can traverse the structure from leaf to roots, labelling and
counting the nodes. We succeed if the output nodes are labelled nl, ,nm and the
number of nonleaf nodes is -< L. []

THEOREM 3.2. Problem AS is complete in NP.
Proof. The proof will be by reduction of Vertex Cover to Addition-Sequence. The

former problem is known to be NP-complete [4], and can be stated as follows"
Vertex Cover (VC)
Instance: A connected undirected graph G (V,E), without self edges, and a
positive integer K -< Ivl.
Question" Is there a vertex cover of size K or less for G, i.e., a subset V’ C_ V
such that Iv’l -< K and for each edge {u,v} E, at least one of u or v is in V’ ?
We describe the reduction of VC to AS. Given an instance of Vertex Cover,

Ivc <G,K>, let V={1,2, ,n} and construct an instance of Addition-Sequence as
follows: the integers to be computed are

(7) {2,21,22, ,2n} t.J {1 + 2u+ 2v" {u,v} E},

where tr 91El2. The integer L is chosen to be rn+ 1+ [E[+K. Let us call this
instance /AS. It is clearly constructable from Ivc in time polynomial in [VI.IE[ since
each of the integers (7) are represented in binary notation.

We wish to prove that finding a dag for/AS is equivalent to finding a cover for
Ivc. More precisely, we show"/AS has a solution if and only if Ivc has a solution.

A dag D is optimal for/AS if it has the fewest vertices among all dags for/AS.
Any connected undirected graph has a vertex cover of size -< IEI-1. Using this

fact, we have the following bound.
CLAnVi 1. IfD is an optimal dag computing/AS it has at most trn + 21E nodes.
Proof of claim. By explicit construction. Proposition 2.1 guarantees that D con-

tains a rn-necklace (containing rn+ 1 nodes). Let Vl,V2, ,vt be any vertex cover.
Using the necklace we can construct nodes 2v+ 1 for each vertex v in the cover.
Using these and the necklace nodes, we can compute 2u+ 2v+ 1 for each edge {u,v}.
By definition of a vertex cover, this can be done in trn + 1 + ]El+ nodes overall. The
result follows since can be chosen <-[E [-1. []



644 PETER DOWNEY, BENTON LEONG AND RAVI SETHI

Henceforth we will assume that the optimal dag D computing /AS has a crn-
necklace of rn+ 1 nodes and no more than 21E I- 1 off-necklace nodes.

Consider an optimal dag D computing/AS, and let n 2u+2v+ 1 be an output
node not on the necklace. If the computation of 2u+2v+ 1 is as in Fig. 3.1, we will
say that the computation of the output node is normalized.

2cru + 2crv+

2cru 2cru

2crv+
2cry 2crY

2 2

2cru+ 2
cry

2cru+

+1

FIG. 3.1. Both output nodes shown are normalized. 0 denotes an off-necklace output node: [] a non-
output node.

In Claim 2 we argue that any optimal D for /AS can be transformed so that all
output nodes off the necklace have been normalized. This will immediately yield the
desired theorem.

CLAIM 2. Let D be an optimal dag computing/AS. Then we can transform D into
an optimal dag D’ computing/AS having a trn-necklace and with all off-necklace output
nodes normalized.

Proof of claim. Let D have a rn-necklace. Claim 1 guarantees without loss of
generality that D has -< rn + 2]E nodes, and so D has <- 2 ]El- 1 off-necklace nodes.

We show how to successively normalize the off-necklace output nodes of D
beginning with the largest.

Let p be the largest labelled output node off the necklace which has yet to be
normalized. Let it have sons q and r. Let p 2u+ 2’v+ 1 where u > v > 0.

Case 1. p is a major node. Without loss of generality let h(q)<-h(r) and
h(r) k(p)-1 cru-1. Since h(r) ru-1, r is not an output node.

Subcase 1.1. Suppose r is not on the necklace. All off-necklace output nodes si,

1 -< _< t, which depend upon r must have h(si) tru since p was chosen maximal.
(They are not normalized, since they depend on r.) Refer to Fig. 3.2. We may delete
r and replace it by 2’u+ 1, using this node to compute p and the si, 1 <- <- in a
"normalized" fashion. Call this transformation T.

Subcase 1.2. Suppose r is on the necklace. Then r 2u-1 and so
q p-r 2’u-1+ 2’v+ 1. Obviously q is not an off-necklace output node, nor can
it be on the necklace. All output nodes si depending on q have h(Si)=O’U, and as in
Subcase 1.1 we can delete q in favor of 2u+ 1.
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2

T

2 U+l

FIG. 3.2. Transformation T.

Case 2. p is a minor node. Without loss of generality let h(q)<-h(r) and
X(r) X(p) ru. Now r is not a necklace node, for if so then since h(r) tru,

r 2’u and q 2v + 1, showing that p is already normalized.
We also claim

(,) r is not an off-necklace output node.

To see this, suppose r 2u+2w+ 1 is an output node. See Fig. 3.3. Then
q 2’v-2’w v > w Letv w+,> 1 so thatq 2w (2-1)

From Corollary 2.1, the subdag reachable from q is an addition chain with at
least -1 nodes off the necklace. Since r 9[EI2 D must have
>- 3 IE IX/g- 1 -> 3 IEI- 1 nodes off the necklace. This violates Claim 1. This contrad-
iction establishes (,).

By (,), r is not an output node. All output nodes s dependent upon r have
h(s)=cru. We can perform the transformation T of Case 1, deleting r, inserting
2u+ 1 and normalizing p and all the nodes s, as in Fig. 3.2.

2o-u + 2
. v+

2’v- 2-w ] 2-u+ 2’w+

FIG. 3.3. Case 2 in the proof of Theorem 3.2.
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Clearly, performing transformation T does not increase the number of nodes and
does not affect output nodes already normalized. Thus by repeating T as often as
necessary, an optimal normalized dag results. []

CLAIM 3. IAS has a solution if and only if Ivc has a solution.

Proof of claim. (*-) If Ivc has a cover of size K then repeating the construction of
Claim 1 yields a dag for/AS having crn + 1+ IEI+K nodes.

(-,) If/AS can be computed by an addition dag in crn + 1+ IEI+K nodes, then let
D be the optimal normalized dag computing/AS guaranteed by Claim 2. D has trn + 1
necklace nodes, [E off-necklace output nodes (which are roots of D) and -< K
remaining nodes off the necklace of the form 2’v+ 1. Call this set of nodes C. By
construction of/AS from Ivc, it is clear that C forms a vertex cover of the edges in E,
and thus G has a cover of size -< K. []

Claim 3 concludes the proof of Theorem 3.2. []

4. Conclusions. In spite of the complexity results of 3, there may still be rea-
sons for seeking upper bounds for particular sequences of integers, as noted in [2].
Thus bounds and even explicitly optimal algorithms for sequences having very regular
structure can profitably be pursued.

If one extends the notion of "chain" to allow nodes to represent other operations
than addition, say addition and multiplication, this leads to a model for the evaluation
of arbitrary polynomials. Bounds for this model and others are in [6]. For this
model, the complexity of computing arbitrary sequences remains to be settled.

Two problems whose complexity remains open are: computing the value of l(n)
(the original "addition chains problem"), and the optimality of addition dags with one
output node but many indeterminates at the leaves. The latter problem is closely
related to polynomial evaluation over the integers.
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PRESERVING FUNCTIONAL DEPENDENCIES*

C. BEERI? AND P. HONEYMAN,

Abstract. We show that functional dependency preservation can be tested in polynomial time.
We show further that while finding a cover for all embedded dependencies is NP-complete, such a

cover can be found in polynomial time if dependencies are preserved.

Key word. Relational database

1. Introduction. One important research area in relational database theory is
the development of a logical database design methodology. Briefly, the problem
can be stated as follows. Given the attributes of the database and a set of seman-
tic constraints that describe the meaning of the database, select an appropriate
database scheme, i.e., a collection of relation schemes. The choice of a database
scheme depends, of course, on the given constraints. So far, results have been
obtained for the family of constraints known as data dependencies, especially for
functional dependencies. For a survey of this area, see [5].

Bernstein [8] presents an algorithm that constructs a relational database
scheme from a set of functional dependencies. One important property of the
algorithm is that the relation schemes it generates embed a cover of the given
functional dependencies. A different approach exploited in [14], [3], [13], [7] is
to propose a formalism for the concept of a "good" database and then to find
necessary and sufficient conditions for a scheme to be good. Such conditions are
presented in [7], [13] for functional, multivalued, and join dependencies. For
functional dependencies, the condition turns out to be as follows.

First, the scheme has to be lossless (for an explanation of this condition, see
[14], [1]). Second, the relation schemes must embed a cover of the given depen-
dencies. Another approach to database design that requires this condition to be
satisfied was presented in [6]. The significance of the embedding condition is
obvious; we want updates to preserve the semantic integrity of the database. That
is, if a database satisfies the given dependencies, it will continue to satisfy them
after being updated. If a cover for the dependencies is embedded in the relation
schemes, it suffices to check that each updated relation satisfies the dependencies
that are embedded in its scheme.

As remarked above, the scheme produced by Bernstein’s algorithm satisfies
the embedding condition. It is conceivable, however, that other design methods
will produce schemes for which it is not known whether the condition is satisfied.
Or we might like to know whether a scheme proposed by a user is a good one.
Thus, it would be useful to have an efficient algorithm to test if a cover of a given
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set of functional dependencies is embedded in a set of relation schemes. This
paper presents such an algorithm.

A naive approach is to compute F+, the set of dependencies implied by F,
project F+ onto the database scheme, and determine whether the resulting set of
dependencies covers F. Since computing F+ requires exponential time (and
space), we must reject this tactic. A more promising approach is to compute more
directly the dependencies in the embedded cover (if it exists). Using this
approach we will show that if such a cover exists, then it can be computed in poly-
nomial time.

Suppose the relation schemes do not embed a cover of the set of dependen-
cies. Here, we would like to construct a cover for those dependencies that are
embedded. Indeed, given such a cover, we could add relation schemes that
embed additional dependencies until a cover for all the given dependencies is
obtained. We will show that this approach is probably infeasible since finding a
cover of the embedded dependencies is NP-complete.

2. Definitions and background. The reader should be familiar with the rela-
tional model of database systems, as expounded by [9], [16]. We follow their
notational conventions. We refer to single attributes by upper case italic letters
near the beginning of the alphabet, reserving upper case italic letters near the end
of the alphabet for sets of attributes. We also drop braces surrounding sets wher-
ever possible and allow concatenation to represent set union. Thus, AA A,,,
XY, and A refer to {A, A, .-., A,,}, X Y, and {A }, respectively.

2.1. Relations. We assume that a finite set U of attributes is given. All
sets of attributes are assumed to be subsets of U.

Each attribute A; in U is associated with a domain of admissible values D;.
For a set R c_ U, an R-value is a map that assigns to each A; R a value in D;. A
relation on R is a finite set of R-values. A natural representation of a relation on
R is a table with columns labeled by the attributes of R and rows consisting of
the respective values of the constituent elements. If r is a relation on R, we say
that R is the relation scheme of r. Intuitively, a relation scheme is a description of
the format of a relation.

In this paper, we use relation scheme and set of attributes interchangeably.
The set U is called the universe. A database scheme is a set of relation schemes
R={R,R,-.. ,R,}. It is usually assumed that (,.J;=R;=U, but this is
irrelevant for our purposes.

2.2. Dependencies. An important semantic constraint is the .functional depen-
dency. A functional dependency X--, Y is a statement that in any relation r with
XY a subset of its relation scheme, any two rows with identical values in all
columns labeled by X must agree in all columns labeled by Y. If this is the case,
then r satisfies X---, Y. If X-- Y is a functional dependency, then X .functionally
determines Y.

Other types of dependencies, e.g., multivalued and join dependencies, have
been proposed [10], [15]. In this paper, only functional dependencies will be con-
sidered; thus the terms dependency and determine should be read as functional
dependency and functionally determine, respectively.

From a set of dependencies, it may be logically implied that other dependen-
cies must hold. For example, AB--,A is logically implied by the empty set of
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dependencies. A less trivial example is the logical implication of A---,C from the
dependencies A---,B and B---,C. Formally, a set F of dependencies implies a
dependency .f if .f holds in every relation in which F holds. Given a set of
dependencies F, the set of all dependencies logically implied by F is called the clo-
sure of F, denoted F+. Different sets of dependencies can have the same closure.
A set G is a cover of F if G+=F+. Note that a cover of F is not necessarily a sub-
set of F.

Example 1. Let F={A--.B, B--.A, A---C, AB---,C} and let
G={A----,B, B---A, B---,C}. G is a cover of F (and thus vice versa), but F and G
are incomparable sets.

For a set of attributes X, the closure of X (with respect to F), denoted
CLOSUREF(X) is the set of attributes that depend on X by the dependencies of
F. That is,

CLOSUREF(X)={AIX--’A F+}.

It follows directly that X--* Y iff YC_ OSUREF(X).
It is useful to be able to answer questions such as "is f implied by F?".

This can be accomplished using the deduction rules for functional dependencies
introduced by Armstrong [2].

A1. If Yc_ X then X---, Y.
A2. If X--. Y and X---. Z then X---, YZ.
A3. If X---. Y and Y---.Z then X---,Z.
These rules were shown to be complete in the sense that any dependency log-

ically implied by a set of dependencies can be deduced using a finite number of
applications of the rules. Thus F+ is also the closure of F under finite application
of rules A1, A2, and A3.

A useful device, which models the process of deriving a new dependency
from a set of dependencies via Armstrong’s axioms, is the derivation tree [8]. If
F is a set of functional dependencies, then the set of F-based derivation trees (F-
based DT’s) is defined inductively, as follows.

DT1. If A is an attribute, then a node labeled A is an F-based DT.
DT2. If T is an F-based DT with a leaf node labeled A and B1 B,,---.A is

a dependency in F, then the tree constructed by adding nodes labeled B1 B,,
as children of the leaf labeled A is also an F-based DT.

DT3. T is an F-based DT only if it follows from a finite number of applica-
tions of rules DT1 and DT2.

The set of leaves of a derivation tree is the .frontier. The height of a derivation
tree is the length of the longest path from the root to the frontier. If the frontier
of a F-based DT T is labeled by a subset of X, then T is called an F-based X-DT.
The fundamental importance of derivation trees is the following:

PROPOSITION 1 [8]. XAF+ iff there exists an F-based X-DT with root
labeled A

Using Armstrong’s rules, we can generate the dependencies that are implied
by a given set of dependencies. In principle, we could decide whether .f F+ by
generating F+. However, calculating F+ is out of the question, since the number
of dependencies in F+ is exponential in the size of the universe. Nonetheless, we
can rapidly determine membership in F+ using the membership algorithm of [4].
This algorithm computes CIOSUREF(X) in time linear in IIFll. (The number of
elements in a set X is denoted IX I, while the number of characters needed to list
X is denoted IIX II.)
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The algorithm for computing CLOSUREF(X) works as follows. We start by
setting CLOSUREF(X) equal to the given set X. Then if Y--,Z is in F and
YC_ CLOSURE F (X), we replace CLOSURE F (X) by CLOSUREF (X) tO Z. This step is
repeated until nothing more can be added to CLOSUREF(X).

2.3. Dependency preservation. A dependency X---, Y is embedded in a rela-
tion scheme R if XYC_ R. A set of dependencies F is embedded in a database
scheme R if for each ./’ F there is a relation scheme in R in which f is embed-
ded. A database scheme R preserves a set of dependencies F if some cover of F is
embedded in IL Equivalently, R preserves F if the dependencies of F+ that are
embedded in R form a cover of F.

We would like F to be preserved, since this provides for efficient enforce-
ment of constraints given as functional dependencies, as noted in 1. If F is
embedded in R, determining whether R preserves F is easy. However, it may be
the case that F is preserved by R by virtue of some unequal cover of F being
embedded in R. In the next section, a polynomial time algorithm is developed for
testing whether F is preserved and for generating an embedded cover of F, if one
exists.

3. Covers of the embedded dependencies. Our goal, given dependencies F
and relation schemes R, is to find a cover of F that is embedded in R, if it exists.
If such a cover does not exist, we would like to know that. Furthermore, we
would like at least to generate a cover for the dependencies of F+ that are embed-
ded in R. These problems are treated in this section.

3.1. A closure algorithm. As a first step, we develop an algorithm that
determines the set of attributes in the closure of a set X with respect to those
dependencies of F+ that are embedded in R.

DEfiNITION. Let F={X1--, Y, ", X--, Y} be a set of dependencies and let
R={R, ..., R,} be a database scheme. The set of dependencies in F+ that are
embedded in R is the projection ofF+ onto R, denoted F+[R].

Observe that (F[R]) + may properly contain F+[R] (see Example 2 below),
but is always contained in F+. Observe as well that F+[ U] is equal to F+.

Since any set of attributes determines its CLOSURE, the dependency
(XO R)--CLOSUREF(X(3 R) is in F+, for any XC__ U and R E R. By rules A1 and
A3, F+ also contains

(1) (X R)--CLOSUREF(XO R) 0 R.

The right side of (1) is the set of all attributes in R that depend on XN R. Note
that this dependency is embedded in R. This observation yields the basic step of
the closure algorithm.

Algorithm 1 computes CLOSUREF+[R](X).
ALGORITHM 1.
Input: A database scheme R, a set of dependencies F, and a set of attributes

So

CLOSUREF_ R X

Output: CLOSUREF+[R] (X)"
Data structures: depend is a subset of U that

so far. old_depend is a subset of depend.
is known to be in
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Method: We use the method of [4]. Attributes are added to depend by
applying dependencies of the form of dependency (1), above. See Figure 1.

begin
(1) depend,--X;

repeat
begin

(2) old_depend*--depend;
(3) for each R E R do
(4) depend depend tO

end
(5) until (old_depend=depend);
(6) print depend

entt

CLOSUREF( old_depend (’1 R) ’1R]

FIG. 1. Calculating CLOSUREF+[R (X).

To prove the correctness of the algorithm, we need the following lemmas.
LEMMA 1. Algorithm 1 always terminates.

Proof. Except for the last pass through the outer loop, at least one attribute is
added to depend on each pass. Since depend is a subset of U, the loop is executed
at most IUI times, co

LEMMA 2. The set depend is contained in CLOSUREF+[R](X).
Proof. The proof is by induction on n, the number of iterations of the outer

loop.
Basis: n=0. Before the first pass, depend=X, which is surely contained in

the closure of X.
Induction: Suppose that after n-1 passes of the outer loop depend is con-

tained in CLOSUREF+[RI(X) and suppose that some A U is added to depend on
the nth pass. By the inductive hypothesis, old_depend is contained in

CLOSUREF+II(X), thus the dependency X-,old_depend is in F+. Since A is
added to depend, there is some R R such that A is in
CLOSUREF(old_depend R) ( R. Thus the dependency (old_depend R)--,A is
embedded in R and is a member of F+, and thus a member of F+[R].

Since X--,old_depend R and old_depend R---*A are implied by F+[R], so is
X--,A. Thus A is in CLOSUREF+tal(X). This completes the induction and the
proof.

LEMMA 3. lfA is in CLOSUREF[aI(X), then A is added to depend.

Proof. Suppose A is in CLOSUREF+III(X). Let G F+[R]. Then there
exists a G-based X-DT T with root labeled A. The proof that A is added to
depend is by induction on the height of T.

Basis" T has height 1. Then A E X so A depend.
Induction" Suppose any attribute that labels the root of a G-based X-DT with

height less than n is added to depend. Let T be a G-based X-DT with root
labeled A and height n. Each node that is a child of the root is itself the root of a
G-based X-DT with height less than n. Let Y be the set of labels of the children
of the root node. By the inductive hypothesis each attribute in Y is added to
depend. Furthermore, the dependency Y---,A is a member of F+, and some
scheme R contains YA.
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On that pass of the outer loop when all of Y is first added to old_depend (i.e.,
the pass following that in which all of Y has been added to depend), the set
CLOSUREF(O/d_dependN R) R contains A. Therefore, A is added to depend on
this pass. This completes the induction step and the proof. []

In analyzing the running time of Algorithm 1 (and succeeding algorithms),
set operations are assumed as primitives. This does not affect any polynomial
time bound conclusions, and is a reasonable assumption if a bit vector implemen-
tation is used.

THEOREM 1. Algorithm 1 determines CLOSUREF+[RI(X) and runs in time

O(IIFII.IRI.IUI).
Proof. Termination and correctness follow from Lemmas 1, 2, and 3. For

the complexity analysis, observe that the innermost statement (line 4) computes a
CLOSURE. Using the algorithm of [4], we can carry out this step in O(IIFII) time.
Line 4 is reached RI times during each pass of the outer loop. We showed in the
proof of Lemma 1 that the outer loop is traversed no more than UI times, from
which the stated time bound follows.

By following the operation of the algorithm, we can infer the dependencies in
F+[R] used to compute CLOSUREF+tR](X).

3.2. Finding an embedded cover of F. The machinery now exists to deter-
mine an embedded cover of F, if it exists. If, for each dependency X---, Y in F, Y
is in CLOSUREF+tal(X), then F+[R] covers F. In this section, we show how to
determine a set of dependencies in F+[R] that contains enough information to
derive e0ch dependency in F.

Example 2. Let F={AB--,D, B---,E, E--,B} and let R={AED, BE}. Using
Algorithm 1, we can show that D is in CLOSUREF+[aI(AB) i.e.,

(2) AB--,D ( F+[R ]) +.
To determine the embedded dependencies that imply (2), consider the application
of Algorithm 1 to input AB.

First ABAED is found to be A, the closure of which is just A. At this
point, depend is still AB. The next step is to determine
CLOSUREF(AB BE)=CLOSUREF(B). Since CLOSUREF(B) contains E and
E BE, we add E to depend. Observe that we have implicitly used the embedded
dependency B---, E.

At this point, we reconsider relation scheme AED. Intersecting AED with
depend now yields AE, which has ABDE as its closure. Consequently, D is added
to depend. Here, the embedded dependency AE---D has been used.

Since D was added to depend, the algorithm has demonstrated the truth of
(2). In addition, our analysis has revealed that B--,E and AE----,D are the embed-
ded dependencies that imply (2).

By applying Algorithm 1 to the left side of each f F, an embedded cover can
be produced, if it exists.

ALGORITHM 2.
Input: A set of dependencies F, another dependency ,f:X--, Y, and a database

scheme R.
Output: A subset G of F+[R] such that G implies f, if such a G exists.

Otherwise abnormal termination results.
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Data structures: depend, old_depend, and new are sets of attributes in

CLOSUREF+IaI(X). G is a set of dependencies in F+[R].
Method: We compute CLOSUREF+Ial(X) using Algorithm 1. Each time a

new attribute is added to depend, we add the embedded dependency that justifies
this addition to G. See Figure 2.

begin
G,--;
depend*---X;
repeat

begin
old_depend*--- depend;
for each R R do

begin
new,--( CLOSUREF( old_depend f) R) f) R )-old_depend;
if new then

begin
G’---G U old_depend fq R-- new}
depend--dependU new

end
end

end
until (old_depend=depend)
if Yc depend then

print G
else

abort
end.

FIG. 2. Determining an epnbedded cover

LEMMA 4. Let G be the output of Algorithm 2. Iff:X--, Y is in F+[R], then f
is in G +.

Proof. Suppose fEF+[R]. To show that .rE G+, it suffices to show that we
can construct a G-based X-DT with root labeled A, for each A Y.

Since fF+[R], Y is contained in CLOSURFF+III(X) (by definition). There-
fore, by Lemma 3, Y is added to depend. It is therefore enough to show that dur-
ing any iteration of the outer loop, any attribute A added to depend labels the root
of a G-based X-DT. This proof is by induction on n, the number of passes
through the inner loop.

Basis: n=0. Then A X, thus a single node labeled A is a trivial G-based
X-DT.

Induction: Suppose that for any attribute B added to depend during n-1
passes of the inner loop, there exists a G-based X-DT with root labeled B. Sup-
pose A is added to depend on the nth pass. Then there exists a relation scheme
R such that old_dependf)R--*A and A R-old_depend Therefore, the depen-
dency old_depend f)R---.A is added to G. By the inductive hypothesis, every attri-
bute in old_depend R labels the root of some G-based X-DT. By starting with
root labeled A and adding an arc to the root of each of these G-based DT’s, we
construct a G-based X-DT with root labeled ,4. This completes the induction
step. 3
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Observe that Algorithm 2 has the same time complexity as Algorithm 1. By
using Algorithm 2 for each .f in F, we can now produce an embedded cover of F,
if it exists.

ALGORITHM 3.
Input: A set of dependencies F and a set of relation schemes R.
Output: An embedded cover of F, if it exists.
Method: Algorithm 2 is applied to each ,fEF. If abnormal termination

occurs for any such f, then we terminate abnormally here. Otherwise, the output
of each application of Algorithm 2 is produced as output here.

THEOREM 2. If R preserves F then Algorithm 3 .finds an embedded cover qfF in
time O(IFI.IIFII.IRI.I UI).

Proof. The complexity analysis is straightforward; correctness follows from
Lemma 4.

It is interesting to ask what the output of Algorithm 3 would be if the abnor-
mal termination condition were eliminated and F were not preserved. We might
hope that the resulting output covers F+[R]. The next example shows that, in
general, this is not the case.

Example 3. Let F={ A--,B, BC---,D} and let R={ A CD, BD}. Then Algorithm
3 produces no output, yet the dependency A C---,D is embedded in R.

Observe that the left side of any dependency produced as output by Algo-
rithm 3 is contained in the closure of the left side of some dependency in F.
Determining a collection of left sides that will lead to a cover of F+[R] turns out
to be a difficult problem.

3.3. A negative result. Suppose R is a database scheme that does not
preserve F. As noted in 1, there might be some value in determining a small
set of dependencies that is embedded in R and covers F+[R]. To show that G
covers F+[R] we must show that F+[R] c_ G/. However, the complement of this
problem, determining whether there exists a dependency in F+[R] not in G+, is
NP-complete, thus it is unlikely that an efficient algorithm to solve this covering
problem can be found.

THEOREM 3. Let F and G be sets offunctional dependencies and let R be a
database scheme. Then determining whether G does not cover F+[R] is NP-complete.

Proof The problem is easily seen to be in NP. Nondeterministically select a
dependency f:X--, Y, verify that fF+[R], and that .f,G+. To complete the
proof, the hitting set problem will be transformed to the covering problem. Hit-
ting set was first demonstrated to be NP-complete in [12].

Let S,...,S, be a set of subsets of a finite set S. H is a hitting set if
H f) S;I= 1, for each i.

Hitting set is transformed to the covering problem as follows. Let the
universe of attributes be SU {B, , B,, C}, where {B1, , B,, C} fq S=.
Let P={(A, A’)IA and A’ are in S;, for some i, A;A’}. Any set containing a
pair from P can not be a hitting set. We describe three sets of dependencies:

F1. A---.B for each A S; and for each i,
F. QC for every pair Q in P, and

F3. B1 B2 B,---. C.

See [11] for an exposition of NP-completeness and related topics.
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F is the union of F1-F3. The database scheme R contains the relation
scheme S{C} and the relation schemes AB for every A S; and for each i. Let
G be F1 F.

The size of the covering problem produced is polynomial in II{S, ...,
Observe that since B B,,---,C is not in (F+[R]) +, R does not preserve F.

It remains to be shown that a hitting set exists iff G does not cover F+[R].
For the only if part, assume that H is a hitting set. By the dependencies in F,
H---’B1 B,, is in F+. Hence, by F3, H---’C F+. Since H---,C is embedded in
R, H--,C F+[R].

Any nontrivial G-based DT with root labeled C must correspond to a depen-
dency of F2. However, G contains no dependency with A on its right side, so no
dependency can be attached to a G-based DT for Q---,C. Thus H--.C_ G+, prov-
ing the only if part.

For the if part, suppose that some dependency .f:H---.Z is in F+[R] but not
in G+. By Armstrong’s rules, X---,A A 2 A,, holds iff each of the dependencies
X--A, X----,A,..., X--,A,, holds. We can therefore assume that Z is a single
attribute D, i.e.,.H--,D F+[R]-G+. Obviously, D H.

Assume D is some A S. Since F contains no dependencies with A on the
right side, the only F-based DT with A as its root is the tree consisting of a single
node labeled A. Thus X--.A F+ iff A X. It follows, since H---,DF+[R], that
if D is some A then D H, a contradiction.

Next, assume that D is B;, for some i. By similar arguments on the DT of
H--.D, we can show that for some AS;, AH. But then H--.D is in G+. D
must therefore be equal to C.

The F+[R]-based DT for H--.C may contain only dependencies of F and the
dependencies of F+[St3{C}]. As shown above, F+ contains no nontrivial depen-
dency with right side A. In particular, all nontrivial dependencies of F+ embed-
ded in S{C} are of the form S’---,C, where S’C_ S. Thus the root dependency of
the DT must also be of this form. Further, since F- contains no nontrivial
dependency with right side A, no other dependency can be attached to the nodes
labeled by S’. It follows that the F+[R]-based DT for H---C corresponds to a sin-
gle dependency S’---C, where S’c_S. We can assume that H=S’. Now, if for
some i, H f) S;I >/2, then H--. C G+. Hence, H f) S;I < 1, for all i. However, if
IHfq S;I=0 then H---,C is not in F+. Hence IHN S;I=I for all i, i.e., H is a hitting
set .

COROLLARY. A polynomial time algorithm .[br constructing a cover Of F+[R]
exists .i/T P NP.

Proo.[: Given F, G, and R as in Theorem 3, we could check if G covers
F+[R] as follows. First construct a cover H for F+[R]. Then check if G covers
H. Since the second step can be performed in polynomial time [4], the first step
can be performed in polynomial time iff P NP.

4. Conclusions. Preserving functional dependencies is an important goal in
the design of a database scheme. We have shown that determining whether a
database scheme preserves dependencies can be efficiently tested. Furthermore, if
dependencies are preserved, then an embedded cover can be determined in poly-
nomial time. If dependencies are not preserved, determining whether a set of
dependencies covers those that are embedded in the database scheme is NP-
complete, making it unlikely that a cover of the embedded dependencies can then
be found in polynomial time.
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Abstract. Matrix multiplication algorithms for cube connected and perfect shuffle computers are
presented. It is shown that in both these models two n n matrices can be multiplied in O(n/m + log m) time
when n:m, <= m <= n, processing elements (PEs) are available. When only m 2, -< m <= n, PEs are available,
two n n matrices can be multiplied in O(n:Z/m + m(n/m)TM) time. It is shown that many graph problems
can be solved efficiently using the matrix multiplication algorithms.
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1. Introduction. This paper is concerned with the development of general
purpose matrix multiplication and graph algorithms for single instruction stream,
multiple data stream (SIMD) parallel computers (see Flynn [10] for a classification of
computer models). All SIMD computers have the following characteristics:

(1) They consist of p processing elements (PEs). The PEs are indexed
0, 1, .., p 1 and an individual PE may be referenced as in PE (i). Each PE is capable
of performing the standard arithmetic and logical operations. In addition, each PE
knows its index.

(2) Each PE has some local memory.
(3) The PEs are synchronized and operate under the control of a single instruction

stream.
(4) An enable/disable mask can be used to select a subset of the PEs that are to

perform an instruction. Only the enabled PEs will perform the instruction. The
remaining PEs will be idle. All enabled PEs execute the same instruction. The set of
enabled PEs can change from instruction to instruction.

While several SIMD models have been proposed and studied, in this paper we wish
to make a distinction between the shared memory model (SMM) and the remaining
models, all of which employ an interconnection network and use no shared memory. In
the shared memory model, there is a common memory available to each PE. Data may
be transmitted from PE (i) to PE (j) by simply having PE (i) write the data into the
common memory and then letting PE (f) read it. Thus, in this model it takes only 0(1)
time for one PE to communicate with another PE. Two PEs are not permitted to write
into the same word of common memory simultaneously. The PEs may or may not be
allowed to simultaneously read the same word of common memory. If the former is the
case, then we shall say that read conflicts are permitted.

Most algorithmic studies of parallel computation have been based on the SMM [2],
[4], [8], [9], [14], [15], [20], [21], [27]. This model is, however, not very realistic as it
assumes that the p PEs can access any p words of memory (1 word per PE) in the same
time slot. In practice, however, the memory will be divided into blocks so that no two
PEs can simultaneously access words in the same block. If two or more PEs wish to
access words in the same memory block, then the requests will get queued. Each PE will
be served in a different time slot. Thus, in the worst case O(p) time could be spent

* Received by the editors May 24, 1979, and in revised form October 10, 1980. This research was
supported in part by the National Science Foundation under grant MCS 78-15455.

r Department of Computer Science, University of Minnesota, Minneapolis, Minnesota 55455.
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Illinois 60201.
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transferring data to the p PEs. All the papers cited earlier ignore this and take the time
for a simultaneous memory access by all PEs to be O(1).

SIMD computers with restricted interconnection networks appear to be more
realistic. In fact, the ILLIAC IV is an example of such a machine. There are several
other such machines that are currently being fabricated. The largest of these is the
massive parallel processor (MPP) designed by K. Batcher. It has p 16K. A block
diagram of a SIMD computer with an interconnection network is given in Fig. 1.1.
Observe that there is no shared memory in this model. Hence, PEs can communicate
among themselves only via the interconnection network.

I/0 i/o

CONTROL
UNIT

PROCESSING
ELEMENTS

0

PROCESSING
ELEMENT

PROCESSING
ELEMENT

p-1

PROGRAM
MEMORY

DATA
MEMORY

DATA
MEMORY

DATA
MEMORY

INTER-

CONNECTION

NETWORK

FIG. 1.1. Block diagram o] an SIMD computer.

While several interconnection networks have been proposed (see [29]), we shall
consider only three interconnection networks in this paper. These are: mesh, cube, and
perfect shuffle. The corresponding computer models are described below. Fig. 1.2
shows the resulting interconnection pattern.

(i) Mesh connected computer (MCC). In this model the PEs may be thought of as
logically arranged as in a k-dimensional array A(nk-, r/k-Z, nO), where ni is the size
of the ith dimension and p nk-1 * nk-2 *" * no. The PE at location A (ik-1, io) is
connected to the PEs at locations A (ik-1, ij +/- 1, , io), 0-<_ ] < k, provided they
exist. Data may be transmitted from one PE to another only via this interconnection
pattern. The interconnection scheme for a 16 PE MCC with k 2 is given in Fig. 1.2(a).
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(ii) Cube connected computer (CCC). Assume that p 2q and let iq-x i0 be the
binary representation of for [0, p-1]. Let (b) be the number whose binary
representation is i-1 i/1 i-bib- io, where ’ is the complement of i and 0 <- b <
q. In the cube model, PE (i) is connected to PE (i()), 0 =< b < q. As in the mesh model,
data can be transmitted from one PE to another only via the interconnection pattern.
Fig. 1.2(b) shows an 8 PE CCC configuration.

(iii) Perfect shuffle computer (PSC). Let p, q, and () be as in the cube model. Let
i-1’’" i0 be the binary representation of i. Define SHUFFLE(i) and
UNSHUFFLE(i) to, respectively, be the integers with binary representation
i,-2i,-3"" ioiq-1 and ioi,-i ix. In the perfect shuffle model, PE (i) is connected to
PE (i(o), PE (SHUFFLE (i)) and PE (UNSHUFFLE (i)). These three connections are,
respectively, called exchange, shuffle, and unshuffle. Once again, data transmission from
one PE to another is possible only via the connection scheme. An 8 PE PSC configura-
tion is shown in Fig. 1.2(c).

It should be noted that the MCC model requires 2k connections per PE, the CCC
model requires logp (all logarithms in this paper are base 2) and the PSC model
requires only three connections per PE. The SMM requires a large (and impractical)
amount of PE to memory connections to permit simultaneous memory access by several
PEs. It should also be emphasized that in any time instance, only one unit of data (say
one word) can be transmitted along an interconnection line. All lines can be busy in the
same time instance, however.

110 111

100

010 011

000 001

101

000 ’x,,,lO0 110

(a) 4x4 MCC (b) 8 PE CCC (c) 8 PE PSC

FIG. 1.2. Boxes represent PEs.

Each of the four models (including the SMM) described above has received much
attention in the literature. Agerwala and Lint [2], Arjomandi [3], Csanky [8], Eckstein
[9] and Hirschberg [14] have developed algorithms for certain matrix and graph
problems using a SMM. Hirschberg [15], Muller and Preparata [20] and Preparata [27]
have considered the sorting problem for the SMM. The evaluation of polynomials on
the SMM has been studied by Munro and Paterson [21], while arithmetic expression
evaluation has been considered by Brent [4] and others. Efficient algorithms to sort and
perform data permutations on an MCC can be found in Thompson and Kung [32],
Nassimi and Sahni [22], [23] and Thompson [31]. Thompson’s algorithms [31] can also
be used to perform permutations on a CCC and a PSC. Lang [18], Lang and Stone [19]
and Stone [30] show how certain permutations may be performed using shuffles and
exchanges. Nassimi and Sahni [25] develop fast sorting and permutation algorithms for
a CCC and a PSC.

Gentleman [13] and Abelson [1] have studied the inherent complexity of parallel
matrix computations. Gentleman [13], for example, has shown that at least 0.35N
routing steps are needed to compute the product of two N N matrices on an MCC.
Also, O(log N) routes are needed to do this on a CCC or PSC.
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In this paper, we are primarily concerned with the problem of multiplying two n n
matrices. The matrix multiplication problem is a very important and fundamental
computational problem. The reason for this is that many other problems are best solved
using matrix multiplication. In the case of parallel computations even some problems
that are normally not solved using matrix multiplication turn out to be efficiently solved
using matrix multiplication (or a variation of matrix multiplication). Some examples of
problems in this category are:

(a) Find the shortest distance between all pairs of vertices in a graph. This problem
is traditionally solved using a dynamic programming algorithm [16].

(b) Transitive closure. This is traditionally also solved using dynamic program-
ming 16].

(c) Radius, diameter and centers of a graph.
(d) Breadth-first spanning tree. This is traditionally found using a breadth-first

search.
(e) Topological sort. This is normally done using a special graph traversal [16].
etc.
These and other graph problems that are efficiently solved using matrix multi-

plication are described in greater detail in 4. In almost all of the cases considered in
4, the application of matrix multiplication is quite straightforward. Nonetheless, we

describe how matrix multiplication (or a variation) may be used in each case. This serves
to highlight the difference in the thought pattern needed to arrive at an efficient parallel
algorithm versus an efficient single processor algorithm.

The matrix multiplication problem for SMMs and MCCs has been extensively
studied. Savage [28] presents an O(log n) algorithm to multiply two n n matrices on a
SMM with n3/log n PEs. The problem may be easily solved in O(n) time when only n 2

PEs are available. Both these algorithms are obtained from the classical O(n 3) matrix
multiplication algorithm. Chandra [6] has obtained an O(log n) implementation of
Strassen’s multiplication algorithm. His implementation runs in O(ng7/p) time on a p
PE SMM computer when p <_-r/lg7/1og n. When p nlg7/log n, the complexity of
Chandra’s parallel algorithm becomes O(log n). This is easily seen to be optimal as it
takes O(log n) time to add n numbers optimally in parallel. Agerwala and Lint [2] have
obtained an efficient algorithm to multiply Boolean matrices. Their algorithm is an
implementation of the well-known four Russians algorithm.

For MCCs, Van Scoy [33] and Flynn and Kosaraju [11] have developed O(n)
matrix multiplication algorithms for the case when n PEs are available. A very simple
O(n) algorithm for MCCs can be obtained from the algorithm developed by Cannon [5]
for 2 dimensional MCCs with wraparound. A two dimensional MCC with wraparound
is an MCC as defined here with the following additional PE connections:

(i) Let PE (i, f) denote the PE in position (i, f) of the n n PE array. PE (i, 0) is
connected to PE (i, n 1), 0 <_- < n.

(ii) PE (0, f) is connected to PE (n 1, f), 0 _-</’ < n.
Cannon’s algorithm can be easily adapted to run in O(n) time on an n n MCC without
wraparound.

We begin, in 2, by developing the matrix multiplication algorithms for CCCs.
First, algorithms are presented for the case of/,/3 and/7 2 PEs. The algorithm for the case
of n2m PEs, 1 _-< m _-< n is then obtained by combining together the algorithms for the
cases of r/3 and n 2 PEs. The resulting algorithm is of complexity O(n/m + log m). Note
that when m n/log n, ha/log n PEs are used and the complexity is O(log n). When
m 1, n PEs are used and the complexity is O(n). Next, we discuss how two n n
matrices may be multiplied in o(na/m) time when m2 PEs, 1 _-< m -<_ n, are available.
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This complexity is easily lowered to O(n2/m + m(n/rn)261) if Pan’s [26] algorithm is
used in place of the classical matrix multiplication algorithm. In 3, these results are
extended to obtain PSC algorithms of the same complexity. Also, in 3, we present an
interesting algorithm to compute (A .B)r on an n 3 PE PSC. This algorithm is faster
than the corresponding PSC algorithm to compute A B.

As mentioned earlier, the matrix multiplication algorithms obtained can be used to
obtain efficient algorithms for several graph problems. These are discussed in 4.

2. Cube connected computer. In presenting our algorithms, we shall make use of
the following conventions and notation.

(i) "-" will be used to denote an assignment requiring data movement between
PEs that are directly connected. ":=" will be used to denote an assignment in which all
variables in the left- and right-hand side of ":=" are local to the same PE or to the
control unit.

(ii) We shall use ir to denote bit r in the binary representation of i. Thus the binary
representation of is i,_1i,_2 i0 for some u. b will denote the number with binary
representation i-1i-2"" ib/ ibi-’’" io, where ib 1- i.

(iii) PE (k) will denote the PE with index k. Similarly, A(k), B(k), C(k), etc., will
denote memory locations or registers in PE (k).

(iv) PEs may be enabled by providing a selectivity function. This function can be
placed after any statement. Operations are performed only on enabled PEs. For
example, the statement

A(i):=B(i)+C(i), (i2-- 0)

has the selectivity function (i2 0). As a result, the addition and assignment is carried
out only in PEs whose index has bit 2 equal to 0. The statement

A(ib)) B(i), (io 1)

specifies a data route. Data from the B register of PEs With index and i0 1 is routed to
the A register of corresponding PEs with bit b equal to 1- ib.

(V) The complexity of an algorithm is the sum of the PE time needed and the
communication time (i.e., the time needed to route data from PE to PE). A unit-route is
a data transmission from a PE to another PE to which it is directly connected. In a
unit-route all PEs can transmit one word of data each to one of the PEs to which they are
directly connected.

2.1. CCCs with n 3 PEs. Consider a CCC with n 3= 23q PEs. Conceptually, these
PEs may be regarded as arranged in an n x n x n array pattern. If we assume, that the
PEs are indexed in row major order, the PE, PE (i, j, k) in position (i, j, k) of this array
has index in 2

+in + k (note that array indices are in the range [0, n- 1]). Hence, if
r3q-1 r0 is the binary representation of the PE position (i, j, k) then r3q-1 r2q,

f r2q- rq and k rq_a to. Using A(i, f, k), B(i, f, k) and C(i, f, k) to represent
memory locations in PE (i,/’, k), we can describe the initial condition for matrix
multiplication as

A(O,j,k)=ai,} O<=j<n
B(O, j, k)= bi,

O<-k<n.

ajk and b.k are the elements of the two matrices to be multiplied. The desired final
configuration is

C(O,j,k)=ci, O<-j<n, O<-k<n,



662 ELIEZER DEKEL, DAVID NASSIMI AND SARTAJ SAHNI

where

(2.1) c Y, alb,,.
/=0

Our algorithm computes the product matrix C by directly making use of (2.1). The
algorithm has three distinct phases. In the first, elements of A and B are distributed
over the n 3 PEs so that we have A(l, j, k) ai and B(l, j, k) b,,. In the second phase
the products C (l, j, .k) A (l, j, k) *B (l, j, k) ailblk are computed. Finally, in the third
phase the sums Y.- C(l, j, k) are computed. The details are spelled out in procedure
CCM1 (Algorithm 2.1). In this procedure all PE references are by PE index (recall that
the index of PE (i, ], k) is in 2

+in + k). Lines 1-10 implement phase 1. The loop of lines
1 to 4 copies the data initially in PE (0, j, k) to the PEs, PE (i, j, k), 1 _-< < n (recall that
bits 3q- 1,. , 2q of a PE index yield the value). Following this lool, we have

A(i,j,k)=ak.} O<__i<n.
B(i, f, k)= bi,

Note that A(i,f, i)=aii. In lines 5 to 7, A(i,f, i) is replicated over A(i,f, k),
0 <- k < n with the result that A(i, f, k) aii, 0<= k < n. The loop of lines 8-10 replicates
B(i,i,k)=b over B(i,/’,k), 0=<f<n. In line 11, the product C(i,f,k)=
A(i,f,k).B(i,f, k)=abit, is computed in PE (i,/, k), O<-_i<n, O<-f<n and 0_-< k <n.
Finally, the loop of lines 12-14 computes the sum

n--1 n--1

C(O, ], k)= , C(i, ], k)= , agbi Cik.
=0 =0

The analysis of CCM1 is quite straightforward. The processor communication time
in each of the last three for loops is that for q unit-routes. The first for loop requires 2q
unit-routes. Hence, the total communication time is that for 5q O(log n) unit-routes.
The PE time is clearly seen to be O(log n).

ALGORITHM 2.1.

line procedure CCM1 (A, B, C) #CCC multiplication algorithm using n 3 PEs//
1 [or := 3q- 1 down to 2q do
2 A (i(l)) A (f), (fl O)
3 B (j’)) ,-- U (j), (jl O)
4 end
5 for I:= q 1 down to 0 do//replicate A (i, j, i) into A (i, j,
6 A (j(l)) A (j), (jr j2q+z)
7 end
8 [or/:= 2q 1 down to q do//replicate B(i, i, k) into B (i,., k)[[
9 B (j)) B (j), (jl j,+l)
10 end
11 C(j):=A(j),B(j)
12 for/:= 2q to 3q 1 do//add terms//
13 C(j) C(f) -F C(f(t))
14 end
15 end CCM1

2.2. CCCs with n z PEs. Two n n matrices can be multiplied in O(n) time on a
CCC with n PEs. It is instructive to first look at Cannon’s algorithm [5] for MCCs with
wraparound. This algorithm is given as procedure MCCMULT (Algorithm 2.2). A (i, j),
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B(i, ]) and C(i, j) refer to memory locations (or registers) A, B and C in PE (i, j),
0<-i <n and 0<=j <n. Initially, A(i, j)=aij and B(i,j)= bij. The algorithm consists of
two identifiable phases. In phase 1 the A and B values are aligned so that the 1Product
A(i, j),B(i, j) gives one of the n terms in the sum for cii (recall that Cii=k-=o ait,bt,i).
Lines 1-4 produce the desired alignment. The elements in the ith row of A are shifted
left circularly times while the elements in the jth column of B are shifted up circularly j
times. The net result is that, following this loop, A(i, j)= ai,(i+imoan and B(i, j)=
b(i+i) modn,j. Note that A(i, ])*B(i, j) is a valid product pair for c(i, j).

In the second phase the A values in each row are shifted left circularly one position
and B values in each column are shifted up circularly one position. This shift retains
compatibility in A and B. The A and B values in each PE are multiplied to get a new
term of C. Repeating this shift-multiply operation n 1 times, all the terms in c0 can be
generated and added to obtain the product matrix (see lines 6-10 of Algorithm 2.2).
The total communication time is that for 4(n- 1) unit-routes. The overall algorithm
complexity is O(n).

ALGORITHM 2.2.

line

8

]0

procedure MCCMULT (A, B, C)
for/:= 1 to n 1 do//align A and Bff

A(i, j) A(i, (j + 1) mod n), (i => l)
B(i, j) B((i + 1) mod n, j), (j=> l)

end
C(i, /) := a(i, j).B(i, j)//initialize C[[
for l:= 1 to n-1 do

a(i, j) a(i, (j + 1) mod n)
B(i, j)- B((i + 1) mod n, )
C(i, f):= C(i, j)+A(i, j),B(i, j)

end
end MCCMULT

Cannon’s algorithm is easily adapted to run in O(n) time on an n n MCC without
wraparound. The left circular shifts of rows of A and the upward circular shifts of
columns of B are easily simulated. First, we reverse and shift right the first half of each
row of A to obtain

n
-_<-]<n-I, O<i<n-1A’(i,) A(i,n 1 /’)
2

Next, the first half of each column of B is reversed and shifted down to yield
n

B’(i,j)=B(n-l-i,f), -<-i<=n-1, O<=j<-n-1.
2

Each of these reversal-shift operations can be accomplished using 3n/2-2 unit-routes
(see Nassimi and Sahni [23] for details).

Now, a left circular shift of A is accomplished by the following instructions"

T(i,n/2):=A(i,n/2),

A(i,j)A(i,j+l), O<=j<-_n-2,

A(i,n-1):=A’(i,n-1),

A’(i,j)A’(i,j-1), n/2+l<-j<-n-1,

A’(i,n/2):=T(i,n/2).
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An upward circular shift of the columns of B can be obtained similarly. Since each
shift takes two unit-routes, MCCMULT can be run in 8(n-1)+2.(3n/2-2)=
1 in 12 unit-routes on an MCC with no wraparound.

Our CCC multiplication algorithm has the same two phases as does Cannon’s.
However, the initial alignment and later shifting pattern are substantially different.
We assume that n2= 22q PEs are available. Conceptually, these PEs may be viewed as
in an n n array (see Fig. 2.1). Once again, we shall use two different notations to refer
to the jth PE. PE index is hardware determined. A(j), B(j), C(j) will refer to memory
locations or registers in PE (j). In the n n array, we assume that the index of the PE in
position (i, j) is the same as the row-major index of the position. Thus if PE (k) is at
position (i, ]) of the array then k in + j. So, we can, without confusion, refer to the PE
in position (i, j) as PE (i, j). Similarly, we can use the notation A(i, j), B(i, j) and C(i, j).
Our, algorithm, however, will only use the notation A (j), B (j), C(j).

0 2 3

0 0
0000

4
0100

8
1000

12
1100

0001

5
0101

9
1001

13
1101

2 3
0010 0011

6 7
0110 0111

10 11
1010 1011

14 15
1110 1111

FIG. 2.1. Array view of a 16 PE CCC. Each square represents a PE. The number in a square is the PE
index (both decimal and binary representations are provided).

Procedure CCM2 (Algorithm 2.3) is a formal statement of our multiplication
algorithm. It is assumed that A and B have been initialized so that A(i, f)= aii and

n--1
B(i, j)= bii, O<=i <n, O<=f <n. The algorithm computes C(i, j)=cij=Yk=oaikbkj, 0<=
< n, 0<--j < n. Lines 1-5 obtain the initial alignment. Lines 6-13 form the product

matrix by repeated shift-multiply-add steps. The loop of lines 1-5 results in the
following configuration (Lemma 2.1)"

(2.2)
A (i, t) a i,it,

B (i, t) b i@t.t.

@ denotes an exclusive or of the binary representations of and t. Hence, the initial
product of line 6 computes C(i, t) ai,it * bit,t, which is one of the terms in the sum for
cit (see (2.1)). FUNC (line 8) is a function that controls the shifting of A and B values. It
returns a bit index in the range [0, q-1] (recall that n 2q). Note that the q least
significant bits in a PE index (using the one-dimensional indexing scheme) determines
the column index for the two-dimensional indexing scheme while the q most significant
bits determine the row index. Keeping this in mind, we easily see that line 10 moves the
elements in A along rows while line 11 moves elements of B along columns. Thus in line
12 we always have A(i, t) ai,p and B(i, t) br, for some p and r. Lemma 2.2 shows that
r p always so that we get a valid pairing in A(i, t) and B(i, t). From the construction of
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FUNC (yet to be specified) it will follow that no a or b value can show up in the same PE
more than once.

ALGORITHM 2.3.

line procedure CCM2 (A, B, C)
//multiply two n x n matrices on a CCC with n 2 PEs//
//obtain initial alignment//

1 for l:= 0 to q- 1 do
2 k:=q+l
3 A(j)-A(j’), (j 1)
4 B(j) B(j), (jl 1)
5 end
6 C(]):=A(]).B(])
7 for k := 1 to n- 1 do//shift-multiply//
8 := FUNC (k)//get a bit index e {0, 1, , q 1}//
9 m:=q+l
10 A (]) -A11 B (j) B (jm))
12 C(]) := C(]) +A (]) B (])
13 end
14 end CCM2

Hence, each time the product A(j).B(j) is computed in line 12, a new term of (2.1) is
formed. This implies that when the loop of lines 7-13 terminates, the product matrix
will have been computed.

LEMMA 2.1. When the loop of lines 1-5 of CCM2 terminates, (2.2) correctly
represents the values for A (i, t) and B (i, t), 0 <= < n, 0 <-_ < n.

Proof. Using the two-dimensional notation, lines 3-4 of CCM2 may be written as

A(i, t) A(i, tl)), (it-- 1),

B(i, t) B(i l), t), (tl 1).
From this, the correctness of (2.2) is easily established.

LEMMA 2.2. Whenever line 12 of CCM2 is reached, A(i, t) airandB(i, t) brtfor
some r (note that ] in + t), 0 <- < n and 0 <= < n.

Proof. Let A k (]) A k (i, t) be the value of A(])(= A (i, t)) when line 12 is reached
on iteration k of the loop of lines 7-13. Let lk be the value assigned to (line 8) in this
iteration. From line 10 it follows that Ak(])=Ak-l(jtk)), k ->_ 1. From Lemma 2.1, we
know that A(f)=A(i, t)=ai,c where t’= it. Consequently, AtC(i, t)=ai, where
r t’ Z lk’’’’’ll and z l’’’’’q is obtained from 0 by successively complementing bits lk,
lk-1,’’’, Ii in the binary representation of 0 (recall that the specification of FUNC
requires that 0_-<FUNC ()<q). The same argument shows that Bk(i, t)= bs, where
s=t’z’’l (B() is defined analogous to Ak()). Therefore, r=s for all k,
k=>l. Iq

We now proceed to specify FUNC. We are looking for a function that will generate
a sequence of n-1 integers in the range [0, q-l] such that, by successively
complementing along each bit in this sequence, all elements of a row will pass through
each PE in that row (and so by adding q to each element in the sequence we can get
every element in a column to go through each PE in that column). In other words, in
terms of the notation of Lemma 2.2, we want the sequence of integers

{Z ll, ZI2’ll, Z ln-l’’’’’ll}



666 ELIEZER DEKEL, DAVID NASSIMI AND SARTAJ SAHNI

to be some permutation of {1, 2, , n 1}. It is very easy to arrive at a suitable FUNC
if we think recursively. Divide a row into two halves. All PEs in the left half have bit
q 1 0 while those in the right half have bit q 1 1. If we have a bit sequence Sq-2
that can be used when the number of PEs in a row is 2q-1 then this sequence will cause
all elements in each half of a 2" PE row to go through each PE in that half. By
complementing on bit q- 1 we can exchange halves and then reuse S-2 to make each
element go through the PEs it has not already gone through. So, we obtain

Sq-1 Sq-2, q- 1, Sq-2 and So O.

When q 4, the sequence to use is

$3 $2, 3, $2

=S,2,$1,3, Sa, 2, S
So, 1, So, 2, So, 1, So, 3, So, 1, So, 2, So, 1, So

=0,1,0,2,0,1,0,3,0,1,0,2,0,1,0.

Observe that the recursion sequence results in a gray code and is similar to that
used in the towers-of-Hanoi problem. It should be easy to see how FUNC may be
incorporated into CCM2, inline, using only O(q) O(log n) control unit memory. The
time needed to generate the entire sequence is O(n).

As far as the complexity of CCM2 is concerned, exactly 2(q + n 1) unit-routes are
needed. Both the PE and communication times are O(n).
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FIG. 2.2. Data movement in CCM2 when n 4.
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Example 2.1. We illustrate the working of procedure CCM2 when n 4. Fig. 2.2
shows the data movement caused by CCM2. Fig. 2.2(a) gives the initial configuration.
The square in row and column ] denotes PE (i, ])= PE (4i + j). The first entry in each
PE is its A value and the second is its B value. The example matrices have aii bii if.
For convenience, we have labeled the columns and rows by their index in binary.
Figure 2.2(b) gives the A(i, j) and B(i, j) values following the initial alignment. As can
be seen, A(i, j)= ii(j and B(i, j)= ijj (note that by iij we mean a number with
first digit and second digit (j). In the shift loop (lines 7-13) the sequence of values is
0, 1, 0. Figures 2.2(c), (d) and (e) show the new A and B values following lines 11 and 12
for each of the three iterations of the shift loop. As is evident, for each PE (i, j) the
four A(i, j), B(i, j) pairings in Figs. 2.2(b) to 2.2(e) yield a distinct term in sum for

cij (see (2.1)). [3

2.3. CCCs with n2m, 1 <-m <-n PEs. By combining together algorithms CCM1
and CCM2 one can obtain an efficient parallel multiplication algorithm for CCCs with
2n m, 1 <_- m _-< n, PEs. We shall assume that n and m are powers of 2. So, m divides n.

The matrices, A and B, to be multiplied, can each be partitioned into m2 n/m x n/m
equal sized submatrices Aij and Bib 0 <= < m and 0 -<_ j < m (see Fig. 2.3). The product
matrix C may be similarly partitioned. It is easy to see that Cii is given by:

rn-1

(2.3) Cij AikBki, 0 <- < m, 0 <= j < m.
k=0

Aoo Ao Ao2 Ao3

A o A A 2 A 13

A20 A21 A22 A23

A30 A31 A32 A33

FIG. 2.3. Partitioning ofA into 16 submatrices.

The partitioned matrices may be viewed as an m x m matrix with each element
being an n/m x n/m matrix. The n2m PEs in the CCC may be viewed as forming an
m x n x n array PE (i, ], k), 0 <- < m, 0 <- ] < n and 0 _-< k < n. For each fixed i, the PEs in
this array form an n x n array which can be partitioned into m 2 n/m x n/m arrays
PEi,,k, 0 --<_ ] < m, 0 _--< k < m. The initial configuration for matrix multiplication is given
by Ao,.,k Ak and Bo,,k Bjk, 0 <--/’ < m, 0 <= k < m. Ao,,k and B0,,k denote the A and B
registers of the PE partition PE0,.,k. A and B can be multiplied using (2.3), CCM1 and
CCM2. First, the partitioned submatrices of A and B are replicated as in lines 1 to 10 of
CCM1 to obtain Ai,j,k A]i and Bi,.,k Bgk, 0 <-- < m, 0 <--/" < m and 0 <- k < m. This
replication requires only O(log m) time. The product of line 11 of CCM1 is now a
product of two n/m x n/m matrices A]i and Bik. The number of PEs available to carry
out each product A]i* Bik is n2/m 2 (i.e., the PE partition PEi,j,k). So, CCM2 can be used
to implement line 11 of CCM1 in O(n/m) time. Finally the addition loop of lines 12 to
14 (which perform the summation of (2.3)) is easily implemented in O(log m) time. The
resulting algorithm is procedure CCM3. The correspondence between CCM3 and the
two earlier algorithms is easily seen. Lines 1-10 of CCM3 correspond to lines 1-10 of
CCM1, lines 11-23 of CCM3 correspond to lines 1-13 of CCM2, and lines 24-26 of
CCM3 correspond to lines 12-14 of CCM1. CCM3 requires O(n/m +log m) unit-
routes and PE time. One readily sees that when m 1, CCM3 works exactly like CCM2
and when m n, CCM3 makes the same data moves as does CCM1. An interesting
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special case is when rn n/log n. Now, only n3/log n PEs are available and the
complexity of CCM3 is still O(log n).

ALGORITHM 2.4.

procedure CCM3 (A, B, C, n, m) //multiply two n x n matrices on a CCC with
2 PEs//// m0 q :=log n; h :=log m

1 for := 2q + h 1 down 2q do//copy A, B//
2 A(j)) ,- A (j), (y 0)
3 B (i(1)) <’- B (j), (it O)
4 end
5 for := q- 1 down to q- h do//copy A submatrices//
6 A (it’’) - A (j), (it jq+h+t)
7 end
8 for := 2q- 1 down to 2q- h do//copy B submatrices//
9 B(](t)) B(]), (il--’ih+l)

10 end
//Now multiply two n/m x n/m matrices in each

i x n/m x nm PE partition//
for := q- h 1 down to 0 do//Initial alignment//

k:=q+l
A (]t)) A (]), (fi, 1)
U(j(k)) B(j), (it 1)

end
C(j):=A(j).B(j)
for k := 1 to nrn 1 do//shift-multiply-add//

/:= FUNC (k)//get a bit index {0, 1,. , q h 1}{{
r:=q+l
a(j) a (jt))
B (j) ,-- B
C(j) := C(j) +a (j) B (/’)

end
{/Final add//

24 for := 2q + h- 1 down to 2q do
25 C(j) ,- C(j) + C
26 end

end CCM3

2.4. CCCs with m 2 PEs, 1 <_-m <-_ n. The partitioning strategy of 2.3 can also be
used when only m 2, 1 =< rn <_-n PEs are available. In this case A and B are partitioned
into Aii and Bij, 0 =< < rn and 0 <= ] < rn as before. The PEs are viewed as forming an
m m array PEij, 0 < < rn and 0 =< ] < m. Initially, PEii contains the n2/m 2 elements of

Aii as well as the n2/m elements of Bii. The matrix product can be formed proceeding
essentially as in procedure CCM2 with n and q respectively replaced by n/m and
log (n/m). The routes of lines 3, 4, 10 and 11 of CCM2 now involve nZ/m 2 elements
each and the product of line 6 (or 12) is a product of two n/m n/m matrices. This
product takes O(n3/m 3) time using the classical matrix multiplication algorithm. If
Pan’s [26] matrix multiplication algorithm is used then line 6 takes O((n/m)) time

2where/3 2.61. Hence the overall complexity of CCM2 when adapted to the case of m
PEs is

O(- (/B) 0(- /’/2"61 )+ rn -1- 1.61m

11
12
13
14
15
16
17
18
19
20
21
22
23
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The interesting special case of n PEs falls into the case just discussed when m /
(provided of course n is a perfect square). Actually, for the case of n PEs there exists a
very straightforward O(n 2) algorithm for matrix multiplication. The algorithm uses the
classical matrix multiplication algorithm and starts with column of A and B in PE (i).
We leave it to the reader to fill in the details of this algorithm.

3. Perfect shuffle computer.
3.1. PSC with n a PEs. An O(log n) multiplication algorithm for an/13 23q PSC

can be arrived at by simulating the routes in procedure CCM1 using the technique used
by Nassimi and Sahni [25]. The resulting algorithm will require 13 log n unit-routes. A
slightly faster algorithm (i.e., 10 log n unit-routes) can be obtained for PSCs. We shall
use the same three-dimensional view of PEs and the same initial configuration as was
used in 2.1. The following unit-route statements will be used:

(i) A (j(o)) -A (/’). routing along the EXCHANGE connection.
(ii) A(SHUFFLE (j)) A(j)... routing along the SHUFFLE connection.
(iii) A(UNSHUFFLE (/’)) A (j) routing along the UNSHUFFLE

connection.
The basic steps in the PSC multiplication algorithm are the same as those used in

CCM1. Their implementation is somewhat different. Procedure PSCM1 multiplies two
n x n matrices on a PSC with/7 3 PEs. It uses only 10 log n routes. The algorithm is self
explanatory and we shall not explain it further. The initial configuration is A (0, i, t) ai,
and B (0, i, t)= bi, t.

ALGORITHM 3.1.

line
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

procedure PSCM1 (A, B, C)//PSC multiplication algorithm, n 3 PEs//
for b := 0 to q 1 do//copy A,

A(SHUFFLE (i)) A (i)
B(SHUFFLE (i)) - B(i)
A (jo) -A (/’), (jo 0)
B (jo)) ,- B (j), (jo 0)

end//now we have A(i, t, p)= ai, and B(i, t, p)=
for b := 0 to q- 1 do

A(SHUFFLE (i)) ,- A (i)
end//now we have A (i, t, p) ap, and B (i, t, p) b,/[

C(j):=A(j),B(j) //now C(i, t, p)= ap,*b,t[[
for b := 0 to q- 1 do

C(SHUFFLE (i)) C(i)
c(j) .- c(j) + c(jo)

end//now C(t, p, i) cp, t, 0 <= < hi{ [{In particular, C(t, p, t) cp, t{[
for b :=0 to q- 1 do

C(SHUFFLE) (i)) ,- C(i)
C(jo)) ,- C(j), (jo jq 1)

ena//now C(p, t, O)= c,,,t//
for b := 0 to q -l do

C(UNSHUFFLE (i)) C(i)
ena//now C(0, p, t) c,,,,//

end PSCM1

It is important to note that PSCM1 uses only twice as many unit-routes as does
CCM1. Recall that each PE in a PSC is connected to only 3 PEs while in a CCC each PE
is connected to log n other PEs.
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We now momentarily deviate from the matrix multiplication problem and consider
the related problem of computing C (A B)r (i.e., the transpose of the product).
Surprisingly, we can compute (A B)T using fewer unit-routes (only 8 log n) than used
by PSCM1 to compute A B. The algorithm to compute (A B)T can be obtained from
PSCM1 by replacing lines 15-21 by the following code"

for b := 0 to q- 1 do
C(UNSHUFFLE (i)) - C(i)

end

3.2. PSCs with n2m, 1<= tn <= n PEs. Procedure CCM3 can be adapted to run on
an narn PE PSC in time O(n/m +log n), 1 _-< m <-n. Lines 0-16 and 24-26 are easily
implemented using O(q + h)= O(log n) shuffles, unshuffles, and exchanges (see the
simulation method described in [25]). A straightforward adaptation of lines 17 to 23
would require O(n/m log n) unit-routes as the data routing of lines 20 and 21 would
require O(log n) shuffles and unshuffles, and one exchange each time. A faster
implementation of lines 17 to 23 can, however, be obtained. This requires us to
rearrange the As and Bs so that bits and r (lines 20 and 21 of CCM3) are adjacent.
Define/(/’) to be the following permutation of the binary bits f+h-,’’’, jo in the
representation of any PE index j:

(j) (j2q+h-l’’ jo)

"-/2q+h-1"" f2q-hfq-1"" fq-hj2q-h-lfq-h-lf2q-h-2 jq-h-2" "jqfO.

Observe that line 20 of CCM3 exchanges A values only along bits q h 1,. , 0
while line 21 exchanges B values only along bits 2q h 1, , q. If preceding the loop
of lines 17 to 23, A and B are permuted according to/t, then lines 20 and 21 can be
replaced by

A (j(2)) A (j),

B(j(21+)) B(j).

When the loop of lines 17 to 23 terminates, the C values will have to be permuted
according to/3 -1 to get back the configuration currently obtained by CCM3. So, an
equivalent code for lines 17 to 23 is

17.1’ A (/3 (j)) A (j)
17.2’ B (/ (j)) - B (j)
18’ for k := 1 to n/m-1 do
19’ /:= FUNC (k)
20’ A (j(2t}) A (j)
21’ B (j(2/+ 1)) B (j)
22’ C(j) := C(j) +A (j) B (j)
23’ end
23.1’ C(j),- C((j))

Define the initial state of any register to be 0. If a shuffle is performed on a register
its state becomes q- 1. At this time bit q- 1 is in position 0 (a shuffle transforms from
jq-1 ]o to/’q-2 ]o]-1). Another shuffle changes the state to q- 2. The state q- 1
can be restored now by an unshuffle. Let POSITION ((A,B, C), i,j) be a PSC
algorithm that sets registers A, B, and C in state j if they were originally in state i.
Clearly, this can be done using min {[i-]l, 2q / h -[i-Yl} shuffles or unshufnes. Lines
17.1’ to 23.1’ are now simulated on a PSC by the following code"
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17
18
19
20
21
22
23
24

25
26
27
28
29
30

A (/ (j)) A (j)
B( (i)) ,-

STATE := 0
for k := 1 to n/m- 1 do//shift-multiply-add//

/:= FUNC (k)
call POSITION ((A, B, C), STATE, 2/)
A (i()) A (i) //simulate 20’[[
A(UNSHUFFLE (i)) A (i)
B(UNSHUFFLE (i)) B(i)
C(UNSHUFFLE (i)) C(i)//state becomes 21 +
B(i()) B(i) //simulate 21’//
C (/’) := C(]) +A (j) B (/’)
STATE := 21 + 1

end
call POSITION (C, STATE, 0)
c(j),-- c(t ())

It is easy to see that lines 17 to 30 above will have the same effect on a PSC as will
lines 17.1’-23.1’ on a CCC. We now examine the complexity of lines 17 to 30. The
permutations/3 and/-1 used in lines 17, 18, and 30 fall in the class of bit-permute-
complement (BPC) permutations considered by Nassimi and Sahni [24]. All BPC
permutations on an n2m PE PSC can be performed in O(log n2m) O(log n) time for
1 -< m -< n. In the loop of lines 20 to 28 only line 22 takes more than O(1) time. So, let’s
concentrate on this line. The sequence of bit indices generated by FUNC has the
property

St-1 St-2, t- 1, St-2.

Since St-: ends in 0, when t- 1 in the loop, STATE 0. Hence, the number of
unshuffles, needed by the call to POSITION from line 22 is 2(t- 1) (this assumes that A,
B, and C can be routed in one step). On the next iteration 0 and STATE
2(t- 1)+ 1 2t- 1. So, 2t- 1 shuffles are needed at line 22. Let R (t- 1) be the total
number of shuffles and unshuffles needed in all calls to POSITION from line 22. From
the preceding discussion we obtain the recurrence

2R(t-2)+4t-3,
R(t- 11 O,

t>l,
t=l.

We may solve for R using one of the standard methods to solve recurrence
equations. The solution to our recurrence equation is R(t- 1) q 2e-l-4(t 1)-9
O(2e). Since, in our case, =q-h, the time spent in the loop of lines 20-28 is
0(2q-h) O(n/m). Hence, the overall complexity of the resulting PSC algorithm is
O(n/m+logn).

By choosing a slightly different function for FUNC, the number of shuffles and
unshuffles needed by line 22 can be reduced by a factor of almost 2. This new FUNC
generates the sequence given by

S 1, 0, 1 (instead of 0, 1, 0),

St-1 St-Z, t- 1, St-2, > 2.
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3.3. PSCs with m 2, 1 <= m <=n PEs. From the discussions of 2.4 and 3.2 it
should be clear how to obtain a PSC algorithm of complexity O(n2/m + m(n/m)261)
for the case when m: PEs are available, 1 <_- m <_- n.

4. Applications to graph problems. Efficient parallel algorithms for several graph
problems may be obtained using the matrix multiplication algorithms of 2 and 3. We
discuss some of these in the following subsections. Analyses are provided only for the
case of n 3 PEs. It holds for n3/log n PEs too if CCM3 is used. The following discussion
assumes we are dealing with n vertex graphs. Central to many of these applications is
the repeated squares method of computing the transitive closure of an n n boolean
matrix (i.e., A* (A + I) (((A + i):)2 ,)2) Since this requires log n matrix multi-
plications, transitive closures may be determined in O(log2 n) time on n 3 PE PSCs and
CCCs.

4.1. All-pairs shortest-paths. The all-pairs shortest-path matrix A is an n n
matrix such that A (i, j) is the length of a shortest path from to j in a weighted n-vertex
graph. Let A k (i, j) denote the length of a shortest path from to j going through at most
k intermediate vertices. Clearly, A(i, j)= An(i, j). Let A(i, j) be the length of the edge
(i, j) if (i, j) is in the graph. Let A(i, j) be + if (i, j) is not in the graph and 0 if j. It
should be easy to see that

A k (i, ]) mn {A /2(i, l) + A /2(1,/)}.

Hence, A" may be computed from A by computing A2, A4, As,..., A n. A may be
computed from A/2 using the matrix multiplication algorithm with / substituted for
and min substituted for +. The complexity of the resulting algorithm is O(log2 n) on an
n 3 PE PSC or CCC.

4.2. Radius, diameter and centers. The radius, diameter and centers of a graph
may be trivially computed in O(log n) time (on an n 3 PE PSC or CCC) from the all-pairs
shortest-path matrix (which itself requires O(log2 n) to compute).

4.3. Median and median length. Let d(i, ]) be the length of a shortest path from
to ]. Let h(i) be the weight of vertex i. Vertex v is a weighted median [12] of the graph iff

h(])d(v, ])<-_ h(])d(k, ]), 1 -<_ k _-< n.
i=1 1=1

When h(])= 1, 1 <-] <_-n, vertex v is simply a median of the graph. Yi=l h(])d(v, ]) is
called the weighted median length of the graph. For any graph these quantities can be
easily computed once the shortest-path matrix A has been determined. The sum
Y’ h(])d(k, ]) h(])A(k, ]) can be computed for all k in O(log n) time on an n 3 PE
PSC and CCC. The minimum of these can also be found in this much time.

4.4. Shortest-path, breadth-first, minimum depth and least median spanning
trees. A shortest-path spanning tree with root v is a spanning tree of the given graph.
Its root is vertex v and the distance from v to each vertex j equals d(v, j). (d(v, j) is the
shortest distance from v to j in the graph.) Let R(i, j) be a vertex index such that
R(i,j)=O or A(i,R(i,j))+A(R(i,j),j)=A(i,j). R(i,j)=O iff the shortest to j path
has no intermediate vertices. Otherwise R (i, j) gives a vertex that is halfway along the
to j path (i.e., if there are p intermediate vertices then R (i, ]) is either the [p/2J th or
[p/2]th vertex). Clearly, R(i, j) can be computed in O(log2 n) time along with the
computation of A(i, j). A shortest-path spanning tree rooted at v may be obtained
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from R(i, j) in O(log2 n) time. If R(v, j)=0 then j is a child of v and we may set
PARENT (j)= v. If R(i, j)= k then j is a descendent of k and we need to examine
R(k, ). R(k, j) can be routed to PE (i, j) in O(log n) time. If R(k, j)-0 then set
PARENT (j) k. Otherwise j is a descendent of R (k, j). Since R (i, j) is midway from
to j and R (k, j) midway from R (i, j) to j, etc., we will have to follow down at most log n
R values before discovering the parent of j. Hence, all nodes will know their parents in
the spanning tree in O(log2 n) time plus the O(log2 n) time needed to compute R
initially.

A breadth-first spanning tree can be obtained in the same way as above by starting
with A(i, j) 1 if (i, j) is an edge in the graph, A(i, j) if (i, j) not in the graph and
A(i, j) 0 if j. Note that A (v, j) is the depth (less one) of node j in the breadth-first
spanning tree with root v. Hence, the depth D(v) of the spanning tree rooted at vertex v
is maxj {A(v, j)}+ 1. A minimum depth spanning tree may be obtained in O(log2 n)
time by first computing A as for a breadth-first spanning tree, then computing D (j) for
all j (this takes only O(log n) time). Next, min (D(j)) is computed (again only O(log n)
time is needed). The j value with minimum D(j) is the root of the minimum depth
spanning tree. Now find the breadth-first spanning tree with root j. A shortest median
spanning tree may be found similarly.

4.5. Max gain. Let G be a directed acyclic graph. Let w(i, j)>= 0 be the weight of
edge (i, j} (assume w(i,/’) 0 if (i, j} not in G). The gain on an i, j path is the product of
the edge weights on that path. W is the max gain matrix iff W(i, j) is the maximum gain
for every pair i,/’. Clearly, this matrix may be computed ifi O(log n) time using an
approach similar to that used for the all-pairs shortest-path matrix.

4.6. Topological sort and critical paths. These problems are described in [16].
Given an acyclic directed graph G (V, E), we are required to list the vertices in
topological order. This can be done in O(log: n) time using matrix multiplication. Let
A(i, j) 1 if (i, j) E(G), A(i, j) - if (i, ]) : E(G) and A(i, i) 0 if 0 -<_ _-< n 1.
Use the all pairs shortest path algorithm to compute the lengths of the longest paths.
This requires using max in place of the rain used on the all-pairs shortest-path algorithm.
Set A(0, i)= 0 for all with the property that A(t, i)<-O, 0 <- r < n. Note that now
A(0, i)= 0 for exactly those vertices in G that have no predecessors. Also note that
A(i,i)>O for iff G has a directed cycle. This is not possible as G is acyclic. Let
il, i:, , ik be the values of for which A (0, i) 0. For each/" for which A (0, j) 0,
compute A(0,/’) maxl<__o<__k {A(ip, f)}. This can clearly be done in O(log n) time on
both an/,/3 PE PSC and CCC. A(0, f) gives the length of the longest path from any node
with no predecessors to node f. Now sort the pairs [A(0, j), f], 0=</" < n into non-
decreasing order of A(0, f). This can be done in O(log n) time on an rt

3 PSC or CCC
using t,he algorithm of [25]. If the pair [A (0,/’),/’] ends up in PE (0, k) then vertex j is the
kth vertex in the topological order. The correctness of this statement is easily verified.

The strategy just described can also be used to determine early and late start times
for tasks in an activity on edge network (see [16]). In such a network each edge
represents an activity and has a length associated with it. The early start time for any
activity (i, j) is the length of the longest path in the given directed acyclic graph from the
start vertex, 0, to vertex i. The early start times can easily be found in O(log: n) time
using the first part of the above strategy. Once the early start times are known, the
earliest time the project can be finished is known. From this the latest start times (i.e.,
the time by which an activity must start so that the project length doesn’t increase) can
be computed in another O(log: n) steps. With both the early and late start times known
the critical activities and critical paths are readily obtainable.
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From the discussions of the preceding six subsections it should be clear that, as far
as parallel computing is concerned, matrix multiplication is a very central problem.
Several graph problems may be efficiently solved by a very straightforward application
of matrix multiplication. In the examples we have given, the parallel way to solve a
graph problem is quite different from the methods used in the best known sequential
algorithms. This difference doesn’t always show up. For example, the algorithm of [7]
for the bottleneck (or maximum flow matrix) problem directly translates into an
O(log2 n) parallel algorithm. Similarly the algorithms obtained in [17] for the shortest
cycle problem and the problem of determining if a graph has a triangle directly translate
to O(log2 n) and O(log n) matrix multiplication based parallel algorithms. Several
other graph problems can be trivially solved in O(log2 n) time on a parallel machine
using matrix multiplication. We shall refrain from listing these here.
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ON A GREEDY HEURISTIC FOR COMPLETE MATCHING*

EDWARD M. REINGOLD+ AND ROBERT E. TARJAN:

Abstract, Finding a minimum weighted complete matching on a set of vertices in which the distances
satisfy the triangle inequality is of general interest and of particular importance when drawing graphs on a
mechanical plotter. The "greedy" heuristic of repeatedly matching the two closest unmatched points can be
implemented in worst-case time O(n log n), a reasonable savings compared to the general minimum
weighted matching algorithm which requires time proportional to n to find the minimum cost matching in a
weighted graph. We show that, for an even number n of vertices whose distances satisfy the triangle
inequality, the ratio of the cost of the matching produced by this greedy heuristic to the cost of the minimal
matching is at most lg

3n 1, lg 0.58496, and there are examples that achieve this bound. We conclude
that this greedy heuristic, although desirable because of its simplicity, would be a poor choice for this problem.

Key words, graph algorithms, matching, greedy heuristic, analysis of algorithms

Introduction, We begin with some motivation, the connection of which to our
central topic will become clear later.

The problem of drawing a graph G (V, E) on a mechanical plotter with pre-
specified vertex locations arises in numerous applications [7]. For example, in the
solution of shock wave propagation problems by the finite element method [2] it is
necessary to plot meshes of thousands of nodes in order to check them visually. Other
applications include the drawing of maps, PERT charts, electrical networks, etc. To
draw the graph efficiently we must minimize wasted plotter-pen movement, i.e.,
movement with the pen off the paper so that no line is drawn. The wasted pen
movement can be significant; in [5] the use of a naive algorithm resulted in excessively
long plotting times.

If the graph G contains an Eulerian cycle or path, then it can be drawn with no
wasted pen movement. Moreover, since a graph contains an Eulerian cycle if and only if
it contains no vertices of odd degree and an Eulerian path if and only if it contains two
vertices of odd degree, it is easy to determine whether either case applies and if so then
to use a simple depth-first search algorithm to find the cycle or path [see [10, p. 399]).
If the graph does not contain an Eulerian cycle or path then it contains an even
number n > 2 of vertices of odd degree. In this case, as a simple consequence of the
triangle inequality, the minimum wasted pen movement is achieved by finding a
minimum weighted complete matching of the n vertices of odd degree, and drawing the
graph by traversing the Eulerian cycle that exists when the edges of the minimum
matching are added to the original graph; these edges are traversed with the pen off the
paper during the drawing.

The currently known best algorithm for finding a minimum complete matching in a
weighted graph requires time proportional to n 3 [8]. For our application that is too
inefficient, since n can be fairly large in practice, and we do not want to sacrifice much
(relatively expensive) computer time to save (relatively inexpensive) plotter time.
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However, it would certainly be worthwhile to be able to economize somewhat on
plotter time if it could be done without an excessive amount of computer time.

Thus we arrive at the following problem" Can we find near minimum complete
matchings of n vertices in the Euclidean plane in, say, time O(n log n) or time O(n 2) as
was done for the traveling salesman problem in [11]?

A greedy heuristic. An obvious heuristic is the following "greedy" algorithm:
Repeatedly match the two closest unmatched remaining vertices, resolving any ties in
an arbitrary fashion. For n vertices this can be done in worst-case time O(n 2 log n) by
sorting the n 2 distances. This time bound represents reasonable savings for the
moderately large values of n encountered in practice, but we must consider how far
from minimum the resulting matching will be. The average behavior of this heuristic has
been analyzed in [1].

In examining this question we quickly arrive at the sequence of examples in Fig. 1.
For 2 vertices (t => 1), we have an example in which the minimum matching has cost

:3 9 :3

FIG. 1. Examples in which the greedy heuristic produces matchings (shown in solid lines) costing ngaz-
times as much as the minimal matching (shown in dotted lines) for n 2 Comparable examples are easy to
construct for N even but not a power of 2.

2 ’-1 while the cost of the solution produced by the greedy algorithm can be as bad as
2.3t-1-2t-1 (the solution of the recurrence relation gl 1, gt+l 2gt + 2.3-). The
ratio of the cost of the matching found by the greedy algorithm to the cost of the
minimum matching is

2,_
2. -1 34-(2t) lg23-- 1.

This tells us that the ratio can be as bad as ng- 1 for n vertices (lg 0.58496). We
now prove that it can be no worse.

THEOREM. Given an even number n of vertices, the distances between which satisfy
the triangle inequality, the ratio of the cost ofthe matchingfound by the greedy algorithm to
the cost of the minimum matching is at most

(n) 3 o

20+1--- 1,

where 0 [lg n lg n.
Before proving this theorem we observe that the function 3o/(2+1-1) is close

to 1 throughout the interval 0 <- 0< 1. Its maxima occur at the endpoints 0 =0
and 0 1 when it is exactly 1; its minimum of approximately 0.94650 occurs at 0 lg
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log 3 1 0.43803. The value of 0 0 corresponds precisely to the examples in Fig. 1,
where the number of vertices is a power of 2. For numbers of vertices that are even but
not a power of 2, the bound corresponds precisely to examples analogous to those in
Fig. 1. The bound of this theorem is thus tight for all even n.

Proof. Observe that the union of any two matchings is a collection of disjoint
cycles, the edges of which alternate between the two matchings. (An edge that is in both
matchings forms a "double edge" in the union, that is, a cycle of length two.) Consider
the collection of such cycles that results from taking the union of the minimum matching
and the matching produced by the greedy algorithm for an arbitrary set of n = 2k
vertices. Let these cycles be C1, C2,’", Cm, and let Mi be the sum of the lengths of
the edges from the minimum matching in Ci and Gi be the corresponding sum of the
edges in Ci from the matching produced by the greedy algorithm. Clearly Mi is the cost
of a minimum matching on vertices of Ci and Gi is" the cost of the matching resulting
from applying the greedy algorithm to the vertices of Ci. We want to bound

G1 + G2 +" +Gm MI G1 M2 G.
M +M2 + +M, M+M2+ +M, M M+M2 + + M,, M2

Mm am
M +M2 +" +M. M,.

G G2 Gm

where

cei
M1 +M2 +" + M.’

a > O, Y ai 1. Thus

G+G2+"" "+G
M+M2 +" + M,.

is a weighted average of G/MI, G2/M2," ", G,,/M,, and hence less than the largest
G/M. It therefore suffices to consider the ratio of the two costs when the union of the
two matchings is a single cycle.

Consider the cycle shown in Fig. 2, in which the edge AD is the last edge added
by the greedy algorithm and the edge BC is the penultimate. Linearly scale the edge

LAST EDGE ADDED BY GREEDY ALGORITHM

PENULTIMATE
LENGTH (:1 EDGE ADDE D
VERTICES BY GREEDY

ALGORITHM
LENGTH

n- VERTICES

LENGTH

FIG. 2. Proof of the theorem.

lengths so that the sum of the lengths of the edges along the path A to B to C to D is 1.
Now, define f’(n) to be the smallest fraction of this unit length that can consist of edges of
the minimum matching of the n vertices, for any set of n vertices with the property that
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the union of the optimal match and the greedy match is a single cycle. Before continuing
with an analysis of f(n), observe that the ratio of the matching produced by the greedy
algorithm to the minimal matching is bounded above by

length of AD + (1-f(n))
f(n)

Since the length of AD is at most 1 by the triangle inequality, this ratio is at most

2
(1) f(n---- 1.

We get a lower bound on (n) by developing and solving a recurrence relation. Let
a be the (scaled) length of the sum of the edges from A to B and let/3 be the (scaled)
length of the sum of the edges from C to D. Thus the edge BC has length 1 a -/3. For
the greedy algorithm to choose BC in preference to AB or CD as the penultimate edge
selected, we must have a ->_ 1-a -/3 and/3 -> 1-a -/3, respectively. Since the vertices
B and C are distinct, we also have that 1-a -/3 > 0. Letting 21 be the number of
vertices along the path from A to B and n the number along the path from C to D,
we have

(2) f(n) min {af(t) + f(n t)}
2<=t<_n-2

and, obviously,

f(2) 1.

Since the extremum of a linear function on a polyhedron must occur at a vertex of
the polyhedron [3, p. 154], (2) reduces to

(3)
f(n)= min {f(2), f(4),..., f(n -2),

1/2f(2)+1/2f(n-2), f(4)+f(n -4),..., 1/2f(n 2) + 1/2f(2)},

because the vertices of the polyhedron defined by a >_- 1 a -/3 _-> 0 and/3 >_- 1 a -/3 _->

0 are (0, 1), (31-, 1/2), and (1, 0). We now show by induction that the solution to (3) with

f(2) 1 is

k 1
(4) f(2k)= l- 2 ,,.

This is clearly true for k 1. Suppose (4) holds for all k < t. Using (4) for k < t, we find
the minimum occurs at

f(2t)={ f(t)’ even,

f(t + 1) + f(t 1), odd.

We consider only the case when is even; the case of odd is similar. Let 2u. From
(4) we have

2 2 2( 1 ) 1 2 i 1
f(2t) f(t) f(2u) 1 i [igi]’ 1

/=2 3 3 3 /=2 3 [lg/]"
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Substituting the identity

3 3 i=2 3 [lgi] -- i= 13 rlg i],

we get

f(2t) 1 - 3 rgil rgi3
i=2 i= 13

2u 1
1- E Ilgi]i=23

i=2 3 [lgi],

3i=23

as claimed.
For n 2/-2x, 2/-2> x ->_0, (4) becomes

2-1 1 x
f(n) 1- 2 [lgi] +3/-1i= 3

and it follows that if 0 [lg n] -lg n then

2 o -1/2
f(n) 3o_ nlg.

From (1) the ratio of interest is at most

as desired.

Conclusions. Together with the examples of Fig. 1, the theorem tells us that the
performance of this greedy heuristic is disappointing. Since a similar greedy heuristic
for the traveling salesman problem results in tours costing at most twice the cost of the
optimal tour when the triangle inequality holds [11], we might have hoped for
comparable results for this matching problem. Considering results in 13], we conclude
that this greedy heuristic would in general be a poor choice for the matching problem.

It would be interesting to investigate other heuristics. For example, it may be useful
to construct the Voronoi diagram in O(n log n) time and restrict our attention to its
straight line dual; Drysdale [4] has shown that this approach will not guarantee an
optimal matching, but perhaps it results in a near optimal one. It may also be possible
to develop partition algorithms in the style of [6] or [9] that have good average-case
behavior. Related results can be found in [1] and [13].

Acknowledgments. We are grateful to Klaus Ecker for pointing out a flaw in an
earlier version of the recurrence relation (2).
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FAST, EFFICIENT PARALLEL ALGORITHMS
FOR SOME GRAPH PROBLEMS*
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Abstract. Algorithms for solving graph problems on an unbounded parallel model of computation are
considered. Parallel algorithms of time complexity O(log n) are described for finding biconnected com-
ponents, bridges, minimum spanning trees and fundamental cycles. In the algorithms for finding minimum
spanning trees, bridges, and fundamental cycles, the number of processors used is small enough that the
parallel algorithm is efficient in comparison with the best sequential algorithms for these problems. Several
other algorithms are presented which are especially suitable for processing sparse graphs.

Key words, parallel algorithm, graph algorithm, minimum spanning tree, biconnected component,
bridge, fundamental cycle, computational complexity, graph theory, multiprocessing

1. Introduction. Recent interest in parallel computers has motivated the develop-
ment of parallel algorithms to solve many types of problems. Several different models
of computations are commonly used (e.g., [7], [14], [16]). We focus here on the
unbounded parallel model.

The unbounded parallel model assumes the presence of an unlimited number of
identical processors with independent control; each processor is capable of performing
typical operations such as arithmetic and boolean, and each is identified by a unique
label. These processors have access to a common main memory which contains the
instructions of a program; an instruction may contain a reference to a processor label.
We make the assumption that different processors can obtain the content of one
memory location at the same time; they may store information into different memory
locations simultaneously but no two processors should attempt to change the content
of the same memory location at the same time. We further assume that all the
processors are synchronous in the sense that if a set of instructions is executed in
parallel, then each must be allowed to finish before the next set of instructions is
started. This model conforms with that of the SIMD computer of [7].

Algorithms have been designed, based on this unbounded parallel model, to solve
such problems as evaluating an arithmetic expression [3], [13], [15]; computing matrix
operations [4], [5], [9] and sorting [2], [17]. Recently, graph problems have been
considered. In [10] and [19], algorithms to find the transitive closure of a directed
graph (or Boolean matrix) in time O(log2 n) using O(n 3) processors are presented.
Hirschberg [10] also shows that the connected components of an undirected graph
can be found in time O(log2 n) using O(n 2) processors. This algorithm can be used
to find the transitive closure of an undirected graph in time O(log2 n) using O(n 2)
processors. Other algorithms for finding connected components are found in [19].

In this paper we are concerned with finding parallel graph algorithms which are
not only "fast," but also "efficient" in comparison with sequential algorithms. A
parallel algorithm which solves a given problem in time T(n) using P(n) processors
will yield a sequential algorithm to solve the problem in time T(n).P(n). Thus

* Received by the editors May 25, 1979 and in final revised form January 7, 1981.

" Computer Science Department, North Carolina State University, Raleigh, North Carolina, 27612.
Part of this work was done at the University of Illinois at Urbana-Champaign, where it was supported by
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All logarithms are base two.
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T(n).P(n) is bounded below by the time complexity of the best known sequential
algorithm for the given problem. It is to be expected that, for many problems, there
are parallel algorithms in which T(n) is very small; we show here that T(n) O(log2 n)
for several graph problems. It is more difficult to find parallel algorithms in which we
also have T(n).P(n) very close to the best sequential time complexity of a given
problem. We present techniques for obtaining some parallel graph algorithms, with
T(n) O(log2 n), in which the ratio of T(n). P(n) to the best sequential time is no
more than a power of log n.

Let G (V, E) be an undirected graph with VI -> 2. Define the diameter d of G
to be d =max {d(v, w), 2}, v, w V, where d(v, w) is the length of a shortest path
between v and w, if any, -oo otherwise. Note that d -<-IVI- 1. Throughout this paper
we use n, m and d to mean n VI, m IE’I and d the diameter of G.

In 2, we consider two different algorithms to find the connected components
of an undirected graph; the first runs in time O(log n log d) and uses O(n3/log n)
processors. The second, more suitable for processing sparse graphs, runs in time
O(log2 n) with only O(m + n log n) processors. Section 3 is devoted to developing
efficient algorithms for finding minimum spanning trees in time O(log2 n) using O(n 2)
processors and fundamental cycles in time O(log2 n) with O(n 3) processors. In 4,
we develop two different algorithms to find the biconnected components of a graph;
the first is faster with time complexity O(log2 n) using O(n3/log n) processors, while
the second runs in time O(logZn log k) where k is the number of biconnected
components, with O(mn + n log n) processors. A parallel sorting algorithm of Pre-
parata [17] is used to obtain an efficient parallel bridge algorithm in 5.

2. Connected components. Let G (V, E) be an undirected graph. We are
interested in developing an efficient algorithm to find the connected components of
G in the case when G is dense, i.e., d is small. The algorithm is simple and based on
the following strategy: collapse each node with all of its neighbors and repeat until
no changes occur between two successive stages. It is easy to see by induction that at
the kth step of the above procedure, for each node x, the set N(x) of all nodes
collapsed with x is given by

N(x) {y Id(x, y) --< 2k-1}.

Therefore we need at most [log d] + 1 stages and each stage can be implemented to
run in time O(log n) using only O(n3/log n) processors [12]. Therefore we have the
following.

THEOREM 2.1. Let G be an undirected graph with diameter d. Then it is possible
to find the connected components of G in time O(log n log d) using O(n/log n)
processors.

The same strategy can be applied to finding the transitive closure or the strongly
connected components of a graph with the same time and processor bounds.

We will now present another algorithm based on Hirschberg’s algorithm and
which uses only O(m +n log n) processors. Before, let’s introduce some terms. A
tree-loop [10], [11], is a tree having directed edges leading from vertices in the tree
to their respective fathers (i.e., directed from the leaves toward the root) with one
additional edge from the root to one of its descendants. A club is a tree-loop in which
all vertices other than the root are sons of the root, i.e., the tree has depth one.

Let the elements of V be labelled by the numbers 1,..., n. The main idea of
Hirschberg’s algorithm is to partition each connected component into clubs such that
the root of each club is the vertex of minimal label in that club. At each step of the
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algorithm, the number of clubs is decreased by at least a factor of two. Hirschberg’s
algorithm [11] is given below.

HIRSCHBERG’S ALGORITHM.

Input" adjacency matrix A[n by n].
Output: vector D of length n such that D[x] is the smallest node y reachable

from node x.
1. for all x do D[x]- x
2. for [log n] iterations do

begin
3. for all x do C[x] min {D[y]lA[x, y] 1 and D[y] D[x]}

if none then D[x]
4. for all x do C[x]D[x]min {C[y][D[y] =x and C[y] x}

if none then D[x]
5. for [log n] iterations do

for all x do D[x] DID[x]]
6. for all x do D[x min {D[x ], C[D[x ]]}

end.
At each step of the main loop (2-6), all the nodes in a club will have the same

D value, and this value is the smallest node in this club.
One remark about the above algorithm is that we don’t really have to run the

main loop [log n] times. We can run it until D[x] does not change value in two
successive iterations, in which case we stop. One can easily check that the running
time of the corresponding algorithm is O(log n min {log n, d/2}) which is faster than
the original algorithm if d < 2 log n.

We now turn our attention to the number of processors we need. Instead of using
an adjacency matrix to represent the given graph, we can use an adjacency list matrix
[6], R, which is an n (n- 1) matrix such that, for 1 _-< _-< n, row consists of the
vertices adjacent to vertex in G (the remaining entries are not initialized). Associated
with the adjacency list matrix is an n-vector of end markers EM, where EM[i] contains
the index ] of the last vertex in the ith row of R. Given x, we can find {ylA[x, y] 1}
{yly is in the xth row of R} in constant time using precisely EM[x] processors.
Therefore, step 3 of the above algorithm can be implemented in time O(log n) using
O( EM[x])= O(m) processors.

Step 4 of the above algorithm is a bit harder to implement efficiently since finding
{ylD[y]- x} for all x seems to require O(n 2) processors. Note that, if x is not a root
of a club, then this step does not change the value of D[x]. If x is a root, then the
set {y[D[y]= x} is precisely the set of vertices in the club with root x. To reduce the
number of processors we do the following. Let B be a copy of D and let I be an
n-vector with I[x] x, for all x. We can use Preparata’s algorithm to sort B such
that, whenever we switch the ith and/’th entries of B, we also switch the ith and ]th
entries of I (index sort). This can be done in O(log n) time with O(n log n) processors.
We now know that the vertices of each club are grouped together in L It is easy to
see how to modify a copy R’ of the matrix R such that the xth row of R’ contains
the vertices in the club with root x in time O(log n) with O(n) processors. We can
also construct efficiently the end marker EM such that, for each root x, EM[x] is the
number of vertices in the club with root x. Using these data structures, one can
implement step 4 in O(log n) time using O(m) processors. Therefore, we have the
following theorem.

THEOREM 2.2. Let G be an undirected graph. Then it is possible to find the
connected components of G in time O(log n) using O(m + n log n) processors.
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3. Minimum spanning trees and fundamental cycles. Let G (V, E) be a con-
nected, undirected, weighted graph with V {1, ., n } and weight function w :E -> R.
A minimum spanning tree (MST) of G is a spanning tree T (V, E’) of G with the
property that the sum of the weights of the edges in T is minimal over all spanning
trees for G. Assume for simplicity that the weights of the edges of G are all distinct.
We use an algorithm due to Sollin [1] and the technique of Hirschberg to find a MST
of G in time O(log2 n) with O(n 2) processors.

If the weights of the edges of G are all distinct, G has a unique MST. Sollin’s
algorithm can be described in the following way. Let Go be the graph (V, ). Assume
that for some t_-> 0, the graph Gt has been constructed. If Gt is connected, then Gt is
the MST of G and the algorithm terminates. Otherwise, for each connected component
K of Gt, find the minimum weight edge of G joining a vertex of K to a vertex of a
distinct component of Gt. These new edges are added to Gt to form the graph Gt+l.

Let t* be the smallest value of for which Gt is an MST of G. For 0_-< < t*,
each connected component of Gt/l is the union of at least two connected components
of Gt. The graph Go has n components, thus for O<-t<-_t*, Gt has at most n/2
components. Since Gt. is connected, n/2t* _-> 1 so that t* _-< flog hi. Sollin’s algorithm,
then, consists of, at most, flog n] stages. We show below how each stage can be
implemented in time O(log n) using O(n :z) processors.

Assume inductively that for some t_-> 0, the graph Gt has been constructed and
that for each component K of Gt a vertex of K is chosen as the component representa-
tive. Assume further that we have computed a function rt" V- V so that rt(i) is the
representative of the connected component of Gt to which belongs. (For 0, we
define ro: V V so that ro(i)= i.) Construct Gt+l as follows:

1. If rt(i)-rt(j) for all i, j in V, Gt is the MST of G and the process terminates.
This can be checked in time O(log n) using O(n) processors.

2. Compute a function e:V V so that for each vertex i, e(i)---j iff w(i, j) is
minimal among all vertices j with rt(j) rt(i). For each vertex this involves finding the
minimum of at most n numbers, which can be done in time O(log n) using O(n)
processors. Thus, Step 2 can be done in time O(log n) using O(n :z) processors.

3. For each component K of Gt find the vertex of K for which oo(i, e(i)) is
minimal over all vertices of K. The edges (i, e(i)) found in this way are the edges to
be added to Gt to form Gt+l. As in step 2, this can be done in time O(log n) with
O(n 2) processors.

4. Find a vertex representative for each component of Gt/l and compute the
function rt+l:V V where rt+l(i) is the representative of the connected component
of Gt+l to which belongs. This can be done in time O(log n) with O(n 2) processors,
using the same technique of Hirschberg as shown in 2.

THEOREM 3.1. A minimum spanning tree of a graph G can be found in time
O(log2 n) using O(n 2) processors.

The MST algorithm here is relatively efficient compared to the best sequential
algorithms which require time O(n :z) [18] or O(IEI log log n), [24] for this problem.

It is important to consider the representation of the MST of G found in the
algorithm above. We can easily represent it by its adjacency matrix. Initially the matrix
contains only zeros; whenever an MST edge is found, the corresponding matrix entry
is changed to 1. This, however, is not the most convenient representation of the MST
if our aim is to apply this algorithm to obtain other efficient graph algorithms. For
example, to execute an instruction of the form "for each edge in the MST do X," we
must use O(n 2) processors to look at each entry in the adjacency matrix to determine
which entries correspond to MST edges. This is a waste of processors since only n 1
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edges of G will be MST edges. A more concise representation of the MST is the
following. Let a vertex r of the MST, T, of G be chosen as the root of T. Define a
function F:V- V so that F(r)= r and if r, F(i) is the father of in the tree T
rooted at r. The pair (F, r) defines T and can be computed by minor modifications of
the MST algorithm above [21]. Now an instruction of the form, "for each edge in T
do X," can be executed using O(n) processors, one for each edge (i, F(i)) of T.

If the weights of the edges of the graph G are not all distinct, Sollin’s algorithm
can be modified as shown in [21] so that an MST can still be found in time O(log2 n)
using O(n) processors. In particular, a spanning tree of a connected graph can be
found by considering each edge to have weight one.

We now turn our attention to the problem of finding a set of fundamental cycles
of a connected, undirected graph G (V, E). If H (V,, Eq) and K (Vc, E:) are
subgraphs of G, the symmetric difference of H and K, written H + K, is the subgraph
G’= (V’, E’) of G where

and

E’= {e Eq CI Ek ]edEn ffl E: }

V’= {v VIv is incident with some edge of E’}.

A set of fundamental cycles of G is a collection f of cycles of G with the property
that any cycle C of G can be written as C C1 + C2 + + Ck for some subcollection
of cycles C1, C2, , Ck f.

Let T (V, ET-) be a spanning tree of G. Every edge e 6 E ET- will create a cycle
Ce if it is added to T. It can be shown that the collection {Ce[e E-ET-} is a set of
fundamental cycles of G [20]. In this section we use this fact as the basis for an algorithm
which will find a set of fundamental cycles for G in time O(log2 n) with 0(/7 3)
processors.

We can apply the MST algorithm to G to obtain a spanning tree T which is
represented by a pair (F, r) as described above. The vertex r is considered as the root
of T, and F: V V is defined so that F(r) r and for r, F(i) is the father of in
T. For i, j V, define the youngest common ancestor of and/’, yca (i, j), to be the
vertex v V such that v is an ancestor in T of both and j and v is a descendant of
any other vertex u V which is an ancestor of both and j. Then for i, j V, if (i, j)
is an edge of G which creates a cycle when added to T, C consists of (i, j) and the
two paths in T joining and /" to yca (i,j). Thus a parallel algorithm for finding
fundamental cycles can be outlined below.

FUNDAMENTAL CYCLE ALGORITHM.

1. Find a spanning tree T of G.
2. For each pair i, j V, find yca (i, j).
3. For each pair i, j V, if (i, j) is an edge in G but not in T, find the two paths

joining and j to yca (i, j) in T.
As discussed before, step 1 can be done in time O(log n) with O(n 2) processors;

step 3 basically involves computing powers of F (composition) and it is shown in [21]
that it can be done in time O(log n) with 0(/7 3) processors. Step 2 can be implemented
in the following way. Let H be the directed graph with vertex set V and edges of the
form (i, F(i)) where V and r. Let M be the adjacency matrix of H.

YCA ALGORITHM.
1. Construct M. This can be done in constant time with O(n :) processors, given

(F, r).
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2. Find M*, the transitive closure of M. (O(log2 n) time, O(n 3) processors, as
discussed in 1.)

3. Let R be the relation on V defined by M*, that is for i, V, iR] iff M*(i, ]) 1.
Then R is a partial ordering of V. Compute for each pair i,/" 6 V the minimum, with
respect to R, of the set {kliRk and iRk}. This is yca (i,/’). Since the minimum of n
elements from an ordered set can be found in time O(log n) with O(n) processors,
yca (i, ]) can be computed for all i, j in time O(log n) with O(n 3) processors.

THEOREM 3.2. A fundamental set of cycles of a graph G can be found in time
O(log2 n) using O(n 3) processors.

This algorithm is relatively efficient in comparison with the best sequential
algorithm, which takes time 0(/7 3 for this problem [20].

4. Biconnected components. Given a connected undirected graph G (V, E), a
vertex a V is called an articulation point of G if there are vertices and j in V,
distinct from a, such that every path in G joining and j contains a. The graph G is
biconnected if it contains no articulation points.

For each vertex in V, let Gi be the graph obtained from G by removing i. The
procedure below will determine from the adjacency list matrix R of G, whether G is
biconnected.

Biconnectivity.
1. For 1,..., n, let Ri be the matrix obtained from R by substituting a

sequence of zeros in the ith row and by replacing each occurrence of by zero. This
can be done in constant time with O(m) processors for each i.

2. For 1,. ., n, determine from Ri, if Gi is connected. One of the algorithms
of 2 could be used to execute this step. Gi is connected iff is not an articulation point.

3. Fan-in the results of the n computations of step 2. This can be done in time
O(log n) with O(n) processors. G is biconnected iff each Gi is connected.

Therefore, it is possible to check whether a graph is biconnected in time O(log2 n)
with O(ran + n 2 log h) processors.

A biconnected component of G is a biconnected subgraph, H, of G which is not
properly included in any biconnected subgraph of G. For a subset V’ of V, let

E(V’)={(i,j)EIi, I V’}.

Note that if B (V’, E’) is a biconnected component of G, then E’= E(V’). Thus,
the set of vertices of a biconnected component of G determine it completely.

We will present two different algorithms to find the biconnected components of
a graph. The first, more elegant, runs in time O(log n) with O(n3/log n) processors.
The second, more suitable for processing sparse graphs, runs in time O(log: n log k),
where k is the number of biconnected components, using O(mn + n 2 log n) processors.

We start by describing the first algorithm. Define a relation R on V by iRj if
and only if and/" are in a common biconnected component of G. Note that iR] iff,
for all k V distinct from and j, there is a path between and j in Gk. Therefore,
we have the following lemma [21].

LEMMA 4.1. Let G* (V, E) be the transitive closure of the graph Gk (V, Ek).
For distinct vertices i, i in V, iR] if and only if (i,)E for all k V distinct from
and .

The graphs G/* can be computed, from G, in time O(log2 n) with O(m + n log n)
processors for each Gi. The relation R can be computed from the graphs G* and
this can be done in time O(log2 n) using O(n/log n) processors for each pair i, V.
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(This can be done by partitioning the vertices into [n/log n] sets and letting each
processor do the checking corresponding to each set.) Therefore, the construction of
the relation R requires O(log2 n) time with O(n3/log n) processors. In order to find
the biconnected components, we make use of the following lemma [21].

LEMMA 4.2: Let (i, ) be an edge of G. The set

W(i )"--{k VliRk and kRj},

is the vertex set of the biconnected component of G which contains (i, j).
Using Lemma 4.2, it is easy to see that for each (i, j) e E, we can find the vertices

of the biconnected components containing (i,/’) in constant time using O(n) processors.
To make this step more efficient, we find a spanning tree T of G; since every
biconnected component contains an edge of T, it is only necessary to compute for
each edge of T the biconnected component of G containing it. Therefore this step
could be done with O(n 2) processors. We have proved the following.

THEOREM 4.3. Let G (V, E) be a connected graph. It is possible to find the
biconnected components of G in O(log2 n) time using O(n3/log n) processors.

We now describe the second algorithm. We assume that the graph contains no
bridges, otherwise we can use the algorithm of the next section to find the bridge
connected components of a graph efficiently. This assumption is for simplicity only;
the algorithm could be modified to handle this case. The main idea of the algorithm
is based on the observation that, if we remove the articulation points from G, then
the vertices of each connected component are in the same biconnected component
by Lemma 4.1. Let C be the vertex set of such a connected component and let B be
the vertex set of the biconnected component containing C. The algorithm will first
find the biconnected components with one or two articulation points. We handle this
case by first joining all vertices (in this case at most two) adjacent to vertices in C
and then merging any two such sets which intersect in more than one articulation
point (for more details, see [12]).

We may have one problem, namely the case when there are two articulation
points u and v incident upon C and yet C U {u, v} is properly contained in the vertex
set of a biconnected component. The following lemma handles this problem.

LEMMA 4.4. Let C and B be defined as above and suppose u and v are two
articulation points incident upon vertices in C. Then C kl{u, v} is the vertex set of a
biconnected component iff removing all edges between u and vertices in C disconnects
G and the same is true for v.

Proof. It is clear that C and {u, v} are in a common biconnected component. If
x C U{u, v} is a node which belongs to B, then removing u should not disconnect
x from C.

Based upon the above observations, it is easy to see how to find the biconnected
components with one or two articulation points. We can then remove these biconnected
components and repeat the same process on the connected components of the resulting
graph. There will be at most log k iterations, where k is the number of biconnected
components, as the following lemma shows.

LEMMA 4.5. Given any graph, there are at least as many biconnected components
with zero, one or two articulation points as half the total number of biconnected
components of G.

Proof. We use the notion of the block-cutpoint graph of a graph G [8], denoted
by be (G). Each biconnected component and each articulation point of G is represented
by a vertex of bc (G). Two vertices u and v of bc (G) are adjacent iff u corresponds
to a biconnected component containing v or vice versa. Note that bc (G) is acyclic.
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It is easy to see that the leaves of bc (G) correspond to those biconnected components
with one articulation point. Without loss of generality, we will assume that G is
connected. Let 0 be the set of nodes of bc (G) of degree 2. It is easy to see that the
number of leaves satisfies, _-> ]{v bc (G) :deg v => 3}1. It follows that is at least as
large as the number of biconnected components with more than two articulations.
The result follows from this observation. ]

It is straightforward to check that the above algorithm can be implemented using
adjacency list matrices to run in time O(log2 n log k) using only O(mn +n 2 log n)
processors. We only note that we have to use index sorting at each step to group the
nodes of each connected component together.

THEOREM 4.6. Given any graph G (V, E) with k biconnected components, it is
possible to find the biconnected components of G in time O(log2 n log k) using O(mn +
nZlog n) processors.

5. An efficient bridge algorithm. Let G (V, E) be a connected, undirected
graph, where V={1,..., n}. An edge e of G is a bridge of G if the graph Ge
(V,E-{e}) is not connected. We show here how to use the sorting algorithm of
Preparata to obtain an algorithm for finding the bridges of G in O(log2 n) time with
O(n 2 log n) processors. The best sequential algorithms for this problem have time
complexity O(]EI+ n) [23]. Since the product of time and processor complexities of
the parallel bridge algorithm presented here is O(n 2 log3 n), it is relatively efficient
compared with the sequential algorithm, especially if [E O(n2).

Assume that for a given graph G (V, E), where V {1, , n}, we have found
a spanning tree T represented by a pair (F, r) as described in 3. The following lemma
gives a way to test each edge (i, F(i)) of T, where V and r, to determine whether
it is a bridge of G.

LEMMA 5.1. For a vertex V with r, the edge (i, F(i)) of T is a bridge of G
if and only if (i, F(i)) is the only edge of G which joins a descendent of in T with a
nondescendent of in T. (Note that is a descendent of i.)

Proof. See [21 or [23].
For each V, it is not difficult to see that this test could be implemented using

O(r/2) processors to look at all edges joining descendents of with nondescendents
of i. Then O(n 3) processors would be needed to test for all bridges. The following
procedure is more efficient.

BRIDGE ALGORITHM.

1. Find a spanning tree T, given by (F, r), of G.
2. Construct the adjacency matrix M of the directed graph

H (V, {(i, F(i))[i V, r})

discussed in 3. Compute M*. Although we can use the transitive closure algorithm
for directed graphs to compute M*, we can do it more efficiently (in time O(log n)
with O(r/2) processors) by computing powers of F. See [21] for details.

3. For each V, define bi: V--> {0, 1} for/" V by

1 if (i, j) is an edge of G,/" F(i)
bi(]) and/’ is not a descendent of in T,

0 otherwise.

If bi(])= 1, then for some ancestor k of i, the edge (i, j) is potentially an edge joining
a descendent and an ancestor of k.
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4. For each V, define fi: V- {0, 1} for j V by

if bk(j)= 1 for some descendent k of i,
fi(J)=

0 otherwise.

If fg(j)= 1, there is some k for which the edge (k, ]) is potentially an edge joining a
descendent and a nondescendent of i.

5. For each i V{ (i, F(i)) is a bridge of G iff for every non-descendent j of i,
fi(/) 0.

Steps 1 and 2 can be done in time O(log2 n) using O(n) processors. Step 3 can
be done in constant time and step 5 in O(log n) time using O(n 2) processors. It
remains to show how to implement step 4. We show below how to do this in time
O(logZn) using O(n 2 log n) processors. Thus, the algorithm can be done in time
O(log2 n) using O(rt 2 log n) processors.

In step 4, we must solve, for each vertex, a problem of the form: given a function
b: V {0, 1}, compute a function g V {0, 1}, where for v e V

1
g(v)=

0

if b(u)= 1 for some descendent u of v in T,
otherwise.

We show how to compute, given b and F, a sequence of functions go, gl, g flog (n-l)]

V{0, 1}, where for v V and 0<=t<= flog (n-l)] we have gt(v) 1 if and only if
there is a vertex u V with b(u) 1 and Fk (u) v, where 0 <= k < 2 t. Since the longest
path in T has length at most n- 1, we will have g g[log(n-1)]. We show g can be
computed in this way in time O(log2 n) using O(n log n) processors and, thus, Step
4 of the bridge algorithm can be done in time O(log n) using O(n 2 log n) processors.

Define go: V-{0, 1}for v Vby g0(v)= b(v). Define Yo: V Vby Yo(v)=F(v).
Assume that for some t, with 0 < t-<_ [log (n 1)], the functions gt-1 V {0, 1}

and Yt-l: V- V have been computed so that Yt-(v)= Fa’-l(v). Compute gt and yt
as follows.

a. Let yt be a 1 n array where for v V,

Yt(V)--
0

if gt-a(v)= 1,
otherwise.

(Then a vertex u of V appears in the array yt if and only if there is a vertex w in V
with gt-l(W)= 1 and F2’-(w)= u.) (Note that for each vertex u which appears in yt,
we would like to store a 1 in location gt(u). However, for distinct and j we may
have yt(i)= yt(j). Since we do not allow two values to be stored simultaneously in the
same memory location, we eliminate duplication in the array yt in steps b and c and
then compute gt in step d.)

b. Sort the array yt(1),’", yt(n) in decreasing order to obtain an array
zt(1),’’" ,zt(n).

c. Let st be a 1 n array where st(l) z(1) and for 1,. , n 1,

st(i+l) { 0zt(i + 1)
if zt(i)= zt(i + 1),
otherwise.

(All nonzero entries in the array st are distinct.)
d. For v V, let gt(v) gt-l(V). Then if st(v) O, replace gt(st(v)) by 1. (Note that

gt(D)-- 1 iff gt-(V)= 1 or v appears in the array s,.)
e. For v V let Yt(v)= Yt-l(Yt-(v)).
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The following lemma can be proved by induction to see that the steps above do
compute the function g, as claimed.

LEMMA 5.2. For 0, , flog (n 1)] and v V, the function gt, defined induc-
tively above, has the property that g,(v)= 1 if and only if there is a vertex u V with
b (u) 1 and Fk (u) v, where 0 <- k < 2t.

To compute the function gt from gt-1 and Yt-1, all steps except step b can be
done in constant time with O(n) processors. As for step b, Preparata has shown in
[17] that n numbers can be sorted in time O(log n) using O(n log n) processors.
Thus, g =g flog(n-i)] can be computed in time O(log2 n) with O(n log n) processors.
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INFORMATION DISSEMINATION IN TREES*

P. J. SLATER,f E. J. COCKAYNE$ AND S. T. HEDETNIEMI

Abstract. In large organizations there is frequently a need to pass information from one place, e.g., the
president’s office or company headquarters, to all other divisions, departments or employees. This is often
done along organizational reporting lines. Insofar ,as most organizations are structured in a hierarchical or
treelike fashion, this can be described as a process of information dissemination in trees. In this paper we
present an algorithm which determines the amount of time required to pass, or to broadcast, a unit of
information from an arbitrary vertex to every other vertex in a tree. As a byproduct of this algorithm we
determine the broadcast center of a tree, i.e., the set of all vertices from which broadcasting can be
accomplished in the least amount of time. It is shown that the subtree induced by the broadcast center of a tree
is always a star with two or more vertices. We also show that the problem of determining the minimum amount
of time required to broadcast from an arbitrary vertex in an arbitrary graph is NP-complete.

Key words, algorithm, broadcast center, broadcasting, graph information dissemination, NP-complete,
tree

1. Introduction. Most large organizations are structured in a hierarchical or
treelike fashion (cf. Fig. 1), from the highest levels at the top to lower and lower levels as
one proceeds down the tree. If there is a need to pass some information, e.g., concerning
a new company policy, from one office to all others, then it is natural for this to take
place along the organizational reporting lines. Thus, a president might inform each
vice-president, each of whom in turn informs all subordinate division heads, who in turn
inform their subordinate department heads, etc. In this paper we study the amount of
time it takes for this kind of information dissemination to take place in such treelike
structures.

FIG. 1. Broadcasting in a tree.

More specifically, we define broadcasting from a vertex u to be the process of
passing one unit of information from u to every other vertex in a connected graph
G (V, E). This is accomplished by a series of phone calls over the edges of G, subject
to the following constraints:

(i) each phone call requires one unit of time (to convey the unit of information);
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(ii) a vertex can only call an adjacent vertex; and
(iii) a vertex can participate in only one call per unit of time.
We define the broadcast number of u in G, denoted b(u G) or simply b(u), to equal

the minimum number of time units required to broadcast from u. For example, the
broadcast number of the topmost vertex in the tree in Fig. 1 is six; the integer label by
each vertex indicates the time period during which it receives the information in one
possible calling scheme. We define the broadcast number ofa connected graph G, b(G),
to equal the minimum broadcast number of any vertex in G, i.e.,

b(G)= min {b(u)}.
uV(G)

The broadcast center of G, BC(G), is the set of all vertices having minimum broadcast
number, i.e.,

3C(G) {u[u) (G)}.

In this paper we present an O(N) algorithm for determining the broadcast center
of any tree with N vertices, a by-product of which determines the broadcast number of
any vertex in the tree. It can be seen, incidentally, that the broadcast center of the tree in
Fig. 1 consists of the darkened vertices.

We will also show that the problem of determining b (u) for an arbitrary vertex in an
arbitrary graph is NP-complete.

2. An algorithm for determining the broadcast center of a tree. For a given vertex
u in tree T there is not necessarily a unique calling scheme to broacast from u to all
other vertices in b(u) time units. We can, however, make the following observations. If
(u, v) is an edge in tree T then T(u, v) and T(v, u) will denote the subtrees of T
consisting of the components of T-(u, v) containing u and v, respectively. Let
vl, v2," , vk denote the vertices adjacent to u in T, and assume they are labeled so
that b(Vl; T(vl, u))->b(v2; T(v2, u) ->’’ "-->b(vk; T(vk, u)). Since b(t)i; T(t)i, u)) is the
amount of time it will take to pass the information from vi to the other vertices in
T(vi, u) after a call from u to vi, one expects an optimal calling sequence from u to
consist of first calling v, then v2, then v3, etc. This is, in fact, the case.

The following algorithm, Algorithm BROADCAST, will identify a vertex v in
BC(T). For any other vertex x in V(T), let x’ denote the vertex adjacent to x on the
path from x to v. Algorithm BROA-DCAST will assign a ealue t(x) to each vertex x with
t(x) b(x; T(x, x’)). The final label t(v) for this v in BC(T) will equal b(v) b(G). We
start by letting t(x) 0 for every endvertex x in T. Subsequently we choose one vertex u
at a time to label. At each stage the vertex u chosen to be labeled will be the one whose
label is going to be smallest among the remaining vertices.

As indicated, Algorithm BROADCAST proceeds by iteratively assigning to each
vertex u in a tree T a value t(u), which equals the minimum time required to broadcast
from u to every vertex in a subtree T,. The subtree Tu in question is the largest subtree
of T rooted at u consisting of vertices w which have previously been assigned values
t(w). Having initially labeled with zero all endvertices of T, the algorithm proceeds to
move "inward" and assigns increasing labels to vertices, all but one of whose neighbors
have already been labeled.

ALORITI-IM BROADCAST. To determine the broadcast center BC(T) and the
broadcast number b (T) of a tree T. At any point in this algorithm U is the set of labeled
vertices which have been removed from T, and W is the set of labeled vertices which
have not been removed from T.
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Step O. (Does T have only one or two vertices?)
v(rl <_- 2
then BC(T) - V(T);

if V(T)I 2 then set b (T) - 1
else set b (T) - 0 fi;

STOP
ft.

Step 1. (Label the endvertices of T with 0.)
Let U be the set of endvertices of T;
for each u U do set t(u)-O od;
set T’ - T- U.

Step 2. (Label the endvertices of T’.)
Let W be the set of vertices of T’ with degree in T’ at most one;
for each w W do let u l, u2," , uk be the labeled vertices in U adjacent

to w, ordered so that t(ul) >= t(u2) >=" >= t(uk);
set t(w)maxl<__i<__ {t(ui)+ i}
od.

Step 3. (Select the next vertex to be deleted and the next vertex to be labeled, until
there is only one vertex left.)
While V(T’)I => 2 do

Step 4. (Select the next vertex w.)
Let w W satisfy t(w)= min {t(wi)lwi W};
let v be the vertex adjacent to w in T’.

Step 5. (Delete w from W and T’, and add it to U.)
Set W W-{w};
set U ULl{w};
set T’ - T’-{w}. (Note, if T’ now has one vertex, it is considered to be an

endvertex.)
Step 6. (Label the next vertex.)

If v is now an endvertex of T’
then let v be adjacent to labeled vertices ul, u2, , u in U ordered so

that t(ul) >= t(u) >-... >-_ t(u);
set t(v)- max {t(ui)+ ill -< -< k};
set W- WLJ{v} ft.

od
Step 7. (There is one vertex left.)

Let v be the one vertex of T’;
set b(T) t(v);
let the neighbors of v in T be ul, u2, , u, where t(ul) >= t(u2) >=. >=
t(u);
let j be the smallest integer such that

t(uj) + ] max {t(ui) + ill -< =< k};
set BC(T)-{v, u l, u2,..., uj};
STOP

We observe that, if T is not a star, then the final vertex v identified in step 7 will
have been labeled twicemonce when it became an endpoint of T’, and again in step 6
when T’ has only the one vertex v. The second label for v is no smaller than the first.

Figure 2 illustrates the application of algorithm BROADCAST to a tree T. In Fig.
2(a) U is the set of endvertices of T, each with label "0," and each of the vertices in W
has been labeled. The first vertex which will be moved from W to U (that is, the "W" in
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(a) (b) ___2

o
_2

322 123
123

(c) (d)

FIG. 2. Algorithm BROADCAST applied to tree T.

step 4) is the one with label "1." In Fig. 2(b) we see that t(v) 4 and t(u) 5, and so v is
the next vertex moved to U. In Fig. 2(c) vertex u receives the value t(u) 5. Finally, in
Fig. 2(d) vertex w receives the value 6, and, according to step 7, the broadcast center
consists of vertices u and w.

3. Proof of correctness. The following analysis establishes the correctness of
Algorithm BROADCAST. With v the root of a subtree T of T, b(v, T) denotes the
broadcast number of v in T. Note that, at each step of Algorithm BROADCAST, the
subgraph induced by the unlabeled vertices is connected (i.e., is a subtree of T). In what
follows we assume that V(T)I_->3. The case where [V(T)I-<2 is easily treated in
step 1 of Algorithm BROADCAST.

THEOREM 1. Let vl, v2, Vk be the neighbors of a vertex w in a tree T, and let
Ti T(vi, w), for i= 1, 2,"., k. Suppose further that b(vi, Ti)>= b(vi+, Ti+l), for i=
1, 2,. , k- 1. Then,

b(w, T) max {b (vi, T) + i11 =< _-< k}.

Proof. Suppose that v receives the information from w at time 7r(i),
1, 2,. ., k, where 7r is an element of the symmetric group S of all permutations of
{1, 2,..., k}. Then every vertex in T may be called by time b(v, T)+ 7r(i), and we
deduce that

b(w, T)= min,sk maxl<-_iNk {b (vi, Ti) + zr(i)}}.
It is clear that the permutation zr(i)= minimizes this expression.

LEMMA 2. Suppose in step 5 that Algorithm BROADCAST deletes vertex w from
Wand adds it to U. If v is adfacent to w in T’, then t(w) b(w, T(w, v)).

Proof. This follows immediately from Theorem I and the observation that if u is an
endvertex of T adjacent to vertex w, then t(u) 0 b(u, T(u, w)). [-1
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LEMMA 3. Let Xl and X2 be adjacent vertices in T, and assume b(x1, T(xl, X2))
b(x2, T(x2, xl)). Then

1) b(xl, T) 1+ b(x2, T(x2, x1)), and

2) b(x2, T(x2, Xl)) <- b(x2, T) <- 1 + b(x2, T(X2, Xl)).

Proof. The obvious proof is omitted.
LEMMA 4: If Wl, W2, ", W,,-1 is the sequence of vertices selected in step 4, and Wm

is the one remaining vertex v of step 7, then t(wl) <= t(w2) <-" <- t(wm).
Proof. Suppose 1 =< k < h -<_ m. It suffices to show that t(wk) <= t(Wh). Vertex wk is

chosen during the kth execution of step 4. If wh has received the label t(wh) during one
of the first k- 1 executions of step 6, then t(w) <- t(wh) by definition of how w is
selected in step 4. If wh receives label t(wh) during the/’th execution of step 6, where
j _-> k, it suffices to note that t(Wh)

LEMMA 5. At any stage alter step 1 in Algorithm BROADCAST, some vertex in T’
is in the broadcast center o" T.

Proof. Let w be a vertex selected in step 4 to be removed from the current T’ and
W and added to the current U, and let v be the vertex adjacent to w in T’. It suffices to
show that b (v, T) <- b (w, T).

First we show that b(w, T(w, v)) <- b(v, T(v, w)). If V(T’) {w, v}, then the labels
on w and v are t(w)= b(w, r(w, v)) and t(v)= b(v, r(v, w)) and t(w) <- t(v). Hence
b(w, T(w, v))<-b(v, T(v, w)). Suppose that T’ has an endpoint xe1{v, w}, and let x’ be
the vertex in T’ adjacent to x. By Lemma 4, b(x, T(x, x’)) >- b(w, T(w, v)). But T(x, x’)
is a subtree of r(v, w) implies b(v, r(v, w))>-b(x, r(x, x’)).

Now, by Lemma 3, b(w, T)= 1 + b(v, T(v, w))>-b(v, T).
LEMMA 6. If V and w are adfacent vertices in a tree T and b(w, T(w, v))<-_

b(v, r(v, w)), then for all vertices x o" r(w, v)- w one has b(x, T) > b(v, r).
Proof. By Lemma 3, b(v, T) <- 1 + b(v, T(v, w)). Hence b(x, T) >-

2 + b(v, T(v, w))> 1 + b(v, T(v, w))>-_ b(v, r), as required. [-]

THEOREM 7. Let v be the single remaining vertex in step 7 ofAlgorithm BROAD-
CAST, and let ul, u2," ", ug be the neighbors of v ordered so that t(ui)>-t(ui+l),
1, ., k 1. Let ] be the smallest integer such that

t(ui) +/" max {t(ui) + i}.
l<=iNk

Then Be(T) {v, Ul, u2,’"’, u.} and b(r)= t(ui)+f t(v).
Pro@ By Lemma 5 we know that v BC(T), and from Theorem 1 and Lemma 2,

b(T) max {t(u) + i}= t(ui)+]= t(v).

Let s be a vertex other than v which is not adjacent to v, and let w be the vertex
adjacent to v on the path from v to s. Since w is labeled, by Lemma 4 we have

b(w, T(w, v))<=b(v, T(v, w)).

Hence, by Lemma 6,

b(s, T)> b(v., T),

and s is not in BC(T). Hence, every vertex in B2(T) is adjacent to v.
We next show that for all h, 1 <- h <- ], Uh BC(T).
Let Ti be defined as in Theorem 1. In an optimal series of phone calls originating

from vertex v, Theorem 1 asserts that for 1,. , k, vertex ui is called at time i. Now
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suppose that vertex //h is the originator and v is called first. Vertex v then calls
{ui:i=l,"’,h-l,h+l,’",k} in this sequential order, i.e., vertices
ul, u2,"’, Uh- are called by v at times 2,3,..., h, respectively, and vertices
Uh/x, , Uk are called at times h + 1, , k, respectively. Therefore, for 1 _-< -< h 1,
all of the vertices in T/may be called by time t(ui) + + 1 <- t(ui) + f, by definition of h.
For h + 1 <_- <- k, the vertices in Ti may be called by time t(ui) + <- t(uj) + ], and the
vertices in Th may be called by time t(Uh)+ 1 <= t(Uh)+ h <= t(uj)+]. Hence,

b(Uh, T)<=t(ui)+f=b(t) anduhBC(T),

as asserted.
It still remains to show that for ] + 1 <= h <- k, Uh : BC(T). If Uh is the originator, let

the times at which u 1,’ ’, u. are called from vertex v be tl,. , t., respectively. We
note that each t >-2. By Theorem 1, in order to call all the vertices in kJ 1_-<_-<i T as
quickly as possible from vertex Uh, we can choose ti + 1, 1,...,/’. Hence,
b(Uh, T) >= l + f + b(ui, Ti) l + f + t(uj) > j + t(ui) t(v) b(v, T).

COROLLARY 8. For any tree T, BC(T) consists of a star with at least two vertices.
An interesting by-product of Algorithm BROADCAST is that it can also find the

broadcast number b(v, T) of any vertex v in a tree T.
THEOREM 9. Let v be a vertex in a tree Twhich is not in the broadcast center of T, and

let the shortest distance from v to a vertex x in BC(T) be k. Then b(v, T) k + b(x, T)
k + b(T).

Proof. Clearly b (v, T) -< k + b (x, T).
For the converse, consider the path in T from v to x, and let the vertex adjacent

to x on this path be w (where v w is possible). Clearly b(w, T(w, x))<-_ b(x, T)-1.
This implies that if b(x, T(x, w))<b(x, T) then, since one can broadcast from w by
first calling x, b(w, T) =< 1 + max {b(x, T(x, w)), b(w, T(w, x))}-< 1 + max {b(x, T)- 1,
b (x, T)- 1} b (x, T). Since this implies that w is also in BC(T), which is a contradic-
tion, we have b(x, T(x, w)) b(x, T). But b(x, T(x, w)) b(x, T) implies that b(v, T)
k + b(x, T(x, w))= k + b(x, T).

Consequently b(v, T)= k + b(x, T)= k + b(T).

4. Complexity analysis of Algorithm BROADCAST. In this section we will show
that Algorithm BROADCAST has a worst-case time (and space) complexity of O(N)
for a tree T with N vertices.

Clearly steps 0, 1 and 2 require at most O(N) time. The endvertices of the trees T
and T’ in steps 1 and 2 can be found in O(N) time, and the value of the label t(w)
assigned in step 2 is simply the number of endvertices in T adjacent to w. This number
can be determined by making one pass over the list of vertices adjacent to w. The total
time spent examining such adjacent vertices, for all endvertices of T’ is O(N), since T’
has O(N) edges.

Since at least one vertex w is deleted in every execution of step 5, the test in step 3 is
executed in O(N) time. We must therefore show that the total amount of time spent in
the iteration involving steps 4, 5 and 6 is O(N).

In order to do this we will create two useful data structures. The first data structure
is an array L ofN pointers, the ith of which corresponds to a linked list of vertices w of T
for which t(w)= i. After the value for t(v)= k is determined in step 6, we can, in
constant time, add v to the end of the kth list.

The second data structure is another list NBR of N pointers, the ithof which
corresponds to a linked list of those vertices w which are adjacent to vertex and which
have been given a value t(w). Elements can be added to this list in constant time during
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the execution of step 4. If vertex w is selected in step 4, it can be added to the front of the
NBR(v) list for the vertex v adjacent to w in T’. It is important to note two things about
this addition. First, the value t(w) will be greater than or equal to the value of any other
vertex which has previously been added to v’s list; this is guaranteed by Lemma 4.
Second, we can use the value t(w) to form an updated value of t(v)=
maxl__<i__<k {t(wi)+ i} in constant time. For each vertex v, we maintain a value MAX (v).
As a new vertex w, with value t(w), is added to v’s list, the updated value of MAX (v) is
determined by

MAX (v) max {MAX (v)+ 1, t(w)+ 1}.

For example, if the current values of vertices adjacent to v are 2 2 0, and the
current maximum is 4 from (2 0

(1 3, and if the next value added to v’s list is 3, then the new
maximum is

max {4 + 1, 3 + 1} 5 from
(3 2 2 o)
(1 2 3_4)"

Returning to step 4 we see that in order to select the next vertex w, all we need to do
is either move a pointer to the next element on list L(i) or find the first nonzero element
on the next list L(i + 1), L(i + 2), etc. The total time spent moving these pointers is
clearly bounded by O(N). The total time spent finding the vertices v adjacent to
vertices w is also bounded by O(N) since all we must do is examine, once for each
vertex, the vertices adjacent to it. Thus the total time spent in step 4 is O(N).

Since the set W in step 5 is essentially the set of unexamined items on the lists L(i),
the process of deleting w from W and T’ simply involves moving a pointer to the next
vertex after w on some list. The process of adding w to the set U is simply a matter of
adding w to the front of the list NBR (v). Thus the total time spent in step 5 is O(N).

In step 6 the process of deciding if v is an endvertex of T’ is simply a matter of
knowing whether all, or all but one, of v’s neighbors appear on the list NBR (v). This
can easily be determined in constant time by a simple updating process. The process of
determining the value of t(v) is simply a matter of getting the current value of MAX (v);
and the process of adding v to W involves adding v to the end of list L(MAX (v)). Thus
the total time spent per vertex in step 6 is bounded by a constant.

Consequently, the total time spent executing steps 3, 4, 5 and 6 is O(N).
Finally, we must show that the time spent executing step 7 is bounded by O(N).

The process of getting the last vertex v remaining in T’ is simply that of moving a pointer
to the last nonzero element on a list L(i). The process of determining the smallest
integer ] such that t(u) + ] max l<_i<=k {t(Ui) -t- i} is simply one of moving a pointer down
the list NBR (w) to the first place where the value MAX (ui)+ equals MAX (v). This
clearly requires at most O(N) time.

Thus, Algorithm BROADCAST has worst-case time complexity of O(N). The
space requirements are also O(N) since the lists L(i) and NBR (w) require O(N) words
each, and the tree T can be stored via linked lists also requiring O(N) words.

5. NP-completeness. D. S. Johnson [10] has shown that the problem of deter-
mining b(u) for an arbitrary vertex u in an arbitrary graph G is NP-complete. It is with
his permission that we present this result here. To begin, we state a more general
problem:

BROADCAST TIME. Given a graph G (V, E) with a specified set of vertices
Vo_ V and a positive integer k, is there a sequence

Vo, El, V1, E2, V2,"’" ,Ek, Vk,
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where Vi V, Ei E, Ei consists only of edges with exactly one vertex in Vi-1,

gi gi-1 U {19" ul.) Ei},

and Vk V? (V/is the set of vertices who are informed at time with calls along the
edges in Eg.)

It is easy to show that this general problem reduces to our special case when
IV0] 1. We will first show that the general problem is NP-complete.

We will now relate this broadcast problem to the three-dimension matching (3DM)
problem which has been shown (cf. Garey and Johnson [8]) to be NP-complete.

3DM. Let X xl,. , x,,, Y- yl, , y,, Z Zl,’ Zrn and let M
_

X Y x Z. Does there exist a subset of M of size m such that each pair of elements of
the subset disagree in all three coordinates?

We demonstrate that a solution to the problem 3DM is equivalent to a solution of
the BROADCAST TIME problem with k-4 in a certain graph G which can be
constructed from the setM in time polynomial in m. The graph G is illustrated in Fig. 3.
The independent sets V0, M are equal in size and the bipartite subgraph induced by
these sets is complete. If (xi, yj, zk)M then the corresponding vertex of M in G is
joined to the vertices xi of X, yj of Y and zk of Z. (For illustrative purposes (Xl, y2, z3) is
assumed to be an element of M.) All other edges are precisely as depicted.

x2 Yq Y2 Zm

FIG. 3. The graph G corresponding to the problem 3DM.

Suppose that we have a solution to BROADCAST TIME in G. In order that the
top line of vertices of G may be informed by time 4, [M[-m vertices of V0 must
broadcast in an upward direction during the first time interval. In order that X, Y, Z and
the bottom line may be informed by time 4, the remaining m vertices of Vo must
broadcast to an m-subset S ofM at time 1. The vertices in S must be able to broadcast to
distinct elements of X, Y, Z at times 2, 3, 4 respectively. This is possible if and only if S
is a solution to 3DM.

To show that problem 3DM is reducible to the problem of determining b (u) for an
arbitrary vertex u in an arbitrary graph, we further extend the graph G to the graph H
in Fig. 4. A solution to the broadcast time problem with k 4 and Vo the independent
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vertex set of size m -> 2 in G is equivalent to determining if b (u) m + 5 in H, where H
is obtained from G (in time polynomial in m) as follows. Add to G an independent set
U {ul, u2,’ , u,} and a vertex u a.nd edges (u, ui) for 1 -< -< m Iv01, Append to ul
paths of length 6, 7,. , m + 4, to u2 paths of length 6, 7, , m + 3, , to u,-2

paths of length 6, 7, and to u,_ a path of length 6. Finally, add m edges creating a
matching of U to V0.

Ull

VO

FIG. 4. Supergraph H o/G.

6. Conclusions. Algorithm BROADCAST for finding the broadcast center of a
tree raises a number of questions about the concept of broadcasting, or information
dissemination, in communication networks. In particular, how much faster can broad-
casting take place if one permits either "conference" calls, instead of two-person calls,
or "long distance" calls instead of local, next-neighbor calls? Another class of problems
concerns multiple-message broadcasting.

We initiated the study of the problem of transmitting information from one point to
all points of a graph as quickly as possible in 1977 [4] when we presented most of the
results in this paper. Subsequently much work has been done concerning this problem
[3], [5], [6], [7], [9], [12]. In [4] we used the terms "gossip number" and "gossip center"
rather than broadcast number and broadcast center. We prefer "broadcast" to "gossip"
since gossip problems (for example [1], [2], [11]) involve every vertex (not just one)
initiating a piece of information, and one wants to know how many calls are required
and/or how long it will take before everyone knows everything.

Acknowledgments. The authors extend their thanks to the referees for many
helpful comments and to Terry Beyer for discussions concerning the data structures and
time complexity of Algorithm BROADCAST. We also thank Sandra Mitchell for
helpful early discussions about broadcasting (and two of the authors congratulate the
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Abstract. Deadlocks are very serious system failures and have been observed in existing packet
switching networks (PSN’s). Several problems related to the design of deadlock-free PSN’s are investigated
here. Polynomial-time algorithms are given for some of these problems, but most of them are shown to be
NP-complete or NP-hard, and therefore polynomial-time algorithms are not likely to be found.
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1. Basic definitions. A packet switching network (or PSN) is a directed graph
G (V, E); the vertices V represent processors, and the edges E represent communi-
cation links. We assume messages, called packets, are to be passed between processors.
Each vertex vi has an associated constant bi, the number of buffers at this vertex; a
buffer can hold exactly one packet. Associated with each packet is an acyclic route
/-)1, V2," Vq, which is a path in G. Vertex /)1 is the source, and vq is the destination
vertex for the packet. We assume a fixed routing procedure [KL], where a packet’s route
is determined at the source node. We may also assume that the route of a packet is
included as part of the message in the packet, although in practice the packet could
hold only the source and destination, with each processor in the network responsible
for deducing the next vertex to which the packet is to be passed.

The moves made by the network are of three types:
1. Generation. A vertex v creates a packet which is placed in an empty buffer of v.
2. Passing. A vertex v transfers a packet in one of its buffers to an empty buffer

of vertex w, where v- w is an edge, and the route for the packet has w
following v. The buffer of v holding the packet becomes empty.

3. Consumption. A packet in a buffer of v, such that the destination for the packet
is v, is removed from that buffer and the buffer is made empty.

2. Flow control procedures. A flow control procedure (or controller) for a network
is an algorithm that permits or forbids various moves in the network. One of the key
problems in packet switching is preventing deadlock states, which are situations in which
one or more packets can never make a move. Deadlock states have been observed in
existing packet switching networks [KL]; they tend to occur under near-saturation
input load [GHKP]. For example, in the network of Fig. 1, if all physically possible
moves are permitted by the controller, vl generates bl packets with destination re, v2
.generates be packets with destination v3, and v3 generates b3 packets with destination
Vl, then all buffers of all vertices will be full, no consumption moves can take place
without a pass move, and no generation can take place. It is not hard to see that the
network is deadlocked.
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in part by the National Science Foundation under grant GK-42048, and in part by the U.S. Army Research
Office, under grant DAAG29-75-0192.
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(C)

FIG. 1. A network exhibiting deadlock with a trivial controller.

However, if we use a controller that simply prohibits the generation (but not
passing) of a packet into the last empty buffer at a vertex, then we can show that at
least one empty buffer must exist somewhere in the network. Hence it is always possible
to pass or consume some packet if there are any packets in the network, and this
controller is deadlock-free.

In what follows, deadlock is assumed to occur with respect to some controller; that
is, a controller is deadlock-free (or DF) for a given network if it does not permit this
network to enter a state in which one or more packets can never make a move permitted
by that controller.

3. Fundamental questions. We have assumed that each packet is generated with
a fixed route to travel. There are still several options left to us:

1. Are we looking for a DF uniform controller, one that is deadlock-free for all
networks? The design of optimal DF uniform controllers (optimal in the sense
that they put the least restriction on moves) was investigated in [TU], [TO].

2. Are we designing a particular network with its flow control procedure such that
this network is DF?

We investigate here the complexity of two deadlock-exposure problems related
to the latter approach.

4. Deadlock-exposure problems. We consider the following two problems.
Problem 1. Given a network G and a set of source-destination routes in G, is the

network exposed to deadlock (i.e., is there a deadlock state in G)?
Problem 2. Given a network G and a set of rurce-destination pairs of nodes in

G, is there a corresponding set of routes in G such that the network is not exposed to
deadlock?

The complexity of each of these two problems depends on the given buffer
configuration of G and on the given flow control procedure applied in G. There are
two possible buffer configurations for a network G (V, E). With a general buffer
configuration, each node vi V has an individual buffer capacity bi. With the regular
buffer configuration, the buffer capacity b is the same for all the nodes v V. We
consider four types of flow control procedures. The last three are commonly used in
existing packet switching networks to avoid performance degradation under near-
saturation input load.

(1) Unrestricted flow control. A node v accepts a packet p provided it has at least
one empty buffer available for storing p. There are no other restrictions on packet
moves.

(2) Isarithmic flow control IDA], [PR], [PRH]. With this form of flow control we
have an additional restriction on the total number of packets that might be contained
in the network at any given time. A packet can be generated in a node if this node has
at least one empty buffer and the total number of packets in the network is less than a
certain constant K.
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(3) Individual end-to-end window flow control [GHKP], [KL], [PRH]. As in (1)
with the following additional constraint. Each (vi, v.) source-destination pair has a
constant kij associated with it; kij is an upper limit on the number of packets with source
vi and destination vi. Such a packet can be generated in the node vi provided vi has at
least one empty buffer and there are fewer than ki. such packets in the network.

(4) Regular end-to-end window ]tow control [KL], [GHKP], [[RH]. As in (3) but

kii is the same constant k for all the (vi, vi) source-destination pairs.
The complexity of Problem 1 and Problem 2 under the different buffer configur-

ations and different flow control procedures is summarized in Table 1 and Table 2.

TABLE 1
Time complexity of Problem 1.

individual regular
Flow control applied unrestricted isarithmic: K end-to-end: kij end-to-end: k

General buffer conf.: Polynomial: Polynomial: NP-complete NP-complete
bi O(IEI) 0(I V31)

Regular buffer conf.: Polynomial: Polynomial: NP-complete NP-complete
b O(IEI) o(Ivl)

TABLE 2
Time complexity of Problem 2.

individual regular
Flow control applied unrestricted isarithmic: K end-to-end: kii end-to-end: k

General buffer conf.: NP-complete NP-complete NP-hard NP-hard

bi (in NP?) (in NP?)

Regular buffer conf.: NP-complete NP-complete NP-hard NP-hard
b (in NP?) (in NP?)

THEOREM 1. If the network G V, E) has a general buffer configuration and the
unrestricted flow control is applied, then Problem 1 is solvable in O([EI) time.

Proof. It is easy to verify that such a network has a deadlock state if and only if
the routes in this network form at least one cycle. A simple breadth-first-search along
the routes of G may be used to detect such a cycle.

COROLLARY 1. If the network G V, E) has a regular buffer configuration and
the unrestricted flow control is applied, then Problem 1 is solvable in O(IEI) time.

Proof. Immediate consequence of Theorem 1.
THEOREM 2. If the network G V, E) has a general buffer configuration and the

isarithmic flow control (with constantK) is applied, then Problem 1 is solvable in O([ VI a)
time.

Proof. In such a network G there is a deadlock state if and only if the routes of G
form at least one cycle such that the sum of the buffer capacities of the nodes along
this cycle is at most K. A slight modification of Warshall’s algorithm can be used to
determine the minimal cycle formed by the routes in G (minimal in the sense that the

In the formulation of these problems both the buffer configuration and the flow control procedure,
with the corresponding constants, are given as part of the input.
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sum of the buffer capacities of the nodes along this cycle is minimal with respect to all
the other cycles). [q

COROLLARY 2. If the network G V, E) has a regular buffer configuration and
an isarithmic flow control is applied, then Problem 1 is solvable in O( VI3) time.

Proof. This is a particular case of Theorem 2. q
In [VA] an exponential-time algorithm is given to solve Problem 1 when G has a

general buffer configuration and an individual end-to-end window flow control is
applied. We now prove that, in this case, Problem 1 is NP-complete and, consequently,
a polynomial-time algorithm is not likely to be found.

THEOREM 3. If G has a general buffer configuration and an individual end-to-end
window flow control is applied, then Problem 1 is NP-complete.

Proof. Let G (V, E) be a network with a general buffer configuration and an
individual end-to-end window flow control. In Problem 1 we ask if such a network has
a deadlock state. This problem is in NP; we can guess a deadlock state and check its
consistency with the given buffer configuration and end-to-end window flow control in
polynomial time. We now show how to reduce (in polynomial time) the CNF-
satisfiabilit problem [AHU] to Problem 1. Let F FIF2. Fq be an expression in
CNF, where the Fi are the factors. Let Xl, x2,’ , xn be the literals in F. We construct
the following network G (V, E). The nodes V of G are given by the set

V {v } U {Fil for 1 _-< ] _-< q } U {x, 2g, w,, for 1 _-< _-< n }.

The edges of G are given by the following set

E {(v, F)I for 1 <- j _-< q}

U {(w, v), (#,, v)l for l<-i<-n}

[.J {(Xi, Wi), (.i, li), (wi,i)l for l <--i<--n}

[,_J {(F/., xi)[ xi is a variable in F/}
[..J {(El, i)l )i is a variable in Fi}.

The buffer capacity is b 1 for all the nodes except for the node v which has q buffers.
The routes in the network are the following:

1. (v,F/) for l<-j<-q.
2. (Xi, Wi, i, li), (We, IA) and (li, U) for 1 <=i<-n.
3. (F., xi) if xi is a variable in F..
4. (F/, $i) if .i is a variable in F..

The upper limit on the number of packets in each of these routes is set to one (this is
a case of regular end-to-end window flow control with kii k 1). We claim that this
network has a deadlock state if and only if F is satisfiable. Suppose F is satisfiable. In
each node F we generate a packet whose destination is the node xi or .’i where xi 1
or i 1 is a variable assignment that makes the factor F true. In each such xi or
node we put one packet whose route is (xi, wi, $i, i). The next node in the route of this
packet is either wi or i, and in such a node we generate a packet whose destination
is the node v. Finally, in v we generate q packets, one in each of the (v, F.) routes. A
variable assignment that satisfies F cannot include both xi 1 and $i 1; therefore no
(Xi, Wi, i, li) route has a packet in both the Xi and )i nodes; this is consistent with
the end-to-end window flow control upper limit of one packet per route. It is easy to
check that the network is in a deadlock state. Suppose now that the network has a
deadlock state. Then there is at least one cycle of deadlocked packets in this state.
Therefore, the node v must be in the deadlocked set of nodes, and there are q packets
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filling all the buffers of v. Since we may have at most one packet in each of the (v, F.)
routes it must be that each (v, F.) route has exactly one packet stored at the source node
v. Therefore, each node F. must also be deadlocked and must contain one packet whose
destination is a node of the form xi or $i. Then, this xi or $i node must also be
deadlocked and its buffer must contain a packet in the (xi, wi, $i, #i) route. Since the
upper limit on the number of packets in this route is one, it is not possible that both xi
and $i are in the deadlocked set of nodes (therefore there can be no two F. and Fk
nodes with packets whose respective destination is xi and i). Let X be the set of xi
and i destination nodes for the packets in the F. nodes. It is now clear that assigning
the value 1 to all the variables in X is a consistent variable assignment which satisfies
all the Fj factors. [3

An example of a CNF Boolean expression, F= (Xl+X2)(il+X3), of the corres-
ponding network, of a variable assignment X satisfying F, and of the corresponding
deadlock state are shown in Fig. 2.

FIG. 2. Network deadlock corresponding to a satisfiable CNF Boolean expression.

In this case F1 (Xl -- x2) and F2 (il -[- x3). The corresponding network has the
following routes"

1. (F1, Xl), (F1, x2), (F2, $1) and (F2, x3).
2. (xi, wi, $i, i), (wi, v) and (i, v) for i= 1, 2 and 3.
3. (v, F.) for i= 1 and 2.

All the nodes have a buffer capacity of one packet except the node v which has a buffer
capacity of two packets. All the routes have an end-to-end window flow control of one
packet per route. A variable assignment satisfying F is given by X {x2, ix}, (i.e.,
x2 il 1). A corresponding deadlock state is the following. We have two packets in
v with destination F1 and F:, a packet in F1 with destination x, a packet in F2 with
destination $1, a packet in x2 with destination w., a packet in $1 with destination if1,
a packet in w: with destination v and a packet in 1 whose destination is also v.

COROLLARY 3. If the network G has a general buffer configuration and a regular
end-to-end window flow control is applied, then Problem 1 is NP-complete.

Proof. In the proof of Theorem 3, the window flow control constant was globally
set tok0.=k=l. [3

THEOREM 4. If the network G has a regular buffer configuration and a regular
end-to-end window flow control is applied, then Problem 1 is NP-complete.

Proof. The reduction of the CNF-satisfiability problem to Problem 1 given in
Theorem 3 can be modified in the following way. Each node in G is now provided with
q buffers, there is an additional set of q 1 nodes, {YI for 1 -<_ f -<_ q 1}, and except for
the node v, all the nodes w V have an additional set of q 1 edges directly connecting
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them to the y. nodes forming q 1 (w, y.) new routes. Also, for each node y. (1 =< j <- q
1) there is an additional set of q edges directly connecting y. to the nodes Fk, for
1 <-- k <- q, thus forming q (yj, Fk) new routes. The end-to-end window flow control upper
limit for all the routes is still one packet per route. We first prove that if F is satisfiable
then the network has a deadlock state. We begin by constructing the network state
described in the first part of Theorem 3. Then, in each node w (w # v) that contains
exactly one packet in this state, we generate q- 1 additional packets, one packet for
each of the new (w, y.) (1 -</" =<q- 1) routes. Also, in each node y. (1 _<-] _-<q- 1) we
generate q packets, one for each one of the new (yi, F) (1 <= k <= q) routes. This is a
deadlock state. We now show that if the network has a deadlock state then F is
satisfiable. If the network has a deadlock state then there is at least one cycle of
deadlocked packets. Therefore, a node

w {v} U {y;I 1 -<_j -<_q 1}

must be in the deadlocked set of nodes, and there are q packets filling all the buffers
of this node. Since we may have at most one packet in each of the (w, F.) routes
(1 <= j <= q) it must be that each (w, F.) route has exactly one packet stored at the source
node w. Therefore, each node F. must also be deadlocked and must contain q packets.
Each one of the (F., y routes (1 <- k <_- q 1) can have at most one packet, so F. must
contain at least one packet whose destination is a node of the form xi or Yg. Then this
xg or Yi node must also be deadlocked and its buffers contain q packets; at least one
of these packets must be in the (xi, wi, g, vg) route. From here the proof is identical
to the last part of the proof of Theorem 3. 71

COROLLARY 4. Ij the network G has a regular buffer configuration and an
individual end-to-end window flow control is applied, then Problem 1 is NP-complete.

Proof. Theorem 3 shows that the problem is in NP and Theorem 4 shows that the
problem is NP-hard. 71

We now consider the complexity of finding deadlock-free routes in a network
under several buffer and flow configurations.

THEOREM 5. If a network G has a regular or general buffer configuration and the
unrestricted flow control is applied, then Problem 2 is NP-complete.

Proof. We are given a network G (V, E) and a set of source-destination pairs
of nodes with an unrestricted flow control, and we ask if there is a corresponding set
of routes such that G does not have a deadlock state. This is equivalent to the following
question. Is there a corresponding set of routes that do not form a cycle in G? This
latter problem is NP-complete. In fact, we can guess a cycle-free set of routes and check
the correctness of our guess in polynomial time, and therefore the problem is in NP.
We now show that the CNF-satisfiability problem can be reduced to it in polynomial
time. Let F FIFz Fq be a CNF expression, and Xl, x2,’.’, xn be the literals in F.
We construct the following network G (V, E). The nodes of G are given by the set

V {s}U{F. for l<=j<=q}U{xi,i, wi, @il for l<-i<=n}.

The edges of G are given by the set

{(S, Xi) (S, i)l for 1 =< --< n}

U{(Xi, Wi) (i, i)l for 1 <=i _<--n}

U{(wi,’i), (’i, Xi)l for l<-i<=n}

U{(wi, f])lx is a variable in F}
U {(vi, F.)l i is a variable in F}.
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The source-destination pairs are the following"
1. s-F. for l=</’=<q.
2. wi -.$i and 1 Xi for 1 _<- =< n.
We claim that F is satisfiable if and only if these source-destination pairs have a

corresponding cycle-free set of routes in G. We first note that the only routes connecting
wi with $ and with x are the direct ones using the (w, $i) and (i, x) edges.
Suppose F is satisfiable, and let X be a consistent set of variables that, when all are set
to 1, satisfy F. We can give the following cycle-free set of routes. The routes for the
s-F. pairs are (s, Xi, Wi, El. if X cT.X and Xi is in F., or (s, i, i, .Fj) if .i E X and )i is
in F/. The routes for wi-$i and i-xi are respectively (wi, $i) and (i, xi). Suppose
this set of routes forms a cycle; the only cycles in G are of the form (xi, wi, $i, i, xi),
which includes both the (xi, wi) and ($i, i) edges. Then, both xi and $i must be in
the set of variables X contradicting the consistency of X. Conversely, let R be a
cycle-free set of routes corresponding to the given set of source-destination pairs. We
showed that R must contain the (We, $i) and (i, xi) edges for 1-<i =<n. Since R is
cycle-free, it cannot contain both the (xi, wi) and ($i, i) edges for any 1-< =< n. For
each destination F. (1 <= ]-< q) there must be a variable xi or i (and a corresponding
(xi, wi) or ($i, i) edge) such that the route from the source s to F. passes through this
variable. Let X be the set of these variables when f ranges from 1 to q. It is now clear
that X is a consistent set of variables that satisfies all the Fj factors. I-I

Let F be the satisfiable CNF Boolean expression and X be the set of variables
defined in the example given for Theorem 3. The corresponding network G and the
cycle-free set of routes are illustrated in Fig..3. The routes are (s, x2, w2, F1),
<S, 1, 1’1, F2), (wi, i) and (l)i, Xi) for i= 1, 2, 3.

X3

FIG: 3. The network G and a cycle-free set of routes.

THEOREM 6. If the network G has a regular or a general buffer configuration and
the isarithmic flow control (with constant K) is applied, then Problem 2 is NP-complete.

Proof. The unrestricted flow control is equivalent to an isarithmic flow control
where the constant K is larger than the total buffer capacity of the nodes of the network.
Then, Problem 2 with an unrestricted flow control can be reduced (in polynomial time)
to Problem 2 with an isarithmic flow control, and therefore this latter problem must
be NP-hard. Also, if we are given a network G with the isarithmic constant K and a
set of source-destination pairs, we can guess a corresponding deadlock-free set of
routes in G and then check in polynomial time (using Warshall’s algorithm) that the
sum of the buffer capacities of the nodes along the minimal cycle is larger than K.
Therefore, Problem 2 with an isarithmic flow control is in NP. E!
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THEOREM. 7. If the network G has a regular or general buffer configuration and a
regular or individual end-to-end ]:low control is applied, then Problem 2 is NP-hard.

Proof. The unrestricted flow control is equivalent to a regular or individual
end-to-end window flow control where the corresponding upper limits k or k;. are large
enough (for example if they exceed the total buffer capacity of the network). Then,
Problem 2 with the unrestricted flow conirol (shown to be NP-complete in Theorem
5) reduces in polynomial time to Problem 2 with end-to-end window flow control. [3

We do not know whether the problems shown to be NP-hard in Theorem 7 are in
NP or not.

5. State reachability, reachable deadlock states. Let G be a network and F be
the flow control procedure applied in G. We say that a network state S of G is reachable
with respect to F if, starting with an empty network G, there is a sequence of network
moves allowed by F that results in the state S in G. We may be interested only in
deadlock states that are reachable from an initially empty network G and redefine the
notion of "exposure to deadlock" as follows. A network G is exposed to deadlock if G
has a reachable deadlock state. An example of a non-reachable deadlock state S is the
following.

Consider the network G (V, E), where

V: {v, v, v}, " {Iv, vt, ivy, v), v, v)},

and each node has only one buffer. The routes in G are rl:
and r3: (/93, vl, v2), and the unrestricted flow control is used in G. Let S be the following
network state. A packet pl is in the node v2 along the route rl, a packet p2 is in the
node v3 along the route r2 and a packet p3 is in the node Vl along the route r3. It is easy
to check that S is a deadlock state which is not reachable from an initially empty
network G.

We investigated the complexity of Problem 1 and Problem 2 under the new
definition of deadlock exposure; the results, quite similar to previous ones, are
summarized in Table 3 and Table 4.

TABLE 3
Time complexity o]: Problem with the reachable deadlock deCinition.

individual regular
Flow control applied unrestricted isarithmic: K end-to-end: kii end-to-end: k

General buffer conf.: Polynomial: NP-hard NP-hard
bi O(l’ I) (in NP?) (in NP?)

Regular buffer conf.: Polynomial: NP-hard NP-hard
b O([EI) (in NP?) (in NP?)

TABLE 4
Time complexity of Problem 2 with the reachable deadlock definition.

Flow control applied
individual regular

unrestricted isarithmic: K end-to-end: k;. end-to-end: k

General buffer conf.: NP-complete

bi
NP-hard NP-hard NP-hard
(in NP?) (in NP?) (in NP?)

Regular buffer conf.: NP-complete
b

NP-hard NP-hard NP-hard
(in NP?) (in NP?) (in NP?)
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Let S be a state of network G (V, E). We define the precedence graph G’ o[ G
relative to S as follows. G’= (V, E’) is a directed graph where (v, w) is an edge in E’ if
and only if when the network is in state S, there is a packet in w whose route passes
through the node v before reaching the node w.

LEMMA 1. With the unrestricted flow control procedure, i] the precedence graph G’
o]: a network G relative to a state S is acyclic then the state S is reachable.

Proof. The algorithm given in Fig. 4 shows how the state S can be reached in G.

begin
topologically sort the directed acyclic graph G’;
comment After this node sorting if (vi, v.) is an edge of G’ then </’;
for j  -Ivl step 1 until 1 do

begin
successively generate and move along their respective routes, from their
source node to the node vj, all the packets that are in the buffers of v. when
the state S is reached;

end
end

FIG. 4. Algorithm ]:or reaching the state S.

Consider the inner loop of the algorithm. Suppose a packet with destination v. cannot
be generated or passed to an intermediary node vi along its route, it must be that

1. the buffers of vi are full of packets, so >/’;
2. (vi, vi) must be an edge of the precedence graph G’, therefore <j; the

contradiction is obvious. 1
A cyclic deadlock state of a network G is a state in which there exists a cycle of

nodes in G such that the buffers of each node in the cycle are full of packets waiting
to be passed to the next node in the cycle, and the nodes which are not in this cycle are
empty.

LEMMA 2. With the unrestricted flow control procedure, if a network G has a
deadlock state S then it has a reachable cyclic deadlock state.

Proof. If G has a deadlock state S then the routes of G contain a cycle, and
therefore G has a cyclic deadlock state So. According to Lemma 1, if So is not a
reachable state then the precedence graph G’ of G relative to So must have at least
one cycle V - v2 - v l. We can construct a cyclic deadlock state in the following
way (without regard for reachability). We begin with the empty network G and we
consider the edge (Vl, v2) of the cycle. This edge is in the precedence graph and, by
definition, there must be a packet in v2 whose route r passes through the node v before
v2. We successively fill the buffers of V and of all the intermediary nodes along the
route r up to (but not including) v2 with packets with route r. We do the same with the
edge (v2, v3) and the successive edges of the cycle until we reach a node whose buffers
are already full of packets2 and a cyclic deadlock $1 is thus formed. Note that $1 involves
a subset of the routes in So, and the deadlocked packets in each such route are one step
nearer to the source of the route than they were in the state So. If S is also not a
reachable deadlock state then the corresponding precedence graph contains a cycle
and the same process can be repeated to yield a new cyclic deadlock state $2 (and so
on). This process eventually results in a reachable deadlock state. In fact, let be the

This eventually occurs since/91 /92 /91 is a cycle; note that it may occur before all the edges

in the cycle are considered.



COMPLEXITY RESULTS, DEADLOCK-FREE NETWORKS 711

length of the longest route in G, then after at most new nonreachable cyclic deadlock
states generated by this process we have a cyclic deadlock state where every deadlocked
packet is at the source of its route. Such a deadlock is reachable (the corresponding
precedence graph is acyclic).

THEOREM 8. If the network G V, E) has a general or regular buffer configuration
and the unrestricted flow control is applied, then Problem 1 (with the new definition of
deadlock exposure) is solvable in O(IEI) time.

Proof. If such a network G has a reachable deadlock state then the routes in G
form at least one cycle. If the routes of G form a cycle then G has a cyclic deadlock
state and, by Lemma 2, it has a reachable deadlock state. So, G has a reachable
deadlock state if and only if the routes in G form at least one cycle. An O(IEI) time
breadth-first-search along the routes of G can be used to detect such a cycle. !-1

THEOREM 9. If the network G V, E) has a regular buffer configuration and a
regular end-to-end window flow control is applied, then Problem 1 (with the new
definition of deadlock exposure) is NP-hard.3

Proof. It is easy to check that the polynomial time reductions of the CNF-
satifiabilit problem to Problem 1 given in the proofs of Theorem 3 and Theorem 4
involve reachable deadlock states.

COROLLARY 5. If the network G V, E) has a general or regular buffer configur-
ation and an individual or regular end-to-end window jqow control is applied then
Problem 1 (with the new definition of deadlock exposure) is NP-hard.

Proof. Immediate consequence of Theorem 9. I1
Note that, at the present time, nothing is known about the complexity of Problem

1 (with the new definition of deadlock exposure) when an isarithmic flow control
procedure is applied.

THEOREM 10. If a network has a regular or general buffer configuration and the
unrestricted flow control is applied then Problem 2 (with the new definition of deadlock
exposure) is NP-complete.

Proof. We are given a network G (V, E) and a set of source-destination pairs of
nodes with an unrestricted flow control, and we want to determine if there is a
corresponding set of routes such that G does not have any reachable deadlock state.
In the proof of Theorem 8 we showed that, with any set of routes, G does not have a
reachable deadlock state if and only if these routes do not form a cycle. Then our
problem is to. determine if there is a set of routes that do not form a cycle. This problem
was shown to be NP-complete in the proof of Theorem 5.

COROLLARY 6. If the network G V, E) has a general or regular buffer configur-
ation and an isarithmic or an end-to-end window flow control is applied then Problem 2
(with the new definition of deadlock exposure) is NP-hard.

Proof. The NP-complete problem of Theorem 10 can be easily reduced to the
problems stated in the corollary: isarithmic and end-to-end window flow control with
large constants are equivalent to unrestricted flow control.

[AHU]

[DA]
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THE NP-COMPLETENESS OF SOME EDGE-PARTITION PROBLEMS*

IAN HOLYERS"

Abstract. We show that for each fixed n >-3 it is NP-complete to determine whether an arbitrary
graph can be edge-partitioned into subgraphs isomorphic to the complete graph K.. The NP-completeness
of a number of other edge-partition problems follows immediately.

Key words, computational complexity, NP-complete problems, edge-partition problems

1. Introduction. Many graph theory problems have been shown to be NP-
complete and so are believed not to have polynomial time algorithms. Garey and
Johnson [1] give an account of the theory of NP-completeness, a list of known
NP-complete problems and a bibliography of the subject. In particular, they list several
NP-complete vertex-partition problems [1, p. 193] including vertex-partition into
cliques [2] and vertex-partition into isomorphic subgraphs [3].

In this paper, we consider some similar problems for edge-partitions. We define
the edge-partition problem EPn as follows. Given a graph G (V, E), the problem
is to determine whether the edge-set E can be partitioned into subsets El, E2," in
such a way that each Ei generates a subgraph of G isomorphic to the complete graph
Kn on n vertices. Our main result is that the problem EPn is NP-complete for each
n_->3. From this we deduce that a number of other edge-partition problems are
NP-complete.

In order to show that EP is NP-complete, we will exhibit a polynomial reduction
from the known NP-complete problem 3SAT which is defined as follows. A set of
clauses C {C, C2, , Cr} in variables u, U2, Us is given, each clause C consist-
ing of three literals l,, li,., 1,3 where a literal l, is either a variable ug or its negation
tk. The problem is to determine whether C is satisfiable, that is, whether there is a
truth assignment to the variables which simultaneously satisfies all the clauses in C.
A clause is satisfied if one or more of its literals has value "true".

2. The main theorem. Our first task is to find a graph which can be edge-
partitioned into K,’s in exactly two distinct ways. Such a graph can be used as a
"switch" to represent the two possible values "true" and "false" of a variable in an
instance of 3SAT.

For each n ->_ 3 and p _>- 3 we define a graph H,., (V.p, En.p) by

Vn,p’-" X’--(Xl,’’’,Xn)-p Xi-O,
i=1

En.p {xy: there exist i, j such that Yk Xk for k # i, j and Yi Xi + 1, Yi Xi- 1}

where the equivalences are modulo p. Note that H.p can be regarded as embedded
in the (n 1)-dimensional torus T"-1 S S . $1, and that the local structure
of H.,. is the same for each p (see Fig. 1). The properties of H... are given in the
following lemma.

LEMMA. The graph Hn.. has the following properties:

(i) The degree of each vertex is 2(n_

* Received by the editors July 18, 1979, and in final form January 7, 1981.

" University Computer Laboratory, University of Cambridge, Cambridge, England. This work was
supported by the British Science Research Council.
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(0,0,0) (1 ,-1,0) (2,-2,0) (3,-3,0)

(ii)

FIG. 1. (i) H3,3 embedded in the (2-dimensional) torus. Opposite sides are identified as shown.
(ii) The local structure of H4,,. The edges of a single K4 are shown.

(ii) The largest complete subgraph is Kn, and any K3 is contained in a unique Kn.
(iii) The number of K,’s containing a particular vertex is 2n.
(iv) Each edge occurs in lust two K’s.
(v) Each two distinct K,’s are either edge-disfoint or have ]ust one edge in common.

(vi) There are lust two distinct edge-partitions of H,,p into Kn’s.
Proof. (i) By translational symmetry we need only consider 0 (0,..., 0). This

is adjacent to (1,-1, 0,..., 0) and the distinct points obtained from it by permuting

(n) of these.its coordinates (0, 1, -1 are distinct modulo p as p >= 3). There are clearly 2
2

(ii) By translation and coordinate permutation we may assume that a largest
complete subgraph contains the vertices 0=(0,...,0), (1,-1,0,...,0) and
(1, 0,-1, 0,..., 0). It is then forced to be the standard K,, which we call K and
whose vertices are

(o, o, o, ..., o)

(1,-1, 0,... ,0)

(1, 0,-1,...,0)

(1,0,0, ...,-1)

(iii) The K,’s containing 0 are obtained from K and its inverse -K by cyclic
permutation of the coordinates. Thus there are 2n of them.

(iv) We need only consider a particular edge containing the vertex 0 and check
that it is contained in just two of the K,’s given in (iii).

(v) If two K,’s are not disjoint, we may assume that they have vertex 0 in
common. We may then use (iii) to check that they have just one more vertex in common.

(vi) The edges containing 0 can be partitioned in at most two ways, and these
extend to the whole of H,p. All the K’s are obtained from K or -K by translation
One edge-partition consists of the translates of K, and the other consists of the
translates of -K.

We now make the following definitions. The T-partition of H,,, (corresponding
to logical value "true") consists of the translates of K, and the F-partition (correspond-
ing to "false") consists of the translates of -K. Two K,’s in H,, are called neighbors
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if they have a common edge. A patch is a subgraph of Hn,, consisting of the vertices
and edges of a particular Kn and of its neighbors. It is a T-patch if the central K.
belongs to the T-partition, and it is an F-patch otherwise. Two patches
are called noninterfering if the distance d (x, y) in H.,p between vertices x V(P1) and
y V(P2) is always at least 10, say.

THEOREM. The edge-partition problem EP is NP-complete for each n >- 3.
Proof. The problem EPn is clearly in NP. Suppose we have an instance C

{Ca, C2, , Cr} of 3SAT in s variables Ul, u2, , us where each Ci consists of literals
li, a, li,2 and li,3. We reduce this instance of 3SAT to an instance G (V., E.) of EP.
as follows.

Choose p sufficiently large so that up to 3r noninterfering patches can be chosen
in Hna,, say p 100r. Take a copy Ui of H., to represent each variable ui and copies
Ci,1, Ci,2 and Ci,3 of H.,. to represent each clause Ci.

Join these copies of H.,p together as follows. If literal u is Uk, then identify an
F-patch of Ci,i with an F-patch of Uk. If li,i is tTk, then identify an F-patch of Ci,j
with a T-patch of Uk as indicated for n 3 in Fig. 2.

b

d

X..,

c b

FIG. 2. The identification of an F-patch with a T-patch when n 3. Similarly labeled vertices (and the
edges between them) are identified.

Also join Ci,1, Ci,2 and Ci,3 for each by identifying one F-patch from each and
then removing the edges of the central Kn (see Fig. 3).

I\ /\

FIG. 3. The join between Ci, a, Ci,2 and Ci, when n 3.
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Choose all those patches which occur in a single copy of Hn,, to be noninterfering.
Denote by Gn (V, E) the graph obtained in this way. We now show that there

is an edge-partition of G into Kn’s if and only if the instance C of 3SAT is satisfiable.
Suppose that there is an edge-partition of Gn into a set S of K,’s, and consider

a particular copy H of Hn,, involved in the construction of G. Take a K in S, say
A, which is in H, but not near any join. Using the properties in the lemma, we see
that the neighbors of A do not belong to S, the neighbors of the neighbors of A do
belong to S, and so on. Continuing in this way, we deduce that all the edges of H,
except perhaps those involved in joins, are T-partitioned, or all F-partitioned. Thus
we may say that H is T-partitioned or F-partitioned.

Now suppose li,. is uk and consider the join between Ci,j and Uk. We claim that
the edges in the vicinity of this join can be edge-partitioned into K’s if and only if
at least one of C,j, Uk is T-partitioned. If (say) Cg,i is T-partitioned, this accounts for
all the edges of Cg,i near the joining patch except for those of the patch itself. The
patch can then be regarded as belonging to Uk, which can then be locally partitioned
in either way. If on the other hand both C,i and Uk are F-partitioned, the argument
of the previous paragraph shows that the edges of the patch not belonging to the
central K, are forced to belong to the F-partitions of both Ci,i and Uk, which is a
contradiction.

Similarly if l,j is tTk, then either Cg,. is F-partitioned or Ug is T-partitioned.
Now consider the join between Cg, x, C,2 and Ci,3. We claim that the edges in the

vicinity of this join can be edge-partitioned into K’s if and only if exactly one of Ci,1,
Ci,2, C,3 is F-partitioned. The argument is the same as above, except that now, as the
central K, is missing, the remaining edges of the patch must be claimed by an
F-partition in exactly one of Ci,1, C,2, Ci,3.

Thus if G, can be edge-partitioned into K’s, then there is a truth assignment to
u1,..., us which satisfies C, namely u has value "true" if and only if Uk is T-
partitioned.

If C is satisfiable, we partitionGn by partitioning Ug according to the truth of
Uk in a satisfying assignment, choosing one "true" literal l,. for each i, and F-partitioning
the corresponding Ci,j.

It should be clear that the above reduction from 3SAT to EP. can be carried out
using a polynomial time algorithm, and so the proof of the theorem is complete. [3

3. Deductions. The following problems are now easily seen to be NP-complete.
(i) Find the maximum number of edge-disjoint Kn’s in a graph (n >_-3).

(ii) Find the maximum number of edge-disjoint maximal cliques in a graph.
(iii) Edge-partition a graph into the minimum number of complete subgraphs.
(iv) Edge-partition a graph into maximal cliques.
(v) Edge-partition a graph into cycles C,, of length m.
For (i) we use the same construction as for EP,. For (ii), (iii) and (iv) we use the

same construction as for EP3. Note that G3 contains no K4’s, and every edge K2 is
in a K3, so the maximal cliques coincide with the K3’s.

For (v) we alter the construction for EP3 in the following way. Note that the
edges in H3,p occur in three distinct directions, say a, b and c, and that the joins in
the construction of G3 are made so that edges which are identified have the same
direction. In G3, replace each edge with direction a (say) by a path of m- 2 edges.

We conjecture that the problem of edge-partitioning a graph into subgraphs
isomorphic to a fixed graph/-/is NP-complete for all graphs H with at least 3 edges.
The problem is polynomial if/-/has at most 2 edges, and it is easy to show that the
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problem is NP-complete for a number of particular small, connected graphs H. The
NP-completeness of the problem seems difficult to prove if H is disconnected, e.g.,
if H 3K2, that is, H has 6 vertices and 3 independent edges.
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THE NP-COMPLETENESS OF EDGE-COLORING
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Abstract. We show that it is NP-complete to determine the chromatic index of an arbitrary graph. The
problem remains NP-complete even for cubic graphs.

Key words, computational complexity, NP-complete problems, chromatic index, edge-coloring

1. Introduction. The chromatic.index of a graph is the number of colors required
to color the edges of the graph in such a way that no two adjacent edges have the same
color. By Vizing’s theorem [1], the chromatic index is either d or d + 1, where d is the
maximum vertex degree.

We prove the conjecture (Garey and Johnson [2, p. 286]) that it is NP-complete to
determine the chromatic index of an arbitrary graph. In fact, we prove the stronger
result’that it is NP-complete to determine whether the chromatic index of a cubic graph
is 3 or 4. Thus this problem probably has no polynomial time algorithm.

The terminology and results of NP-completeness are given in [2]. It is clear that the
chromatic index problem is in the class NP. To prove that the problem is NP-complete,
we exhibit a polynomial reduction from the known NP-complete problem 3SAT which
is defined as follows. A set of clauses C {C1, C2, , Cr} in variables ul, u2, , Us is
given, each clause Ci consisting of three literals li,, li,2, li,3, where a literal li,i is either a
variable uk or its negation tTk. The problem is to determine whether C is satisfiable, that
is, whether there is a truth assignment to the variables which simultaneously satisfies all
the clauses in C. A clause is satisfied if one or more of its literals has value "true".

2. The parity condition. We will use the following lemma given in Isaacs [3].
LEMMA. Let G be a cubic, 3-edge-colored graph and V’

_
V(G) a set of vertices of

G. Let E’ E(G) be the set of edges ofG which connect V’ to the remainder of the graph.
ff the number of edges of color in E’ is ki (i 1, 2, 3), then

k k2 k3 (mod 2).

Proof. If i’12 is the set of edges of G which are colored with color 1 or 2, then
E2 consists of a collection of cycles. Thus E2 meets E’ in an even number of edges,
and so k + k2=-O (mod 2) which gives k=-k2 (mod 2). Similarly k2=-k3 (mod 2). [3

3. The components used in the construction. Given an instance C of the problem
3SAT, we will show how to construct a cubic graph G which is 3-edge-colorable if and
only if C is satisfiable. The graph G will be put together from pieces or "components"
which carry out specific tasks. Information will be carried between components by pairs
of edges. In a 3-edge-coloring of G, such a pair of edges is said to represent the value T
("true") if the edges have the same color, and to represent F ("false") if the edges have
distinct colors.

The inverting component is shown with its symbol in Fig. 1. It was used by
Loupekine (see [4]) to construct a large family of cubic graphs with chromatic index 4.
Using the parity condition above, it may be checked that if this component is
3-edge-colored, one of the pairs of connecting edges marked a, b or c, d must have
equal colors and the remaining 3 edges must have distinct colors. There is no further

Received by the editors January 31, 1980, and in final form January 7, 1981.
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a c

FIG. 1. The inverting component and its symbolic representation.

restriction on the possible colors of the five connecting edges. Regarding the pair of
edges a, b as the input and the pair c, d as the output, the component changes a
representation of T to one of F and vice versa.

The truth or falsity of each variable ui will be represented by a variable-setting
component such as that shown in Fig. 2. The component shown has 4 pairs of output
edges, but in general the component representing ui should have as many output pairs
as there are appearances of ui or/i among the clauses of C. It may be checked that in
any 3-edge-coloring of a variable-setting component, all the output pairs must
represent the same value.

FIG. 2. The variable-setting component made from 8 inverting components and having 4 output pairs of
edges. More generally it is made from 2n inverting components and has n output pairs.

The truth of each clause c. will be tested by a satisfaction-testing component as
shown in Fig. 3. This component can be 3-edge-colored if and only if the three input
pairs of edges do not all represent F. The remaining connecting edges will be discussed
later.

FIG. 3. The satisfaction-testing component.

4. The main theorem. We are now in a position to prove the following theorem.
THEOREM. It is NP-complete to determine whether the chromatic index of a cubic

graph is 3 or 4.
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Proof. The problem is clearly in the class NP. We exhibit a polynomial reduction
from the problem 3SAT. Consider an instance C of 3SAT and construct from it a graph
G as follows.

For each variable ui take a variable-setting component Ui with one output pair of
edges associated with each appearance of ui or tTi among the clauses of C. Take also a
satisfaction-testing component Q for each clause c.. Suppose literal lj, k in clause c. is the
variable ui. Then identify the kth input pair of C. with the associated output pair of Ui.
If, on the other hand, li, k is tTi, then insert an inverting component between the kth input
pair of Ci and the associated output pair of Ui. The resolting graph H still has some
connecting edges unaccounted for. The cubic graph G is formed from two copies of H
by identifying the remaining connecting edges in corresponding pairs.

The graph G has a 3-edge-coloring if and only if the collection C of clauses is
satisfiable, as can be verified using the properties of the components developed above.
Moreover, the graph G can be produced from C using a polynomial time algorithm, so
we have the result. [3

5. Comments. The above theorem may give some insight into the difficulty in
classifying graphs according to their chromatic index. At any rate, it probably excludes
the possibility of a polynomially checkable criterion, and it indicates that the restriction
to cubic graphs is no easier.

Acknowledgments. I would like to thank M. Garey and D. Johnson for suggesting
a simplification in the proof.
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OPTIMAL RETRIEVAL ALGORITHMS FOR SMALL REGION QUERIES*

AZAD BOLOURS

Abstract. Hashing, or address calculation, has traditionally been associated with the scattering of close
records, and therefore with inefficiency for retrieval of range queries. But for answering small range queries it
is possible to compromise between randomization and the togetherness of close records by hashing many
intervals of keys--rather than many isolated keys--into each hash value. And for answering small region
queries, i.e., conjunctions of small range queries, such "interval hashing" may be applied to each attribute of a
record in a multiple-key hashing procedure. The resulting technique is called "box-array hashing," since it
maps an orthogonal array of boxes from the space of all possible records into each hash value.

This paper analyzes the achievable efficiency of hashing techniques for answering small region queries,
and presents strong analytic evidence suggesting that box-array hashing provides about the most efficient
procedure for answering small region queries, among all hashing procedures of comparable randomization
power.

Key words, region queries, range queries, hashing, multiple-key hashing, secondary key retrieval

1. Introduction. The use of secondary indexes or inverted files is perhaps the most
common method of speeding up the examination of a file in answer to a Boolean
combination of range queries. But as the number of records needed by a query
increases, retrieval algorithms based on secondary indexing can become quite slow for
answering such queries from external files [18], [19]. In fact, unless the file itself is
arranged in guch a way that close records appear close together, consulting an index for
the given query may be of little use in limiting the number of secondary storage accesses
to retrieve the needed records, when there are many such records. This problem is
further aggravated by the useless retrieval of so-called "false-drops," when there is no
explicit index for a given query and indexes are available only for some of its parts.

A recent approach to the region retrieval problem is the use of tree structures
similar to "tries" [11, 6.3], known as multidimensional search trees [2], [9], [14].
These tree structures can be quite efficient for answering region queries, but their
maintenance upon insertions and deletions generally requires rather involved pro-
cedures. Other data structures for region retrieval known generally as pyramidal
structures [6], [13], [15], [22] lead to very fast access but entail considerable redundancy
in storage.

For fast partial-match retrieval, Rothnie and Lozano [19], and Rivest [16], [17]
have independently suggested the use of an alternative storage structure known as
multiple key hashing. To store a record using a multiple key hashilag procedure, each
attribute of the record is first hashed separately via a hastting function of its own. The
ordered sequence of these hash values is then used to identify the bucket where the
given record is to be stored. Thus, if x (Xl, , xn) represents a generic n-attribute
record, and hi,. ’, hn are the hashing functions on the lst,. ., nth attribute spaces
respectively, then the vector (hi(x1),’", h,(x)) would determine the bucket address
for x. That is, there would be a one-to-one correspondence between such vectors and
bucket addresses.

This scheme is the basis of the approach proposed here for the efficient r.etrieval of
records in answer to small region queries. When dealing with region queries, of course,

* Received bythe editors October 30, 1978, and in final revised form December 11, 1980. This work was
supported by the Naval Electronics System Command under contract N00039-76-C-0022, and was prepared
under the National Library of Medicine grant 2-404917 31529. The work is based in part on the author’s PhD
thesis, University of California, Berkeley, California.

" Medical Information Science Section, University of California, San Francisco, California 94143.
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one can no longer use traditional hashing functions that scatter very close records into
separate buckets. But for queries specifying small ranges, it is possible to compromise
between the conflicting demands of randomization, for obtaining an even distribution
of records into buckets, and "togetherness," for efficiency in answering region queries.
The idea is to use, for each attribute, a "hashing" function that is piecewise constant, but
that maps many different pieces of the attribute space into a single hash value. Thus,
we may "hash" an attribute by a composite function of the form hh’, where h’ is
order-preserving but h is randomizing. (This type of address calculation for single key
storage and retrieval was first suggested to me by Eugene Wong.) Putting this together
with the idea of multiple key hashing, we obtain address calculation functions which, for
an n-attribute record x (x,..., x), look like

h(x)= h(x,..., x,)=/(hl(h (Xl)),""’, h,(h’(x,))),

where h is a one-to-one function, h,..., h’ are order-preserving functions, and
hi,"’, h, are randomizing functions. We call such functions box-array addressing
functions, since they map n-dimensional arrays of boxes from the universe of records
into each bucket.

The principal contribution of this paper is analytic. Results of Rivest 16], 17], and
later of Bolour [7], suggest that in order to find a hashing function that is most efficient
for partial-match retrieval, one can usually restrict one’s attention to multiple key
hashing functions (assuming that the functions considered are balanced, that is, they
partition the universe of records into equal parts). In this paper, these results are
extended to include region queries. The objective is to demonstrate that in a large class
of reasonable addressing functions, a box-array function can often be found that is
near-optimal for answering a given mix of small region queries.

To provide for "randomization" in the functions considered, the universe of
records is divided into a number of similar local regions, and the functions are
constrained to divide each of these regions equally between the given buckets. Subject
to this constraint, we show how an approximate lower bound may be obtained on the
average number of buckets that must be examined to answer region queries, under
moderate assumptions on the probability of these queries. Computational results then
show that this lower bound can usually be approximated by a box-array addressing
function.

The remainder of this paper is organized as follows. Section 2 presents a brief
survey of the available search strategies for region queries with a more thorough
introduction to box-array addressing functions. Sections 3 and 4 develop the problem of
finding optimal addressing functions for region queries, and 5 and 6 analyze this
problem. Section 7 concludes the paper by indicating how a near-optimal box-array
addressing function may be determined in a given situation. The organization and the
results to follow parallel those of an earlier paper [7] dealing with partial-match queries
only.

2. Retrieval lgorithms for region queries. For the purpose of comparison, a brief
survey of the major available techniques for region retrieval is presented in this section.
All of the techniques to be discussed, including address calculation, are useful both for
internal and for external searching. But since the emphasis of this paper is on external
searching, the discussion here is specialized to retrieval from direct access secondary
storage media. The number of secondary storage accesses necessary to answer a query is
then a reasonable measure of the work required for the query. This cost can be broken
up into two parts" those accesses (if any) that are made to search for and locate the



OPTIMAL RETRIEVAL ALGORITHMS 723

buckets of the main file that (may) contain needed records, and those accesses that are
subsequently made to the buckets of the main file in order to retrieve the needed
records. The comparison of the different methods is based on these costs as well as on
their storage and update costs. For a more general survey of techniques for region
retrieval see Bentley and Friedman [4].

Searching algorithms based on file inversion or secondary indexing are most
effective when the number of records needed by a query is small. Their performance,
however, quickly deteriorates as the number of needed records increases. Assuming a
random distribution of these records in b buckets, and more than a few records per
bucket, the average number of buckets needed to retrieve r records (after they have
been identified through an inverted file) can be approximated by b (1 (1 (1 / b))r)
b(1 e -r/b) (Yao [24]). So when the number of records needed by a query is comparable
to or exceeds the total number of buckets, most buckets will on the average have to be
accessed in answering a query, and an inverted list of needed records will be of little use.
On the other hand, when the number of needed records is somewhat less than the total
number of buckets, b (1 e -r/b) r, and on the average about one bucket is accessed for
each needed record. This rapid rise in the number of main file accesses as a function of
the number of needed records is a more serious drawback of inversion techniques than
the overhead cost of intersecting inverted lists in the process of answering conjunctive
queries. Secondary indexes also require extra storage space, and they lead to increased
update costs since an update must be reflected in each index.

In situations where many records are generally needed by a query, it becomes
necessary to partition the main file into the given buckets in such a way that records
needed by a typical query can be found in as few buckets as possible. One strategy that
immediately suggests itself is to divide the record space into identical rectangular boxes
and to try to store the records in each such box in a corresponding bucket (Fig. 1). (A
"box" here is a Cartesian product of intervals.) Let us call this a regular boxlike partition.

L2
A]2 A22

L2/2
A11 A,2]

0
LI/2 L,]

FIG. 1. Regular boxlike partitioning.

Knuth [11, p. 554] suggested keeping inverted lists of record identifiers for each box in a
regular boxlike partition. Here, we have in mind the storage of records in their entirety
in buckets corresponding to the boxes thus formed. Since this will usually lead to
unequally sized buckets, we would need a table, a multidimensional array, to keep track
of the location of each bucket. The retrieval algorithm would compute the indexes of
those boxes that intersect a given query region, and locate the corresponding buckets by
table lookup.

In order to avoid having to manage variably sized buckets and incurring their worst
case performance, it is possible to use an "irregular" boxlike partitioning of a record
space into boxes that may vary in shape but that contain the same number of records,
and that are indexed not by an array but by a data structure generally known as a
multidimensional search tree. A number of authors [2], [9], [14] have explored the use of
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these data structures which are similar in nature to tries (Knuth [11, 6.3]). A typical
example for storing an n-dimensional file is a tree structure of kn levels, whose nodes at
the 1st, k + 1st,..., (k- 1)n + 1st levels partition the values of the first attribute into
successively finer intervals; those at the 2nd, k+2nd,..., (k-1)n +2nd levels
similarly partition the values of the second attribute, and so on. The partitions at each
node are so chosen that the given records will be evenly distributed among the external
nodes of the tree. Each node in such a tree structure corresponds to a box in the
n-dimensional space of all possible records. To answer a region query, only those nodes
whose associated boxes intersect the region specified in the query must be examined.

The general worst case performance analysis of multidimensional search trees
yields O(jN1-/ + r) retrieval time for a region query specifying/" attribute ranges [12],
where N is the total number of records. Their average performance analysis yields
O(log N + r) and O(r) retrieval times in the limit of small and large queries respectively
[4]. Here we use a simple analysis of the average performance of multidimensional
search trees for external searching, based on the assumption of uniform distribution of
records. In that case a multidimensional search tree defines a regular boxlike partition,
and the analysis of the two methods can be combined.

Consider an n-dimensional record space in which each attribute space is "normal-
ized" to the interval [0, 1). For simplicity, let the queries specify ranges of the same
length, a, for each of j (<_-n) attributes (these queries will be referred to as aCqueries),
and suppose that each attribute is partitioned into an equal number, (b a/"), of parts (the
resulting partitioning of the record space will be referred to as a cubical partitioning). It
is simple but tedious to show that if a is small compared to one, then on the average
about (b 1/n)a 4- 1 of the (b 1/n) parts of an attribute intersect a range of length a. So on
the average about ((ba/)a + 1) boxes of the boxlike partition of the record space
intersect an a-query (assuming, of course, that the compounded approximation errors
stay small). And in general it is easy to see that on the average about (b /,),-i ((b a/")a +
1) boxes of the cubical partition intersect an ai-query.

The cost of accessing the directory nodes in the process of locating the needed main
file nodes results in at least a logarithmic term in the complexity of retrieval from
multidimensional search trees. For external tree structures with large fanouts, however,
this cost can be expected to be negligible for many queries and most practical file sizes.
But when a small range of values is specified for every attribute, the retrieval algorithm
would require an average of close to one access to a main file bucket, but several
accesses to directory buckets.

It is possible to make multidimensional search trees dynamic, i.e., capable of
supporting insertions and deletions, at some cost. Saxe and Bentley’s "binary trans-
form" [21], for example, can be applied to multidimensional search trees to create a
data structure that is capable of supporting both region retrieval and record insertion.
The resulting increases in the query cost and the cost of building the structure are shown
to be no larger than a factor of log N. Willard [23] describes a complicated scheme for
handling both insertions and deletions when using multidimensional search trees. It has
a worst case complexity of O((log N)) for insertions and deletions and uses moderate
storage redundancy.

In recent years, many authors have proposed the use of so-called "pyramidal
structures" for range searching (Bentley and Shamos [6], Willard [22], Lueker [15], Lee
and Wong [12]). In their simplest forms, these structures can be defined recursively as
follows. A one-dimensional pyramidal structure is simply a search tree for a one-
dimensional key space. Note that each node of this structure defines a range of values of
the key space: the values that may appear as its descendants. An n-dimensional
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pyramidal structure consists of a tree structure on the first attribute, in which the
descendants of each node are stored redundantly in an (n 1)-dimensional pyramidal
structure on the last n 1 attributes. Thus, each node of the tree structure for the first
attribute contains an extra pointer which points to the root of the corresponding
(n- 1)-dimensional pyramidal structure on the last n-1 attributes. (Bentley and
Maurer [5] also discuss similar schemes called "k-ranges.") The retrieval algorithm
begins by finding the minimal set of nodes of the tree structure on the first attribute
whose associated ranges can be put together to form the specified range of the first
attribute. Then the algorithm is called recursively on each of the (n- 1)-dimensional
pyramidal structures of these nodes.

While these schemes lead to very efficient algorithms for range searching, they
generally require considerable redundancy (except in two dimensions), and are there-
fore of little practical interest for files of modest size and many dimensions. Their
general complexity analysis yields worst case retrieval times of O((log N) + r) at the
expense of a factor of O((log N)n-l) storage redundancy. (A more complex scheme by
Willard [22] uses somewhat more storage but yields O((log N)-a + r) retrieval time.)
The average retrieval performance of these schemes for external region searching can
be expected to be significantly better than the performance of the other schemes
discussed here. But once again accesses to the internal nodes of a pyramid necessary for
locating the needed external nodes may become significant for small queries.

An address calculation function, or an addressing function for short, is a function
that assigns to each possible record the bucket wherein it is to be stored. The buckets are
of fixed size. The function should be easily Computable, and should have the property
that for many situations it maps approximately equal numbers of records into each
bucket. When more records are mapped into a bucket than there is room to hold them,
the overflow records are stored in other buckets (which in the case of external searching
may be specifically designated for overflow), and are chained to their addressed
buckets. By using a good address calculation function, and by allowing somewhat more
space in each bucket than the space needed by the average number of records mapped
into a bucket, overflow can be kept down to a very small fraction of the file if buckets are
reasonably large. This means an average of slightly more than two accesses for
insertions and deletions in files of approximately constant size. When the file grows or
shrinks, it has to be reorganized periodically into a larger or smaller number of buckets.
But the amortized cost of reorganization per insertion or deletion may be kept down to
a few accesses, e.g., by reorganizing when overflow orunderflow is, say, 1/2 the size of the
allocated primary storage area for the file. The near-minimal average cost of insertions
and deletions is one advantage of address calculation over multidimensional direc-
tories. Address calculation also eliminates the need to make accesses to secondary
storage in searching for the addresses of the main file buckets needed for a query.

Usually addressing functions achieve the essential property of uniformity with
respect to addresses by scattering close records into different buckets. This, of course, is
exactly what should be avoided in partitioning a file for the efficient retrieval of region
queries. When ranges specified in a query are small, however, we can use a compromise
procedure that maps most small local regions into single buckets, but that also maps
many different local regions distributed across the record space into each bucket.

To illustrate, consider the one-dimensional key space of all nonnegative integers
less than a million, and assume that we are only concerned with range queries specifying
ranges of width less than or equal to ten. Here we should like to have a function that
maps most ranges of width ten into single buckets, but that also maps diverse regions ot
the space 0,.. , 999999 into each bucket. To do this we may first divide the key space
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into 10,000 equal intervals of width 100, which will be treated as indivisible. Then, a
randomizing hashing function can be used to map a number of these intervals into each
bucket. For example, if 100 buckets numbered 0 to 99 are used, the entire address
calculation function may take the form, h: [0, 999999]- [0, 99], h(x)=
Ix 100] mod 100, where for a real number y, [y denotes the greatest integer less than
or equal to y. The set of points mapped into each bucket by an addressing function is
commonly known as a cluster of the given function. Each cluster of the above function is
an array of 100 intervals distributed across the space [0, 999999]. Because such a
cluster samples points from different regions of the key space, one may expect a
reasonable degree of uniformity with respect to addresses from the corresponding
addressing function. Also, most range queries specifying a range of width less than or
equal to ten can be answered by inspecting a single bucket; and the remainder need only
two buckets for their answers. We call such functions piecewise constant hashing
functions. (Another example of such hashing functions appears in 7.)

For multidimensional key spaces the compromise can be achieved by using the
multiple-key hashing strategy of Rothnie 19], and Rivest 17] with component hashing
functions that are piecewise constant. For example, to map the points (Xl, X2)e
[0, 999999]2 into 100 buckets we can use two piecewise constant hashing functions h 1,

h2:[0, 999999][0, 9] to obtain hash vectors (hi(x1), h2(x2)) which then uniquely
identify buckets. Thus, two points in [0, 999999]2 will be mapped into the same bucket
if and only if their first coordinates are mapped into the same hash value and their
second coordinates mapped into the same hash value. The one-to-one mapping of hash
vectors into bucket numbers can be accomplished by lexicographic ordering. So by
letting hi(x)= h2(x)= Ix/100] mod 10 the entire addressing function becomes:

(1) h(xl, x2) 10hl(x1)+h2(x2) 10 x mod 10 + mod 10.

Each cluster of this function is a 1000 x 1000 two-dimensional array of 100 x 100
squares distributed throughout the key space (Fig. 2). Therefore, one may again expect
a reasonable degree of uniformity with respect to addresses.

999999

999000-

]l

9910 --1
o ,.o o o

FIG. 2. A cluster o[ a box array addressing ]unction in two dimensions h(xl, x2)=
10(Ix1/100] mod 10)+ [xz/lO0] mod 10.
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To retrieve the records stored in this way, and belonging to a given region
[a 1, a x [a2, a ], we need to inspect the set of buckets h ([a 1, a x [a2, a ]), where h
here represents the mapping from subsets of the key space into subsets of buckets,
induced by the given addressing function. For the example function (1) this is

lOx([[1-OJ,[lOOjJmodl + ]mod10,
where the arithmetic operations of addition, multiplication by 10, and taking the
remainder upon division by 10 are interpreted as acting on subsets of integers, and as
producing subsets of integers, in an obvious way. If the specified ranges are small, the
computation of such an expression is trivial, and will in most cases yield a single bucket
address. For instance, the set of buckets that should be examined to answer the query,
"retrieve all records (Xl, X2) such that 5150_-<Xl 5159 and 134_--<x2 140" is
h([5150, 5159][134, 140])= 10([51, 5a]moda0)+[1, a]modl0= 1011, 1]+[1, 1]
={11}.

What about range queries on a single attribute? For example, "retrieve all records
(X l, X2) such that a l_<-xl_-<al. ’The query region here is the rectangle [al, a ]
[0, 999999], and the set of needed buckets is therefore 10([[al/100J,
[a/100J]mod 10)+[0,9]. For a majority of small ranges [al, a] here, [al/100]
would be equal to [a/100J, and hence 10 buckets would have to be inspected to
answer the query. Similarly, the set of needed buckets for a range [a, a of the second
attribute is 10([0,9])+[[a2/100J, [a/100J]mod 10, and for a majority of small
ranges [a2, a], [a2/100 would be equal to [a./100] and the expression again yields
10 buckets. How does this compare with the performance of a retrieval algorithm based
on boxlike partitioning? Assuming that the storage structure of the boxlike partitioning
were also chosen to be symmetric with respect to the two attributes, we would again
need ten accesses to main file buckets to answer most small range queries.

These ideas can be generalized in an obvious way to the storage of higher
dimensional files, and to the retrieval of region queries specifying ranges of values for
all, or for some of the attributes in a record.

For a simple approximate analysis of the performance of box-array addressing for
ai-queries, we may assume that each cluster is an M M ... M array of cubes
spaced at regular intervals along each dimension in a normalized record space, [0, 1)".
An analysis similar to that ofa simple boxlike partitioning then shows that for a
somewhat smaller than l/M, the approximate average number of buckets required to
answer an a-query by using this scheme is (b l/n)n--j (1 +Ma (b 1/,)). This performance
is, of course, always worse than that of boxlike partitioning. But the two schemes
become comparable for/Ma(bl/") < 1. In that case, the approximate query time of
box-array addressing for a-queries is roughly (1 +jMa(b 1/"))b l-i/, (and is in any case
no larger than eb 1-/,), whereas the approximate query time for boxlike partitioning is
(1 +/a(b 1/"))b 1-j/n (and is in any case no smaller than b 1-fin).

How does the performance of box-array addressing compare with that of secon-
dary indexing? Consider again the number of accesses to main file buckets required to
answer an ai-query. Let m be the number of records per bucket, so that the total
number of records is bin. Assuming a uniform distribution of the records within [0, 1)",
bma records would be needed by an ai-query. The number of main file buckets needed
to answer the query via secondary indexing is then no larger than bma. On the other
hand, it is easy to see that the average number of main file buckets needed to answer an
a*-query via box-array addressing is no less than bM*a for a somewhat smaller
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than 1/M and is equal to b for a > 1/M. Thus, when m <_-M, secondary indexing can be
expected to outperform box-array addressing. When m >M the relative efficiency of
the two schemes depends on query size. In the region a > 1/(ml/J), the number of
records needed by the query is larger than the total number of buckets, and so most
buckets of the main file are needed by a retrieval scheme based on secondary indexing.
Box-array addressing, then, cannot do much worse than secondary indexing in this case.
In the region a <-_ 1/(ml/J), the retrieval time of secondary indexing, b(1 --e-r/b), can be
roughly approximated by, r mba. Comparing this with the retrieval time of box-array
addressing, it can be shown that as the query size increases, the query time of secondary
indexing deteriorates relative to that of box-array addressing. The critical point beyond
which box-array addressing becomes more efficient is d (l(b I/n))/((ml/)-M).

The upshot of all this then is that for large buckets, large files, and queries
specifying few ranges, box-array addressing can be expected to outperform secondary
indexing, except when the specified ranges are very small.

3. Problem statement. To simplify the analysis, the universe of records is modeled
as the unit n-cube [0, 1) in n-dimensional Euclidean space. The development for
discrete record spaces [8] is somewhat more cumbersome and is omitted. An addressing
function h :[0, 1)" - {0, 1, , b 1} is called a b-way addressing function. We denote
by Hi the ith cluster of an addressing function h, Hi h- (i), 0 <_- < b. The partition
{H0, , Hb-} of [0, 1) induced by h -a will be denoted by . The addressing function
and the partition are said to be balanced if all the associated clusters Ho, , Hb_a have
equal volume (Lebesue measure).

While the property of balance appears to be necessary for an even distribution of
records into buckets in a broad range of actual files, it is not sufficient. One consequence
of the analytic results to follow is that often the most efficient balanced partition of a
record space for answering region queries is a regular boxlike partition. But since this
will seldom lead to an even distribution of records ihto buckets, we further restrict the
class of functions we are going to consider to exclude such partitions.

In order to guard against partitions with contiguous, localized parts, each cluster of
an admissible addressing function should be required to sample points from many
different regions of the space [0, 1). This can be done by dividing [0, 1) into a number
of local regions of equal volume and by requiring that each of these regions be divided
equally between the clusters, or, equivalently, that each cluster be divided equally
between these regions. Perhaps the simplest way to define these local regions is to
partition [0, 1)n into a number of subcubes, say subcubes of dimensions 1/M, for some
integer M> 1. But since the space [0, 1) actually represents a continuous approxima-
tion to a discrete record space whose various dimensions may contain widely differing
numbers of elements, a partition into subcubes seems rather arbitrary. Instead we
require a partition of [0, 1) into identical rectangular local regions, or boxes. The
dimensions of these boxes will be supplied by the user based on a knowledge of the
attribute spaces and on the degree of randomization required. We shall say more about
the choice of these dimensions later. For the moment let these dimensions be
1/MI, , 1/Mn respectively, for some integers M,.. , Mn, so that [0, 1) is initially
partitioned into MM2 M such boxes. We call such a partition the boxlike partition
of characteristic M (M,..., M,), and we restrict our attention to those addressing
functions that divide each box of this partition equally into the given clusters.
Equivalently, the admissible addressing functions are those whose clusters are divided
equally between the MM2... M boxes. Such clusters will be known as uniformly
scattered clusters with respect to M, and the associated addressing functions (or
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partition) will be known as a uniformly scattering function (or partition) with respect to
M (Fig. 3).

1/2

H(I, 2)

H(I, I)

O0 1/3

H(2, 2)HI 2)

H(2, I)H(3, I)
2/3

FIG. 3. A uniformly scattered cluster. Ma 3, M2- 2.

The word "query" or the notation O will be used alternately for the condition
specified in a query, and for the region in [0, 1)" defined by this condition, as well as for
the request to retrieve all records satisfying the given condition. To answer a query O,
the retrieval algorithm must inspect a bucket if and only if the cluster associated with
that bucket intersects O. The number of clusters of an addressing function that
intersects Q, then, is used to measure the efficiency of the corresponding retrieval
algorithm for answering O. For a set of clusters , and a qdery Q, this number will be
denoted by Ne(Q).

What is a reasonable way of aggregating this measure over all region queries of
interest? A simple average of Ng(Q) over all such queries seems inadequate, since the
contribution of the larger regions to this average could swamp the contribution of the
smaller ones. We therefore distinguish between region queries on the basis of the widths
of the ranges specified in them. We say two region queries are similar if their
corresponding regions are translations of each other. In other words, similar region
queries define isomorphic boxes in [0, 1)" (Fig. 4). Similarity is an equivalence relation
that partitions region queries into equivalence classes, referred to here as similarity

1/2

Xa

Q
Q2

1/8 Xl 5/8

FIG. 4. Similarity of region queries. 01" O<-xx <--, O<-x2 <=1/4. 02" <=xx <-_1/4, 1/4<=x2 <=1/2.
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classes. Within each similarity class S, Ne(Q) is aggregated by taking a simple,
unweighted, average, denoted by Ne[S]. But across all similarity classes, we aggregate
Ne[S] by averaging with respect to an arbitrary probability measure, say P, where
denotes the set of similarity classes of queries. We denote this latter average by Ne.
(This, then, is the average number of buckets that must be examined to answer a region
query, given the probability measure P, and assuming a uniform probability dis-
tribution over each similarity class.)

In order to find a b-way partition of [0, 1)" leading to the most efficient retrieval
algorithm, Ne should be minimized over all balanced b-way uniformly scattering
partitions of [0, 1).

4. The cost function.
4.1. Definitions and notation. The following notation and definitions are needed

in the subsequent development. A generic subset (combination) {il,’’’, ii} of the
attributes {1, , n} is denoted by c; its complement {1, , n}- c is denoted by 6. To
distinguish between the different attribute spaces, the n-dimensional Euclidean space
R" is thought of as R1 x. Rn, where R 1," ’, R, are distinct copies of R. Given a
subset c of {1,..., n}, Re will denote the subspace of R" defined by Ril,’",Rij,
Rc Ril " R#. The shorthand xc is used to designate a point (xil, , xi) in R, and
when a particular n-vector x= (xl,. ., x,) Rx ... Rn is implied in the context, x
will designate the projection of x on R. In particular, 1 and 0 will designate n -vectors of
all ones and all zeros respectively, and 0 and lc will designate the projections of these
vectors on R, for each c

_
{1, , n}. Given a set V in R, we let IVy[ be the volume of

V in R. If b (hi1, ’, bi) and b’ (b i," , bij) are vectors in R such that bc <-_ b’,
then Ibm, b’] will denote the box [bil, b11 ’" Ibis, bl,] in R. The similarity class of
queries specified by a condition vc <- x _-< v + a, v, vc / a R, a fixed, is designated
S (at).

DEFINITION 1 (Projection). The projection of a set X
_
R" on the subspace R will

be denoted by r. (X), r(X) {t [::Ix X, x tc }.
DEFINITION 2 (Sweep). The sweep of a setX

_
R" through a distance ai parallel to

the ith axis is the subset of R swept out by a translation of X through a distance ai
parallel to the ith axis in the negative direction. It will be denoted by _ai X:

X {(Xl, ", xi-1, xi- bi, Xi+l," ", Xn)[(Xl," ", Xn) -X 0 bi < ai}.

More generally, given a nonnegative vector a s R, the sweep of a set X through a is
the set

ai. ai2(... (.< (,_2_ x))... ),

and will be represented by ac X. (It is important to note here that for any attribute
combination s containing c these operations can be carried out on subsets of Rs.)

The MM2.." M,, boxes of the underlying partition can be indexed as if they
were elements of an n-dimensional array by using vectors k=(ka,...,k,)s
{0," , MI- 1} " {0," "., M, 1}. We let LM {0,. ., Ma- 1} .
{0,’.. ,M,-1}, and L ={0, 1/MI,’.’, 1-1/M}... {0, 1/M,,..., 1-1/Mn}.
Given a cluster H, the part ofH belonging to the kth box of the underlying partition will
be known as the kth subcluster of H, and will be denoted by H(k), k LM (Fig. 3).



OPTIMAL RETRIEVAL ALGORITHMS 731

For each c --{il,’’’, i.} the underlying partition of [0, 1) induces a partition of
[0c, lc) into M/I X X Mii boxes. A subset Vc of [0c, 1 is divided into Mil x. x
parts by these boxes, and these parts can be indexed by vectors kc (kil,"’, ki)
{0, Mi-l} ’’" )< {0,""’, Mgj-1}. The set {0, , Mil_l} X x {0, Mij-1} will
be denoted by LMc.

Let X and Y be subsets of R n. The notation X + Y will be used to denote the set
{x + y (x + y 1," , x + yn) Ix (x 1," , x) e X, y (y 1," , y) Y}. Similarly, for
x R n, and Y c_ R n, x + Y will denote the set {x + YlY Y}. A uniformly scattered cluster
H will be called a box array if there is a box B [b, b’], and a rectangular array of points
X={x11,’"" ,XlM1}X" X{XI,’’’, XM,} such that H=B+X. A uniformly scat-
tered clusterH is said to be periodic if H H(0, ., 0) +LI1. Note that the subclusters
of a periodic cluster are translations of one another, and that any one of them
determines the entire cluster. Given a cluster H that is not necessarily periodic, let
copy(H(k)) be the periodic cluster determined by H(k), copy (H(k))
H(k)-(k!/M1, kn/M,,)+L (ksLM).

In 3 the notations Ne(Q), Ne[S], and Ne were introduced to denote the number
of clusters of intersecting a query Q, the average number of clusters of intersecting
a query in a similarity class S, and the overall average number of clusters of
intersecting a query. Extending this notation to each cluster Hi of , we define Nn, (Q)
to be one if the query Q intersects Hi, and zero otherwise, Nn,[S] to be the probability
that a query in S intersects Hi, and NH, to be the probability that a region query
intersects Hi.

4.2 Expressing the cost. We are now in a position to express the cost function Ne
in terms of the clusters Ho, ",Hb-1 and the given probability measure Pe on classes of
similar queries. Consider a similarity class S of region queries. The quantities
NHo(Q),"’, NH_(Q) and Ne(Q) can be thought of as random variables over the
probability space of all queries in S (with the uniform probability distribution). Then,
NH,[S] is the expected value of NHi(Q) in this space, 0 =< -< b 1, and similarly Nx[S] is
the expected value Ne(Q). But by the definitions of Nn, (Q), 0 _<- -< b 1, and Ne(Q),

b-1

(2) N(O) 2 N,(0).
i=0

By taking expectations in (2), and by using the fact that expectation distributes over
summation, we can then obtain

b-1

(3) Ne[S]= Y’. N,,[S].
i=O

In a similar way we can equate the expectations (with respect to po) of the two sides of
(3) to obtain

(4)
b b ifNe NH, i N.,[S] dPse(S).
=0 i=0

In order to express NIl[S] in terms of H and S, consider first a similarity class
S(a) S(al,.", a,) whose queries specify ranges for every attribute. Each query in
this class specifies a region [v, v+a]__[0, 1) n, and can be identified by a vector



732 AZAD BOLOUR

v [0, 1 a). A subset of these queries then defines a subset of vectors in R ", and the size
of this query subset can be measured by the volume of the corresponding subset of
vectors. To determine NIl[S], that is, the fraction of queries in S that intersect a cluster
H, we need to compute the volume of the set of vectors v [0, 1-a] whose associated
query regions [v, v + a] intersect the cluster H, as a fraction of the volume of all such
vectors. But [v, v + a] intersects H, if and only if there exists a point x H such that
v=<x-<v+a, or x-a-<_v=<x, that is, if and only if =:Ix 6 H, v6 {x}. So the set of points
v [0, 1- a) that represent queries in S intersecting H is given by

(s) U (--x)[0,1-a)=(<--H)f3[0,1-a)= U ((--H(k))71[0,1-a)).
xH kLM

Now if ai < 1/Mi, 1 <-i <-_ n, and if M1,"’", Mn are large, then for most subclusters
H(k), <_a H(k)_ [0, l-a). In that case (5) can be approximated by kLM <-a H(k)),
and

(6) NIl[S (a)] 1.3 (-- H(k))
kLM

/I[0, 1

For a general similarity class of queries, Sc (ac), the above development can be retraced
in Rc to yield

(7) NIl, [Sc (at)]
kc LMc

By substituting (7) into (4) we obtain an expression for the objective functionN in
terms of the partition (H0, , Hb-1) and the probability measure P. But because
of the possible overlap between the sweeps ,_c rc(Hi)(kc), kc LMc, the resulting
expression is difficult to work with analytically. In what follows we use an approximate
cost function in which these overlaps are ignored. Then, the size of the union of these
sweeps can be approximated by the sum of the sizes of the individual sweeps. Letting
NIl,[So(at)] be the resulting approximation to the average number of times a query in
Sc(ac) intersects Hi, we obtain

(8) -’Ni,[Sc(ac)] ,
k LMc

7re (Hi)(kc) l-a)[

as the right side of (7). Note that this approximation does not allow us to consider the
subclusters of a cluster independently of each other. If c c {1, 2,..., n}, then rc(Hi)
(kc) is the union of the projections of 1-IcMt subclusters of Hi, and it is not treated as a
disjoint union. Also, for this approximation to be valid the extra volumes produced by
the sweeps "c rc (Hi)(kc), kc LM, need not be small; only the overlap between these
sweeps should be small. In fact, a sufficient condition for the approximation to be exact
is that for each cluster H and each coordinate c, the sets ’ti(H)(ki), 0 <- ki <-- Mi 1
be separated by distances of at least ai.

Of course, it cannot be claimed that any optimal partition with respect to this
approximation will be near-optimal with respect to Ne (except by considering the
limiting case as the ranges go to zero width, which is already analyzed in [7]). But the
approximation can be used in the following suboptimal strategy for designing address-
ing functions for small region queries.
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Let the approximate cost function obtained by substituting from (8) into (4) be
denoted by/, and let the contribution of a cluster H to this cost be denoted by/"

(9)

b-1

’ y, -,
XHi,

i=0

kc LMc
r(Hi)(kc)l/[[Oc, lc-ac)l) dP,[S(ac))

We shall first derive a lower bound on this approximate cost function and see that this
lower bound can be approximated by box-array addressing functions. We then choose,
among the resulting box-array addressing functions that approximate this lower bound,
one that minimizes the actual cost function Ne. We conjecture that this suboptimal
process will usually yield addressing functions that are close to optimal.

5. Optimality result. Let* inf {2Q IH c [0, 1)n, IH[ l/b, H uniformly scat-
tered with respect to M}, and let us call clusters achieving this infimum optimal clusters.
Then from (9)/ >= b*, and the lower bound is achievable if [0, 1) can be partitioned
into b optimal clusters. (This lower bounding strategy is due to Rivest [16].) In [7] we
proved that for partial-match queries an optimal cluster of a balanced addressing
function is a Cartesian product, which may be thought of as an n-dimensional
rectangular array of points. Here we would like to show that for region queries, an
optimal cluster of a balanced uniformly scattered addressing function is an n-dimen-
sional rectangular array of boxes, a box-array"

THEOREM 1. The infimum 1* is achieved by a box-array.
Theorem 1 is proved by using the following lemmas.
LEMMA 1. Let H be a uniformly scattered cluster with respect to M. There is a

subcluster H(k*) ofHfor which

Ncopy (H(k*)) NH.
LEMMA 2. Let ac (ai, ai) >- 0o and H be a bounded subset of R . Then

c’_c

LEMMA 3 ([7, Thm. 1 ]). Given a setH c_ R , there exists a boxB (H) R which has
the same volume as H, and whose projected volume on each Rc, c

_
{1,..., n}, is no

larger than the corresponding projected volume ofH. That is,

Izr(B(H))[ <_-}r(H)l for all c
_

{1,. ., n},

and [B(H)[ [HI.
Lemmas 1 and 2 will be proved later in this section; Lemma 3 is proved in [7].
Proof of Theorem 1 (based on Lemmas 1, 2 and 3). The proof is a simple

consequence of Lemma 1 and the following corollaries to Lemmas 2 and 3.
COROLLARY TO LEMMA 3. LetH belong to a box [b, b’] R . Then there is a box

B(H)_ [b, b’] that satisfies the conditions ofLemma 3.
Proof. Since the one-dimensional projections of the box B(H) are no larger than

the corresponding projections of H, the box can be translated into [b, b’] (projected
volume is invariant under translation).

COROLLARYTO LEMMAS 2 AND 3. For the boxB (H) in Lemma 3 and its corollary,

11
,n- (B (H))[-<]< zr (H)].



734 AZAD BOLOUR

Proof. The proof follows by noting that the inequality of Lemma 2 is tight for a box.
Thus, for c {1,..., n },

I*-- B (H)I c’_..., a, I’e,(B(H))I

<- , [ ai]lrre,(H)l (by Lemma 3)
c’c_{1,..-,n}

<-I HI (by Lemma 2).

For c c {1,..., n}, a similar proof can be used in Rc.
Now by Lemma 1 we can without loss of generality restrict attention to periodic

clusters in trying to achieve the infimum *. Let Ho+LI1, Ho__
[0, 1/M1) x. x[0, 1/Mn), be a periodic cluster. Then it follows from (8) that

NHo+L [Sc(ac)] 1<’ rc(g0)l FI (1 ai)

Let B(Ho) be the box associated with Ho in the corollary to Lemma 3 (where the
enclosing box is [0, 1/M1) x.. x [0, 1/Mn)). By using the corollary to Lemmas 2 and 3
in (10) we obtain

]QHo+Ll[Sc(ac)]>= (ie Mi)I ac 7rc(B(So))l/(ie (1--ai))
(11) -,

NB(Ho)+L? [Sc(ac)].

Since (11) is true for every similarity class Sc (ac), it follows by integrating the two sides
of (11) that

--! --!NHo+Lffi NB(Ho)+Lffi1.

Hence in searching for the infimum* it suces to restrict attention to box-arrays.
Proof ofLemma 1. Let H(k*) minimize -’Ncopy(H(k)) over all subclusters of H"

Ncopy (H(k*)) min (N’copy (H(k))).
kL

We will prove that

(12) -’ -’NH >= Nco’py (g(k*)).

Let a vector k 6 LM be represented as (kc ke) where kc, and ke are the projections of k
on LMc and LM respectively. Also, for notational brevity, let Ee denote integration
with respect to the measure P(Sc[ac])/1-Iic (1 ai), let mc Hic Mi, and m Hi=I Mi.
The proof relies on the fact that the average of a set of real numbers is bounded above
and below by the maximum and the minimum values in the set:

NH=E
\kc L "trc(H)(kc)l) (by (9))

ac I)(( rc(H(kc; ke)))

/

-->_E{ Z max l(
\kcMc keMc

rc (H(kc;
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r(H(k ke))l)
rc (H(k))l) (since

r (H(k))l)

But it is easy to see that

-’ Ee(mcl < (H(k))[),Ncopy (H(k)) /’c

and (12) follows.
Proof ofLemma 2.
SUBLEMMA 2.1 (Lemma 2 for n 1). Let H be a bounded subset of R. Then- HI--> a + ]HI.
Proof. Without loss of generality let inf (H)e H. Then

since H and - inf (H) are disjoint except for inf (H) (a set of measure zero) and they
both belong to [- HI. But - inf (H)I a. [3

SUBLEMMA 2.2. For a bounded subset H ofR ,
01

l* HI >-- a llrla,...,n (H)I + IHI.

Pro@ For (t2, t,,) E R2 x. x Rn let H/(tz, ., tn) denote the set of points in
H on the line of constant (t2,..., t), and treated as a subset of R l: HI(t2,’", tn)=
{tll (tl, t2,. , t)E H}. By Sublemma 2.1 the inequality holds for each of these lines:
-al (HI(t2,’’’, tn))[->a +[HI(t2,’", t)l. Sublemma 2.2 follows from integrating
the two sides of this inequality over all points (t2, , t,) r2,..., (H), since the sweep
of H over a is the disjoint union of the sweeps of its intersections with lines of constant
(t2,’’ ", t,) (lines parallel to the R axis). 71

Lemma 2 can now be proved by induction on the dimension of the sweep.
Sublemma 2.2 is both the basis and the principal relation used in the induction step. We
also need the following relations in the induction step.

R1. For c’ c_ c, c, 7rc(H) 7rc(-r-H), H
_
R .

R2. For c’
_

c, 7rc,(Trc(H))= 7rc,(H).
Suppose the lemma is valid for all sweeps of dimension j 1, 2 <_-/" _-< n. To prove the

lemma for some ac, with Icl =/’, assume without loss of generality that c {1, 2, ,/’},
and let c-={2, 3,...,/’}. Then

c c c cHI--I (< H)I => allrr{2,...,,( n)l/l< H (by Sublemma 2.2)
(13)

lc c
al< r{,...,n}(H)l + HI (by R1).

The lemma for ac follows by using the induction hypothesis on the resulting (/’-1)-
dimensional sweeps through ac- in (13). For - c- H, the induction hypothesis gives rise
to the terms [lqic, ai]lcr,(H)l, c’_ c- {2,. ., }, or c’_ {1,. ., }, 1 c’. For- 7r{2,...,,1 (H), the underlying Euclidean space is R2 x. x R,, so application of the
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induction hypothesis to all _ac_ 7./.{2,...,n (H)[ gives rise to the terms

al[i, ai] lTr{2,’",n}-c’ (gr{2,’",n} (H))] c’__c-={2," ’,/’}.

And by using the relation R2 these terms can be simplified to [l-[ic, ai]lrre,(H)[,
c’__{1,...,j}, lc’.

6. Opthnlzing the shape of a duster. To find an optimal box-array cluster, NB+L
should be minimized over all boxes B

__
[0, 1/MI) . [0, l/M,,] of a given volume

(l/b) 1-Ii=1 1/M. Let y,. , y, represent the dimensions of such a box. Suppose that
an estimate of the probability density Pe(&(a)) of the occurrence of different types of
queries is available. This may be the case, for example, in a well-established application
area in which there are few users, each of whom has a well-defined set of retrieval needs.
In this case, finding the optimal values of y 1," ", y, reduces to a well-known con-
strained optimization problem, which can be solved by standard iterative descent
algorithms. In particular,

(14) I-Ii (Yi + ai)

so that B+t becomes a positive polynomial in Y--(Yl,’’’, Yn) say p(y), and
the problem is to minimize this polynomial subject to the constraints
0 -< (Yl,’ Y.) -< (l/M1, 1/Mn), and 1],=1 Y, (l/b) I-I,=1 1/M. More details on
finding this minimum by iterative descent algorithms appear in [8].

In the event that estimating Pe(& (at)) is impractical, one may attempt to estimate
p(y) directly, by computing (14) for each incoming query and accumulating the results.
If this too proves impractical, a very simple procedure known as stochastic approxima-
tion [18] provides a heuristic for estimating the optimal values of y,..., y, directly.
Very briefly, the procedure begins with an initial guess at the optimal values of
y 1,’" ", Yn, and as each incoming query is observed, it adjusts this guess based on the
observed query, and on the number of queries observed so far. More details on this will
also be found in [8].

We conclude this section by deriving analytically the optimal shape of a box-array
cluster under some independence assumptions on the probability of queries. The results
show the combined effects of query probabilities and the widths of the specified ranges
on the optimal shape of a box-array cluster.

Suppose that a range of the ith attribute appears in a query with probability pi,

independently of the other attributes, and further that ranges of widths between 0 and e
are equally likely to be specified for the ith attribute. In that case,

and

(15)

Ps"(Sc(ac)) I-I.pi I-I (I-p/) I1
1 fi (1 pi) [I

ic ie iecSi i=1 ictl--pi)si

N+L’ [&(a)] = 1-I Mi
/(Y/+ ai)

ic. i(1-ai)

I-[ Mi(Yi + (1 + yi)ai)
ic

(when the widths a, e c, are small).

In order to find -’ -’Nn+tx, we can first integrate Nn+t,[&(a)] with respect to



OPTIMAL RETRIEVAL ALGORITHMS 737

dPe[Sc(ac)] over all queries specifying ranges for attributes in c, obtaining

I (piMi l(yi+(l+yi)ai)dac (wherec=(eil,’",ei,))
(16)

i=1

Nn+ra is then the sum of (16) over all combinations of attributes

/=1 c{1,...,n} 1 --pi/ 2

and we need to minimize this, subject to the constraints yi 1/Mi, 1 n, and

i=1 Yi lib /=1 1/Mi. A derivation similar to that of Aho and Ullman [1] can then
be used to show that if we ignore the inequality constraints the optimal dimensions of a
representative box are

[ pk(lk/2) ]l/n(1-pi)piMii/2
= (12)/2J pM(1 + e/2)

1Ni N n.

To see how these dimensions vary with the parameters in question, let 8 e/2 be
the average specified width of the ith attribute for 1N N n and let q (1-p)/p,
1 N N n. Then

(17)
1+

Suppose first that the average range of values specified for each attribute is the same.
From (17) it is then easy to see that y increases with increasing q (1 -p)/pM. Thus,
the larger is the value of p, the probability of specifying the ith attribute, the smaller is
the corresponding optimal dimension of a representative box.

The relationship between the optimal dimensions of a representative box and the
average specified range of each attribute is somewhat more complicated. To illustrate,
let us fix the values of p, 1 N n, at some constant value p, and those of M, 1 N N n, at
some constant value M, and let q (1-p)/pM. Then

y + & 1 +

and this relative magnitude depends on the value of q. For small q (q < 1) the
relationship between y and g is positive (y increasing with increasing g), whereas for
large q (q > 1) this relationship is negative (y decreasing with increasing ). To explain
this phenomenon, notice that q is less than one if and only if p is greater than 1 /(M + 1).
So for large probabilities of the occurrence of attributes in a query, the relationship
between
attributes in queries this relationship is negative. This becomes clear if we consider the
two extreme cases where one of these probabilities is very large.

If p is close to one, the only queries that have any significant probability are queries
specifying ranges for all the attributes. Consider, for simplicity, one similarity class
such queries, S,....(a,.. , a). The fraction of queries here that intersect B +L is

M(y + a)
(la

i= 1- ai
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It is then easy to justify that subject to the constraint 1-[i= yi-- 1 IbM the minimizing
values of y a, , yn in (18) are proportional to the values of a a, , an respectively. In
other words, to minimize the number of queries intersecting a box of a given volume,
the shape of this box must "match" the shape of each query region.

If, on the other hand, 1-p is close to one, then the only queries with significant
probability are queries specifying a single range of values for an attribute. Considering
for simplicity only queries specifying ranges of given widths, say a a,..., an for the

’’, N+- becomes1st, nth attributes respectively,

(1 _p)n- pM(yi + a,).
i=1 1 --ai

It is again easy to verify that subject to the constraint Hi= Yi 1/bMn, the minimizing
values of y l, yn here are proportional to (1-a), , (1- an) respectively.

7. Conclusion. Let y 1", , y * be the optimal dimensions of a representative box
in a box-array cluster. Then [0, 1)n can be partitioned into optimal box-array clusters, if
and only if [0, 1/M)... [0, 1/Mn) can be partitioned into boxes of dimensions
y,..., y*. If this is possible, then any partition of [0, 1) into optimal box-arrays
defines an optimal addressing function with respect to N’. Of course, such an exact fit is
quite rare, and in general the values y *, , y * would have to be adjusted somewhat to
achieve this (i.e., to exactly divide 1/M,..., 1/Mn respectively). Following is one
heuristic procedure for this adjustment. Let ya,..., Yn denote the approximating
dimensions and let bi (1/Mi)/y, 1 <= <-_ n (these must be positive integers). Initially let
bi [(1/Mi)/y*i]. Note that the total number of buckets I-Ii=l bi may now be consider-
ably larger than the prescribed total b.. So it may be possible to more closely approximate
the prescribed number of buckets by decreasing one of the bi’s. Decreasing the largest b
leads to the least change in I]= b and we may try that first. Thus, we can successively
choose the largest bi and decrease it by 1 as long as such a change keeps i= bi above
the prescribed number b. The approximating dimensions may then be found by letting
yi (1/Mi)/b, 1 <- <-_ n. (See also Rothnie and Lozano [19].) (The number of buckets is
not allowed to go below the prescribed number in order to minimize bucket overflow.)
While such an adjustment changes the shape and size of a cluster from its optimal shape,
and prescribed size, the changes were found computationally to be quite tolerable. (A
detailed examination of such roundoff errors appears in [7] which deals with partial-
match queries, but which is also sufficient for the present problem since the optimization
problem considered there is identical to the present one.)

Perhaps the simplest partition of [0, 1) into box-array clusters is obtained by using
periodic clusters. It yields the following addressing function which is a simple combina-
tion of order-preserving and randomizing functions:

mod 1/(Mxyl*),... mod 1/(Mny*) (h one-to-one).

But the clusters need not be periodic for optimality with respect to NH, and many other
optimal designs with respect to the approximate cost, N’, are possible as well. To
complete the suboptimal design process described in 4, it is now necessary to
choose that partition of [0, 1)n into optimal box-array clusters that minimizes the actual
cost function N. The choice is an "alternating" box-array function defined as follows.

DEFINITION. An alternating piecewise constant addressing function of half-
period 1/M is a function h" [0, 1){0, 1,..., b- 1}, which is constant over intervals
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[k/Mb, (k + 1)/Mb), O<=k <Mb, and is defined by

_IMb’ - ])
[(b-1)-k mod b,

Fig. 5 illustrates this definition.

even,

0 2 3 3

0 2 3
12 12 12 3

2 0 0 2 3

FIG. 5. An alternating piecewise constant addressing ]:unction. M 3, b 4.

An alternating box-array addressing function of half-period vector (l/M1, .’’,

1/M,) is a function

h=h(hl,..., h,)" [0, 1)" {0,... ,bl... b,-1}

(h one-to-one) in which for each i, 1 <_-i <_-n, h is an alternating piecewise constant
function of half-period 1/M, from [0, 1) onto {0,..., b- 1}.

LEMMA 4. Consider the class o]’ all uniJ’ormly scattering box-array addressing
]unctions, h, with respect to (M,... ,M,), such that h =h(h,... ,h,)" [0, 1)"-->
{0,..., b... b,-1}, with h one-to-one, and hi’[O, 1)-->{0,..., hi-l}, for fixed b,
1 <-i <-n. Among these, the alternating box-array ]unction minimizes the number o]’
clusters intersecting any region query.

Pro@ Without loss of generality let c {1, , n }. Let [v, v + a] be a given query
region. Any box-array addressing function with the given specification divides each box
of the underlying partition into bl b, identical boxes belonging to different clusters.
And the query region [v, v + a] intersects a fixed number of these subclusters in each box
of the underlying partition, independently o]’ the particular ]unction used. Now let
re[v, v +a] be the maximum number of subclusters that intersect [v, v +a] in any one of
the boxes of the underlying partition, and consider a function h with the given
specifications. The number of clusters of h that intersect [v, v + a] is certainly no smaller
than m[v, v+ a]. But it is easy to see that the number of clusters of the corresponding
alternating box-array function intersecting [v, v +a] is exactly m[v, v +a]. [3

Let us now turn to the choice of the integers M,. , M,. Because the proposed
functions are balanced in every box of the underlying partition, if the density of records
were uniform across each of these boxes, an approximately equal number of records
would be mapped into each bucket for each box. Hence, irrespective of interbucket
density variations, an approximately equal number of records would be mapped into
each bucket. If possible, then, the partition should be fine enough that within its parts
the records are approximately uniformly distributed. But while considerations of
uniformity tend to favor finer underlying partitions, for efficiency with respect to region
queries coarser partitions are more desirable. Thus, the more important an attribute is
in forming queries, the coarser should be the initial partition on that attribute.

Since the underlying partition is the Cartesian product of partitions on each
attribute space, the question is how fine a component partition to choose for each
attribute. We can distinguish between several types of attributes in deciding this. There
are "continuous" attributes such as age and weight for which range queries are clearly
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meaningful and can be expected to be prevalent. Such attributes can often be parti-
tioned into a number of equal intervals over which the records are approximately
uniformly distributed. Of course, these intervals should be somewhat larger than the
maximum width of a range query on the corresponding attribute for which the
addressing function is to be useful. Discrete attributes, on the other hand, often have
either very few possible values (for example, male and female for the attribute sex), or
very many possible values (for example, the set of possible last names). Also, the
ordering of the values of such attributes is quite often somewhat arbitrary. Because
range queries are then quite unlikely for these attributes, there is somewhat more
flexibility in choosing the corresponding initial attribute partition. It would make sense,
for example, to use an initial partition of the attribute sex into male and female, so that
the clusters become "unbiased" to sex. Since there would usually be widely different
numbers of men and women represented in a database, such an initial partition would
tend to equalize the number of people represented in each bucket. By contrast, if the
attribute sex is not initially partitioned it is possible for its bi value in the final
multiple-key hashing procedure to be 2. In that case half of the buckets will contain
records of males only, while the other half will contain records of females only, and this
could lead to considerable nonuniformity in the number of records in each bucket. An
attribute like last name, on the other hand, should not be partitioned at all initially, but
the final component function on it should be completely randomizing, not order-
preserving. If range queries are unlikely on last-name, there is little lost in retrieval
efficiency by choosing a completely randomizing function for last name, but much is
gained in uniformity with respect to addresses.

The design of a suitable addressing function in a given situation, then, begins by a
subjective decision on the characteristic of the underlying partition, based on the
foregoing guidelines. It then proceeds by an objective evaluation of an optimal
box-array cluster, and ends with a heuristic algorithm for adjusting the shape of optimal
clusters to achieve an exact fit of clusters in the record space.
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LIMITATIONS ON SEPARATING NONDETERMINISTIC COMPLEXITY
CLASSES*

CHARLES W. RACKOFFS" AND JOEL I. SEIFERAS

Abstract. If the time bounds defining two nondeterministic complexity classes are too close for
separation by the two known techniques, then they are almost too close for separation by any relativizable
technique. Proof of an analogous result for space would be a major breakthrough, implying NSPACE
(log n) DSPACE(log n).

Key words, complexity hierarchies, computational complexity, time complexity, nondeterministic
computation, relativized computation, query machines

The question of whether NTIME(T2)- NTIME(T1) is nonempty is considered in
[5]. If log T2(n) O(Tl(n)),l then straightforward diagonalization is possible via
deterministic simulation, assuming Tz is sufficiently "honest". If Tl(n + 1)= o(Tz(n))
(or, alternatively, if both Tl(n + 1) O(Tz(n)) and Tl(n) o(T2(n))), then "trans-
lational diagonalization" is possible, again assuming Tz is sufficiently honest. If neither
condition holds, then the question is open; we know of no applicable third technique.
We show here that in some sense there is no significant third technique.

The sense in which there is no significant third technique is similar to the sense in
which no "ordinary" diagonalization can prove P CNP [1]. Both straightforward
diagonalization and translational diagonalization work even for relativized compu-
tation. We show that no third technique yielding significantly new results can work for
relativized computation.

A nondeterministic query machine, our model of relativized computation, is a
nondeterministic multitape Turing machine [2] one of whose worktapes, the "query
tape", is used to submit queries to an oracle for some language (set of finite strings of
characters from some finite alphabet). When such a machine enters its distinguished
"query" state, the next state is either the distinguished "yes" state or the distinguished
"no" state, depending on whether the character string written on the nonblank portion
of the query tape does or does not belong to the oracle’s language.

An input string x belongs to the language accepted by a nondeterministic query
machine if at least one of A/’s computations on input x halts in J//’s distinguished
"accept" state. A/accepts its language within time T, where T(n) >-_ n is a nondecreasing
function from and to the set N of nonnegative integers, if each accepted string x is
accepted within T(Ixl) steps in at least one computation, where Ixl denotes the length
of x. NTIMEA(T) is the class of all languages (over all finite alphabets) accepted within
time T by nondeterministic query machines with oracle set A.

THEOREM. If log T2(n O(Tl(n )) (barely ruling out straightforward diagonaliza-
tion and T2(n o( T1 (n + 1)) (ruling out translational diagonalization ), then there is an
oracle set A such that NTIMEA(T2) NTIMEa T1) is empty.

Remarks. (i) The second condition is only close to the negation of the condition for
translational diagonalization.

* Received by the editors July 10, 1980, and in revised form December 15, 1980.
Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A7.
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(ii) It does not immediately follow that NTIMEA(cT2)_ NTIMEA(T1) holds for
every c. Whether the well known unrelativized result NTIME(cTz)_NTIME(T2)
("linear speed-up") carries over to relativized computation depends on the details of
how inquiries can be submitted to the oracle. (To speed up submission of inquiries
seems to require the ability to write several inquiry characters per step.) If T2
satisfies the hypotheses, however, then so does some T with T2(n)= o(T’2 (n)). This
does give a fixed oracle set A such that for every c, NTIMEA(cT2)_
NTIMEa(T)

_
NTIMEa(T1).

(iii) If we limit ourselves to oracle sets over just {0, 1}, then we get only the weaker
conclusion that NTIMEA(T2)

__
NTIMEA(cTx) for some c (possibly greater than 1). By

slightly strengthening the first hypothesis, however; the following corollary does restore
the stronger conclusion.

COROLLARY. If log T2(n)=O(Tl(n)) and TE(n)=o(Tl(n + 1)), then there is an
oracle set A over the alphabet {0, 1} such that NTIMEa(T2) NTIMEA(T1) is empty.

Example. For some oracle set A over {0, 1}, NTIMEA(2")
NTIMEA(22"+1/log* n). The unrelativized version of this question was raised explicitly
in [5]. (The value of log* n is the number of times we must iterate the base-2 logarithm,
starting with n, to get down to 1.)

Proofofcorollary. The hypotheses are also satisfied by T2 and some T o(T1). By
the theorem, there is some oracle set A’ for which NTIMEA’(T2)_ NTIMEA’(T).
If we encode A’ over {0, 1} in a straightforward manner, then we get an oracle set
A over {0, 1} such that NTIMEA(T2)

_
NTIMEA’(T2)

_
NTIMEA’(T

_
NTIMEA(O(T’)) NTIMEA(T1). [-]

Proof of theorem. Since our conditions are not affected by multiplicative factors,
the result is insensitive to the details of our particular notion of relativized Turing
machine computation. For our particular notion, we can actually weaken the second
condition to just n =o(T(n / 1)-TE(n)). Below, we use this hypothesis in the form
n o(t(n)) for t(n)= [(Ta(n)- T(n 1))/2/.

So that we can consider alphabets of all finite cardinalities, we assume each
alphabet is included in the set N of nonnegative integers, and we encode N* (finite
strings of nonnegative integers) over a single finite alphabet. A suitable encoding
h "N*-{0, 1}* is given by h(n.., hi) =0nl+l 10nt+ll.

We select A over some large alphabet ,E (containing both 0 and 1) to "encode
NTIMEA(T2) in an NTIMEa(T1)-decodable manner". To do this, we simultaneously
define an auxiliary "certificate function" f" N N* - ,E*. Membership of h(i)h(x)f(i, x)
in A will certify that NQM/A (the ith nondeterministic query machine, with oracle set
A) can accept x N* within Tz(IXl) steps. Our complete specifications for A and f are
the following:

(1)

(2)

If(i, x)l Ta(lxl)- t([x[),
A {h(i)h(x)f(i, x)INQMa accepts x N*

within T=(Ixl) steps, and Ih(i)h(x)l t(Ixl)}.
Assuming these specifications have been met, consider any language L, say over the
finite alphabet F

_
N, accepted within time T.(n) by NQM/A for some i. (If NQM/A does

not accept its language L within time T2, then we do not have to show that L
NTIMEA(T1). As a bonus, however, the argument will work on the subset L’_ L of
strings x which NQM/A can accept within T(Ixl)steps.) Since n o(t(n)), Ih(i)h(x)l<=
t(Ixl) will hold for all but finitely many x F*. Hence, a finite variant of L will be
acceptable within time Tl(n) by writing down h(i)h(x) (at most t(Ixl) steps) followed by
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a guess at f(i, x)(Tl(IXl)- t(Ixl) steps for a correct guess), and asking the oracle whether
the result belongs to A. Thus, the proof will be complete if we can find A and f satisfying
(1) and (2).

The value of f(i, x) matters only for (i, x) (.J D, where D {(i, x)[ Ix] n, and
[h(i)h(x)[ <= t(n)}. In stage n, we extend f toD and put into A an appropriate selection
of strings h(i)h(x)f(i, x) with (i, x)D. Here is how we do it:

NCMA-o-While f(i, x) is not yet defined for some (i, x) D for which accepts x
within T(n) steps in some computation, "protect" every string queried in a chosen one
of these computations, choose f(i, x) from Er(n-t("-{y]h(i)h(x)y is protected}, and
put h(i)h(x)f(i, x) into A. On completion of this while-loop, the value of f(i, x) will not
matter for remaining (i, x) e D.

No string protected in an earlier stage is longer than T(n 1) < rl(n) t(n), so no
earlier stage disqualifies any string h(i)h(x)y above. From the hypothesis log T(n)=
O(T(n)) and the fact t(n)<- Tl(n)/2, it follows that [-1 Tl(n)-t(n) ) 2t(")T2(n) if , is large
enough. (This does not require that n be large.) Thus, all of stage n protects fewer than
IX[ TI(")-t(") strings, and it is always possible to choose f(i,x) as stipulated. This
guarantees that (1) is satisfied, and the persistence of the while-loop and the protection
it provides insure that (2) is also satisfied, lq

Finally, let us note that to prove an analogous theorem for space, if it holds, would
require a major breakthrough. To obtain the analogous assertion, one replaces
"TIME" by "SPACE", and the condition log T2(n)= O(Tx(n)) by T2(n)/2= O(T(n))
to rule out straightforward diagonalization via deterrriinistic simulation [3]. We show
below, however, that the result would imply NSPACE(log n) DSPACE(log n);
although the latter is likely, it is one of the most notoriously elusive conjectures in
theoretical computer science [4]. (Our space bounds do include the space used on the
query tape, and our proof of the lemma below does depend on that convention.)

Consider space bounds S and 82 which satisfy the hypotheses S2(t/) 1/2-- O(Sl(n))
and S2(n)= o(S(n / 1)) and which also satisfy log n -<_ Sl(n)= o(S2(n)) and are "space
constructible" [2] (an appropriate notion of "sufficiently honest"). For example, take
Sl(n) 22" and S2(n)= S(n)5; then even S2(n)/2= O(Sl(n)) holds. If the analogous
NSPACE version of our theorem held, then we could find an oracle set A such that
NSPACEA(S) NSPACEA(Se). If S and S are intermediate space constructible
bounds, in the sense Sx=o(S)=o(S)=o(S2), then NSPACEA(O(S’))
NSPACEA(O(S’2)). On the other hand, DSPACEA(O(S’)) DSPACEA(O(S’2)), by
straightforward diagonalization. Therefore, NSPACEA(O(S)) DSPACEA(O(S)) for
some space constructible bound S (either S or S’) Hence, NSPACEA(O(log n))
DSPACEA(O(log n)), by a padding argument [3]. The lemma below shows that this

finally implies the very strong unrelativized conclusion NSPACE(log n)
DSPACE(log n).

LEMMA. /f NSPACE(log n)= DSPACE(log n), then NSPACEA(O(log n))=
DSPACEA(O(log n)) for every oracle set A.

Proof. Assume NSPACE(log n) DSPACE(log n), and consider any language L
belonging to NSPACEA(c log n), say via nondeterministic query machine J//. Design
eg’ to behave on input x # y, where # is a new delimiter symbol and y is a string of O’s
and l’s, like //on input x. Instead of querying the oracle, however, //’ should treat y as
the characteristic sequence of those members of the oracle set up to length c log Ix I. If y
is not the right length or if J//would be led to use more than space c log Ix[, then A/’
should not accept. Because our space bounds do include the space used on the query
tape, ’ will not run into a query too long to look up in y (i.e., longer than c log Ix[).
Since ///’ requires only space O(log Ix # y I), the language L’ it accepts belongs to
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NSPACE(log n), and hence to DSPACE(log n); let ,//" deterministically accept L’
within space O(log n), without queries. Finally, design deterministic query machine /’"
to behave on input x like" on input x # y, where y really is the characteristic sequence
of those members of the oracle set up to length c log Ix[. The space required by ’" will
be O(log Ix # yl)= O(log Ix]), so L belongs to DSPACEa(O(log n)). [3
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COVERING GRAPHS BY SIMPLE CIRCUITS*
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Abstract. We show that any biconnected graph with n nodes and rn edges can be covered by simple
circuits whose total length is at most min (3m, m +6n). Our proof suggests an efficient algorithm for finding
such a cover.

Key words, graph algorithms, Eulerian subgraphs, edge connectivity

1. Introduction. A family C1," , C, of simple circuits of an undirected multi-
graph G (V, E) covers G, provided each edge of G is in one of the circuits. The
size of such a family is then the sum of the lengths of the circuits C1," ", Cm. We
are interested here in the question of finding covers of minimum size. Clearly, we can
restrict our attention to 2-edge-connected multigraphs; that is, if a graph has a bridge,
then it has no cover at all.

This problem bears a superficial similarity to the Chinese postman problem, in
which one seeks to find the minimum number of edges that have to be added to G
so as to result in an Eulerian multigraph. The difference is best exhibited by the
famous Petersen graph (Fig. 1.a). There is an Eulerian supergraph of this graph with
20 edges, and this is best possible (Fig. 1.b). However, its minimum size cover is 21
(Fig. 1.c).

This problem of minimum cover size was first considered in [IR] where its
application to irrigation systems was described. It was shown in [IR] that there is
always a cover of size IEI / 2[ v[ log Iv[ and that this cover can be found in average
time O(I VI2). Here we will show that every 2-connected multigraph has a cover of size

min {31El- 6, IE[ + 6. IV[- 7},

thus improving the previous results for sparse graphs. This cover can be found in
O([ V[2) time.

Our construction relies heavily on that used by Jaeger [Ja] for showing that every
2-edge connected graph has a nowhere-zero flow modulo 8. Jaeger’s paper does not
contain full proofs and algorithms, and hence many of our results are only motivated
by his. Matthews [M] also deals with a related problem; however, he misquotes Jaeger
and is also subsumed by Jaeger.

In 2, we show that in order to find a small size cover for a dense multigraph it
suffices to find one for an efficiently extracted sparse one. We also give a general
technique whereby, given a spanning tree T, one can find a cover of all the edges
except perhaps for certain edges of T. In the next section, we show that, if the
multigraph is 3-edge connected, then its edges can be covered by three Eulerian
subgraphs. Then, in the next-to-last section, we extend this result to 2-edge connected
multigraphs, which yields the bound sought. Finally we show that our cover can be
found in o(]g]2) time.

* Received by the editors August 21, 1979, and in final revised form January 7, 1981. This research
was supported in part by the National Science Foundation under grants MCS77-12517, MCS77-01192,
and a Miller Fellowship.
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2. Reduction to sparse graphs. If a graph is sparse (i.e., o(Ivl)), then it
seems reasonable to expect that there exists a cover of size O([E[). Therefore, following
[IR], we will reduce the general problem to that of sparse multigraphs. As usual, an
Eulerian subgraph of G is a subgraph of G consisting of edge-disjoint circuits (notice
it need not be connected).

LEMMA l. Let T V, ET-) be a spanning tree of G V, E). Then there exists an
Eulerian subgraph Ho V, EHo Of G with EHo F_- ET.
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Proof. E, is constructed by successively deleting edges. Initially E,o E. We
then perform a depth-first search (DFS) on T. Each tree edge is traversed twice, once
in the forward direction and once backwards. If when a tree edge (u, v) is traversed
backwards from v to u the degree of v is odd in the current E,o, then delete the
edge (u, v) from E,o. On termination, all vertices are of even degree in E,o, and
hence H0 (V, E,o) is an Eulerian subgraph of G. 1

Note that the construction of this lemma can be done in O(IEI) time whether T
is a DFS tree or not.

In order to find a cover of G, one has to cover the edges of E E,o Er. However,
T is not a 2-edge connected multigraph and our method is not immediately applicable
to it. We therefore augment T into such a graph.

Suppose that T is a DFS tree. We call an edge (u, v) of E-Era lowest frond if
u is the ancestor of all vertices w for which (v, w)e E-Er. Let us define the graph
H (V, E,) where E, is T and all the lowest fronds. H is then 2-connected, has at
most 21V1-2 edges, and contains all the uncovered edges of H0 as required. We
summarize this as follows"

COROLLARY 1. Suppose that one can find in time t(lvl, IEI) a cover of size
s ([ V], IE[) + IEI ]:or any 2-connected multigraph G (V, E). Then we cn find a cover

of size IE[ + s(] V], 2[ V[- 2) in time t(I VI, 2[ V]- 2) + O(IE[).
3. Covering a 3-edge connected graph. The following lemma could have followed

directly by applying Edmonds’ matroid partitioning theorem lEd 1] to the co-tree
matroid of G. Our proof, however, suggests a more efficient algorithm.

LEMMA 2. Let G (V, E) be a 3-edge connected multigraph. Then G contains
three spanning trees Ti =(V, ET,) (i= 1, 2, 3) such that ET, ET ET3 .

Proof. Let D (V, A) be the directed multigraph derived from G by replacing
each edge by two arcs, one for each direction:

A ={(u, v)l[u, v] is an edge of G}.

Let v be a vertex of V. By Menger’s theorem on G, there exist three edge-disjoint
paths from v to any triple of nodes of V. Hence, by the theorem of Edmonds lEd 2i,
there exists three arc-disjoint directed trees B1, B2, B3 rooted at v. Let T1, T2, T3 be
the underlying undirected trees. Each edge of G corresponds to two arcs of D, and
hence it can appear in at most two of the undirected trees. Thus,

From Lemma 1, each of these trees Ti (V, Er,) of Lemma 2 induces a cover
of (V, E- ET,). Therefore, C1 U C2 U C3 is a cover of G.

THEOREM 1. Let G be a 3-edge connected multigraph. Then G can be covered
by three Eulerian subgraphs.

Using Tarjan’s algorithm [Ta], the tree can be found in o(IvI, I 1) time. For
dense graphs, Shiloach’s algorithm [Sh] finds the trees faster (in time O(]V[2)), but
this is immaterial here since by Corollary 1 we need consider only sparse graphs (i.e.,

4. Covering a 2-edge connected graph. Theorem 1 can be strengthened to yield
the next theorem.

THEORZM 2. Let G (V, E) be a 2-edge connected multigraph. Then, G can be
covered by three Eulerian subgraphs.

Proof. We proceed by induction on the number of nodes of G. If IV] 1, then
the result is obvious since G consists of loops only. Now consider a multigraph
G (V, E) with VI > 1. By Theorem 1, we can assume that G is not 3-edge connected.
Thus there exists a pair (x l, x2) and (y l, y2) of edges that disconnect G into two
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components G1 and G2 (Fig. 2). Now create two new multigraphs G and G by
deleting these edges and replacing them by two new edges (Xl, yl) and (x2, y2). Since

G G2

FIG. 2

G and G both have fewer than VI vertices, by our induction hypothesis they can
be covered by three Eulerian subgraphs each. Let these Eulerian subgraphs have edge
sets, El, E2, E3 (for G) and F1, F:, F3 (for G;). By renaming, we may assume that

(X1, Yl) El, El,

(Xl, y) Ei, j> i,

(X2, Y2) G Fa," Fi+k,

(x2, Y2) Fj, j > + k.

Without loss of generality, assume k _-> 0. There are two cases following from this.
Case 1. (k 0). The following Sa, $2, $3 is a cover for G:

&=lEOV,.-{(x,l y)’ (x, y)} tA {(x, x), (y, y)}

E UF,.
if (Xl, Yl) Ej,
otherwise.

Case 2. (k >0). We finda new coverF,F.,F of G& by replacingF/+l, ,F/+
by

Then the new covers E, E2, E3 and F, F&, F satisfy the conditions of Case 1. ffl

5. Time bounds. The cover of Theorem 2 can be found in o(IE[) time by first
finding separating pairs of bridges repeatedly until the graph is decomposed into
3-edge connected graphs (time o(Ivl, then finding three spanning trees for
each component (time O(IVI) by Shiloach’s algorithm [Sh]), then get the cover by
Lemma 2 and finally combine the partial solutions together. This last may possibly
require rearranging the Eulerian subgraphs as in case 2 of Theorem 2 (time O([E])).
If we first use the reduction to sparse graphs by Corollary 1, then the entire algorithm
runs in time O(I VI).

6. Conclusions. We show that any 2-edge connected multigraph can be covered
by three Eulerian subgraphs. If three Eulerian circuits are required, then each may
contain at most ]El- 2 edges; therefore, any graph with ]El edges can be covered with
a set of circuits of total length 31El-6.

If we apply the reduction of 2, then the graph H0 (V, Eno) has at most IEI- 1
edges (otherwise we are done); whereas H (V, En) has at most 21VI-2. Therefore
the total number of edges in the three Eulerian subgraphs of H and H0 is IEI + 61VI- 7.

Several problems remain open. There is no known graph which requires covers
of size significantly larger than E. Thus, one may expect that the multiplicative constants
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in our bound

min {]EI+6. IVI-7, 3[E[-6}
can be improved. It seems that the additive constants can be improved quite easily.

Finding the three spanning trees requires time O([ V[2), and this dominates the
time bound. The reduction of 4 also requires O(1 V]2) time. However, an alternative
based on Jaeger’s original construction and the partition of the graph into tri-connected
components [HT] would require O([EI) time.

Finally, nothing is known about the complexity of minimizing the size of the
cover of G. We conjecture that it is NP-complete.

lEd

lEd 2]

[HT]

[IR]
[Ja]

[Sh]

[Ta]

[M]
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POWER OF NATURAL SEMIJOINS*
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Abstract. A semijoin is a relational operator that is used to reduce the cost of processing queries in
the SDD-1 distributed database system, the RAP database machine, and similar systems. Semijoin is used
in these systems as part of a query pre-processing phase; its function is to "reduce" the database by
delimiting those portions of the database that contain data relevant to the query. For some queries, there
exist sequences of semijoins that "fully reduce" the database; those sequences delimit the exact portions
of the database needed to answer the query in the sense that if any less data were delimited then the query
would produce a different answer. Such sequences are called full reducers.

This paper characterizes the queries for which full reducers exist and presents an efficient algorithm
for constructing full reducers where they do exist.

This paper extends the results of Bernstein and Chiu [J. Assoc. Comput. Mach., 28 (1981), pp. 25-40] by
considering a more powerful semijoin operator. We consider "natural" semijoins instead of the "single
attribute" semijoins of Bernstein and Chiu. A novel feature of our treatment is an extensive use of the
"tableau methodology" of Aho, Sagiv and Ullman [SIAM J. Comput., 8 (1979), pp. 218-246] to prove the
nonexistence of full reducers for a broad class of queries.

Key words, semijoin, database theory, query processing, tree database schema, acyclic database schema

1. Introduction. A major feature of relational database systems is their support
of high-level query languages based on the relational calculus or algebra of [Codd].
These languages permit users to express queries in a concise and logical manner,
without regard for execution efficiency. Translating these queries into efficient pro-
grams is the responsibility of the query processing algorithm of the database system.
Many query processing algorithms have been described for relational systems imple-
mented on "conventional" computing hardware (e.g., [ASU], [CM], [Gotlieb],
[Pecherer], [Rothnie],.[SACLP], [SC], [WY], [Yao]). In this paper we are concerned
with aspects of query processing that arise in certain nonconventional database
architectures, namely distributed database systems such as SDD- 1 [BGWRR], [RBFG]
and "associative memory" database systems such as RAP lOSS].

The query processing algorithms of SDD-1 and RAP make extensive use of a
relational operator called a semijoin. A semijoin is "half of a join’’2" the semijoin of
relation R1 by relation R2 is defined to be the join of R and Re projected back onto
the attributes of R1. In other words, the semijoin retrieves all tuples of R that join
with any tuple of R2. While semijoins are not powerful enough to solve arbitrary
relational queries, they can often reduce the cost of such solutions in SDD-1, RAP
and similar, systems.

Example 1.1. Suppose relations EMP (employee, specialty, department) and
DPT (department, location, manager) are stored at different sites of a distributed
database (see Fig. 1.1). Consider the query: List the employee, department and
manager of all employees whose specialty is "sneakers" and whose department is
located on the "3rd floor". To answer the query, EMP and DPT must be joined.

* Received by the editors December 11, 1979, and in revised form October 29, 1980. This work was
supported in part by the National Science Foundation under grants MCS-77-05314 and MCS-79-07762,
by the IBM Corporation under an IBM Graduate Fellowship, and by the Advanced Research Projects
Agency of the Department of Defense under contract N00039-77-C-0074, ARPA order 3175-6. The
views and conclusions contained in this document should not be interpreted as necessarily representing
the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S.
Government.

" Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138.
Semijoin is called "implicit join" in lOSS].
Relational terminology is defined in 2 and 3.
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a) Initial state

EMP (employee, specialty, department)
smith sneakers, shoes
jones sneakers sporting gds

brown pants mens

black skirts womens

DPT department, location, manager)
shoes 3 scholl
sporting gds, 2 wilson
mens 3 cardin

womens 2 dior

b) Apply local operations: Restrict EMP to ’sneakers’ experts; restrict
DPT to’3rd floor’ departments’

EMP (employee, specialty, department) DPT (department, location, manager)
smith sneakers, shoes shoes 3 scholl

jones sneakers, sporting gds mens 3 cardin

c) Use semijoin to further reduce EMP: Eliminate tuples s.t department

z" .shoes, mens
EMP (employee, specialty, deportment)

smith sneakers, shoes

d) Use semijoins to further reduce DPT:Eliminate tuples s.t. department

DPT (department, location, manager

shoes 3 scholl

FIG. 1.1. Reducing a database state.

intersite communication is a major cost of query processing in SDD-1 [BGWRR];
to reduce this cost, the size of each relation must be reduced before the join is
attempted.

Two tactics are available for reducing the size of relations. One is local processing;
e.g., EMP should be restricted to "sneakers" experts and DPT restricted to "3rd
floor" departments before the join is attempted. See Fig. 1. lb. To reduce the relations
further, semijoins may be used. By transmitting the set of "3rd floor" departments
to EMP it is possible to compute "EMP semijoin DPT" which retrieves all "sneakers"
experts who work for "3rd floor" departments; see Fig. 1.1c. If we subsequently
transmit the set of department values from EMP to DPT, we can compute "DPT
semijoin EMP" which retrieves all "3rd floor" departments that employ "sneakers"
experts; see Fig. 1.1d. These semijoins are cost-effective if the amount of data
eliminated from the database exceeds the quantity of data transmitted to compute
the semijoins.

Semijoins are used in a similar fashion in RAP. RAP is a hardware database
machine that includes restriction and semijoin instructions, but no join instruction.
To compute a join, the relations involved must be transmitted to a conventional
computer. Semijoins are used as in Example 1.1 to reduce the amount of data
transmitted. Hardware semijoin instructions are also provided by the CAFS [Babb]3

and CASSM [SE]4 database machines.

Semijoin is called "join using bit array" in [Babb].
4 Semijoin is called "match" in [SE].
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To use semijoins most effectively in these systems, it is important to understand
which sequences of semijoins are most effective in reducing the size of relations. A
sequence of semijoins ]ully reduces relation R for query q if it maximally reduces the
size of R; i.e., it eliminates from R all data not needed to answer q. For example,
the semijoins in Example 1.1 fully reduce EMP and DPT for the given query. A
sequence of semijoins is a ]ull reducer for q if it fully reduces every relation in the
database, for all states of the database. Not all relational queries have full reducers.

The principal issue in semijoin theory is to characterize those queries for which
full reducers exist, and to generate algorithmically the full reducer when it exists. This
issue was first addressed in [BC]. That paper studies the class of equifoin queries and
single attribute semifoins. (Equijoin queries are essentially the ones studied by [ESW],
[BGWRR], [HY], [SACLP], [WY]; single attribute semijoins are limited to using a
single column of one relation to reduce another relation.) [BC] partitions the equijoin
queries into subclasses called tree queries and cyclic queries, and proves that an equijoin
query has a full reducer composed of single attribute semijoins iff it is a tree query.
In addition, a linear time algorithm is presented that tests whether an equijoin query
is a tree query and constructs a full reducer for it if it is a tree query.

In this paper we study the class of natural loin (NJ) queries and general, natural

semifoins. An NJ query computes the natural join of all relations in the database; a
natural semijoin is half a natural join. On the surface the class of queries is trivially
small; indeed for a given database there is exactly one NJ query! However, in Appendix
A we show that every equijoin query can be translated into an isomorphic NJ query
by renaming attributes in the database. Thus we lose no generality (relative to equijoin
queries) by limiting our attention to NJ queries.

The paper is organized as follows. Section 2 defines our terminology. In 3 and
4 we prove that an NJ query has a full reducer composed of natural semijoins iff it
is a member of an expanded class of tree queries. Section 5 presents an efficient
membership algorithm for the expanded class of tree queries. Appendix C extends
our results to queries with "target lists".

Other work on semijoin theory appears in [BC], [BG], [BG2], [Ch], [YO], [Yol].

2. Terminology.
2.1. Relations and databases. Our terminology follows [ASU], [MMS]. A uni-

verse U is a finite set of attributes {A1,..., Am}. A relation schema Ri is a subset of
U, and a database schema D is a set of relation schemas. Associated with each A U
is an infinite domain, dom (A). The domain of relation schema Ri is dom (Ri)
dom (A//), where Ri--{All,"" ,Ail}. m relation state for Ri is a finite subset of
dom (Ri); this state can be visualized as a table of data whose columns are labeled by
{A/l, All}. A database state for D is an assignment of relation states to its relation
schemas.

Notationally, we use RI,"’, Rn to denote relation schemas and R1,"’,
(with possible superscript) to denote states for these schemas. Elements of a relation
state are called tuples; ri (with possible superscript) denotes a tuple of Ri. We use
D {R,..., R,} to denote a database schema and D (with possible superscript) to
represent a state for D. Ri(D) denotes the relation state assigned to Ri by D. Also,
we assume that U U i=ln Ri.

We define a partial order over database states for a given schema. Let D and D’
be states for D. We define D<-D if Ri(D)_Ri(D’) for i= 1,..., n.

2.2. Queries. Three relational operators are used in this paper. Let X
_

Ri. The
projection of relation state Ri onto X, denoted Ri[X], is the relation state obtained



754 PHILIP A. BERNSTEIN AND NATHAN GOODMAN

by removing columns of Ri corresponding to attributes not in X and then eliminating
duplicate tuples. Let Ri and R. be states for Ri and R. respectively. The natural join
of Ri and Rj, denoted Ri[]Rj, yields {r dom (Ri R.)Ir[R/] Re ^ r[Ri] R.}, which is
a relation state for Ri U R.. The natural semijoin of Ri by Rj, denoted Ri <]Ri, equals
(Ri []Ri)[Ri]. Equivalently, Ri <]R. {ri Ril(lr Ri)(ri[Ri f-’l Rj] ri[Ri i’l Ri])}.

A relational expression is an expression over these operators with relation schemas
(not states) as operands. A relational expression is interpreted by assigning a relation
state to each operand. We generally perform this assignment by applying an expression
to a database state; i.e., if E is an expression whose operands are drawn from D, we
write E(D) to mean "interpret E by assigning the state Ri(D) to each operand 11i."
Expressions E1 and E2 are equivalent, written E1 E2, if for all states D, El(D)=
E2(D).

The queries we study are called natural join (NJ) queries. The NJ query over
database schema D is the expression R1 [] R2 []" [] Rn. (This expression is unam-
biguous because natural join is associative and commutative.)

We can represent a database schema and its NJ query by an undirected graph
called a qual graph. A qual graph QG over D contains one node per relation schema
in D. Let A U and let Class (A) {Ri DIA Ri}. QG is A-connected if the subgraph
whose node set equals Class (A) is connected; QG is U-connected if it is A-connected
for every A U. QG represents D and its NJ query if it is U-connected. The relationship
between U-connected qual graphs and NJ queries is explored in Appendix B. Gen-
erally, a single schema and NJ query is represented by many qual graphs.

An NJ query is a tree query if some qual graph that represents it is a tree. All
other NJ queries are cyclic queries.

2.3. Tableaux. Tableaux are a formalism for relational expressions developed in
[ABU], [ASU], [ASU1], [MMS]. We use a restricted version of this formalism. A
tableau is a set of rows each of which contains one component per attribute in the
database. If is a row, and U={A1,..., Am}, the components of are denoted
t[A 1], , t[A,]. Each component takes values of three type.s: distinguished variables,
nondistinguished variables and the constant blank. In addition, each row is tagged by
a relation schema, denoted tag (t).

Example 2.1. Let D={R1, R2, R3}, where R1 ={A1, A2}, R2={A1, A2, A3}, and
113 {A 1, A4}. The following is a tableau:

T= A1

al
al
al

A2 A3 A4

a2
a2 x3

x4

(tag)

111
R2
113

We will see that T represents (Rx[]R2[]R3)[Aa, A2].
Additional constraints are placed on the form of tableaux.
1. Any variable (distinguished or nondistinguished) may appear in at most one

column.
2. Each column may contain at most one distinguished variable. Thus, we may

identify distinguished variables with columns; we shall use ak to denote the distin-
guished variable for column Ak. (a may occur several times within column A, but
may appear nowhere else in the tableau.)

3. Let be any row. If tag (t) 11i then t[A] blank iff Ak
4. All tableaux (over a fixed universe) share the same distinguished variables.
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Given D of Exomple 23

o) Tob(R A] A2 A5 A4

oi a2

(tag)

R

Tob(R2) A A2 A5 A
al a2 03

(tag)

R2

Tab(R5) A A2 A5 A4

ol a4

(tag)

b) Tab(Rlr.]R2[]R5)

c) Let X=(xl

A A2 A5 A4

ol 02
ol 02 03
ol a4

(tag)

R1

Teb(( R]ta_Rzt] R)[A],AZ])= CTob(R_] r.l_R2 []_R3) [A],A2]
TT (Tab(R1 []_R2,[1R3), A1, A2}, X

A A2 A3 A4

x4

ol o2
ol 02 x5
ol

FIG. 2.1. Tableau construction rules.

(tog)

R
_Rz

However, the nondistinguished variables of different tableaux are always distirict.
Nondistinguished variables are denoted x l, x2, with possible superscript.

The tableau for relational expression E is denoted Tab(E) and is defined as follows
(see Fig. 2.1):

1. Tab(R/)= {t}, where tag(t)= Ri, and

ak if Ak Ri,
t[Ak]

blank otherwise.

2. Tab(El[]E2) Tab(E) UTab(E).
3 Let T be a tableau, let U’ U, and let X’= {x’1, , x,} be a set of nondistin-

guished variables that do not appear in T. Then

H(T, U’, X’)

t’l(::lt T)(tag (t’)= tag (t) At’[ak] {X if t[ak]=ak and Ak’ U’)}t[Ak] otherwise
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In words, 1-I transforms the distinguished variable ak into the nondistinguished variable
x ,, provided Ak U’. Generally, X’ is implicit and we abbreviate II(T, U’, X’) by T[U’].
Let E1 be a relational expression. Tab(EI[U’]) is defined to be (Tab(E1))[U’].

4. Tab(El<]E2) is defined by rules 1-3, since a semijoin equals a join and a
projection.

Let T and T’ be tableaux. A containment mapping from T to T’ is a function 0
from rows of T to rows of T’ that:

(a) preserves tagsmi.e., for all T, tag (t) tag (0(t));
(b) preserves distinguished variables--i.e., for all t T, if t[Ak]=ak then

O(t)[Ak]=ak;
(C) preserves element equalitymi.e., ’q’tl, t2T, if tl[A]=t2[A] then

O(tl)[Ak] O(t2)[Ak].
It is proved in [ASU] that if E1 and E2 are equivalent relational expressions, then
containment mappings exist from Tab(E) to Tab(E2) and vice versa.

2.4. Full reducers. We interpret sequences of semijoins as mappings from
database states to database states. Let SI (S]l,’’’, sit) be a sequence of semijoins
whose operands are drawn from D. Each semijoin, e.g., Ri < ]R., maps D into D’,
where Rg(D’)=Rg(D) for ki, and Ri(D’)=Ri(D)<]Ri(D). S] maps D into
sit(sit_l(’’’ (sj(D))...)).

Let q be the NJ query over D, and let D be any state of D. The ]ull reduction
of D is D’, where R/(D’)= (q(D))[Ri] for 1,..., n. D’ satisfies two properties: (i)
q (D’) q (D); and (ii) D’ is the minimum state under the =< partial order satisfying (i).

A full reducer for q is a sequence of semijoins SI such that for all states D, SI(D)
equals the full reduction of D. Full reducers do not exist for all NJ queries. The
principal goal of this paper is to characterize the NJ queries for which full reducers
exist. We shall prove that an NJ query has a full reducer iff it is a tree query.

3. Full reducers for tree queries. If q is a tree query, a full reducer for q can be
constructed using the techniques of [BC]. Let TQG be a tree qual graph that represents
q. Root TQG at any node and let UP (resp. DN) be a directed tree obtained by
directing every edge upward (resp. downward). Each directed edge may be interpreted
as a semijoin; e.g., the edge (R., Ri represents Ri < ]Ri. Each directed tree is inter-
preted as a semijoin program consisting of the semijoins represented by its edges,
ordered by any topological sort. Intuitively, UP depicts a leaf-to-root execution of
semijoins, while DN represents a root-to-leaf execution.

THEOREM 1. Let q be a tree query and define UP and DN as above. UP. DN
is a full reducer ]:or q.

Proof. [BC, Lemma 4] proves this result assuming IR R;I 1 for all pairs of
adjacent relations in UP and DN. The proof of the lemma is valid for the general
case.

4. Cyclic queries do not have full reducers. In this section we prove that if a
query has a full reducer, then it must be a tree query. We transform this into a problem
involving the equivalence of relational expressions and employ tableaux to solve the
transformed problem. The proof has five main steps. Let q be the NJ query over D,
and assume that SJ is a full reducer for q.

1. We prove that a relational expression E must exist such that (i) E =-q[Ri] for
1 <- <- n, and (ii) all operators in E are semijoins.

2. We examine the parse tree of E and use tableaux to designate certain leaves
of the parse tree as essential for specific relation schemas. Also, we prove that the
tree must contain at least one essential leaf for each R D.
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3. We label paths in the parse tree and prove that if leaf is essential for R and
leafj is essential for Rj, then the label of the path between them is Ri f-)R/.

4. We transform the parse tree into a qual graph in a way that preserves treeness
and preserves the labeled paths identified in step 3. The qualgraph we obtain is
U-connected and so represents q.

5. The conclusion is that if q has a full reducer, then there exists a tree qual
graph that represents q. In other words, if q has a full reducer, q must be a tree query.

4.1. Existence of semijoin expressions. A semi/oin expression is a relational
expression whose operators are semijoins. (Notice that a semijoin expression maps
database states into relation states whereas a semijoin sequence maps database states
into database states.)

LEMMA 4.1. Let SJ be any sequence of semijoins and let Ri D. There exists a

semifoin expression E such that, for all states D, E(D)= Ri(SJ(D)).
Proof. Let SJ (sjl,’’’, sit). The proof is by induction on I.
Basis step. 1. Let Sjl be R < IRk. For # , Ri(SJ(D)) Ri(D), and so E is the

null expression; for j, E is Ri < IRk.
Induction step. Let SJ’= (sjl, , sj-l) and for/" 1, , n 1 let E be a semi-

join expression such that, for all D, Ei(D)= Rj(SI’(D)); these expressions exist by the
induction hypothesis. Let sj/ be Ri<]Rk. For i/’, Ri(SJ(D))= Ri(SJ’(D)), and is
E=Ei; for =j, E=Ei<]Ek. ]

LEMMA 4.2. If S$ is a full reducer for q, then ]:or all Ri D, there exists a semijoin
expression E equivalent to q[Ri].

Proof. By the definition of a full reducer, R/(S,I(D)) (q(D))[Ri] for all states D,
while by Lemma 4.1 a semijoin expression E exists such that E(D)= Ri(SJ(D)) for
all states D. 71

4.2. Essential leaves. The parse tree of a semijoin expression E is denoted
Parse(E). Parse(E) is a binary tree whose leaves represent relation schemas and whose
interior nodes represent semijoins; see Fig. 4.1.

The following notation will facilitate our discussion. In the context of a specific
parse tree, ro denotes the root of the tree; no is an arbitrary node of the tree; pa is
no’s parent, assuming no is not the root; and ic, rc denote no’s left and right children,
assuming no is not a leaf. Also we use E(no) to denote the expression whose parse
tree is rooted by no; ATTR(no)=Ri, where the leftmost descendant leaf of no
represents Ri. We use Tab(no) as an abbreviation for Tab(E(no)).

We observe that E(no) E(lc)< ]E(rc)= (E(ic)[]E(rc))[ATTR(no)] for all non-
leaf nodes. Therefore Tab(no) (Tab(lc) Tab(re)) [ATTR(no)] for all nonleaf nodes.
It is important to recall that this notation is a shorthand for Tab(no)=
I-l(Tab(lc)LITab(rc), ATTR(no), X(no)), where X(no) is a set of nondistinguished
variables not present in Tab(ic)U Tab(re); see 2.3.

By Lemma 4.2, there exists a semijoin expression E equivalent to q[R1], and by
[ASU] there exists a containment mapping 0 from Tab(q[R1]) to Tab(E). For each
node of Parse(E) we define

0 (Tab(q[R1])) if no ro,
Tab’(no)

{t Tab(no)Ill(t, ATTR(pa), X(pa)) Tab’(pa)} otherwise.

Tab’(no) is called the essential subtableau of no. See Fig. 4.2.
Essential subtableaux play a major role in our analysis and a few words motivating

their definition are in order. Tab’(to) contains the rows of Tab(E) needed for 0 to
exist. Proceeding down the parse tree, Tab’(no) contains the rows of Tab(no) that are
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Define D as in Example 2.1

Let _Es,T (_R<]_R2)<](_R<I_R)

a) Parse(E_Sj.) ro

n._.o n__o 2

b) E(ro) E
-SO

E(no )= R <]R
--i -I --2

_E(n2)_ Rs<]R_I
E (e)

etc.

c) Tab(r__o) A A2 A3 A4

ol 02

ol 02 xS’

ol x4"’

oi x2" xS"

(tag)

R3

__R1

Tab(n._oI) A A2 A5 A4 (tog) Tab(n__o2) A A2 A3 A4

al 02 R ol 04

ol 02 xS’ R2 oi x2" xS"

A A2 A5 A4 (tag) A A2 A5 A4

ol 02 R oi 02 05

AI A2 A5 A4Tob(!e3)
ol 04

(tog)

(tog)

R3

(tog) Tab(_e4)= A] A2 A A4

R5 oi 02 03

(tog)

R

FIG. 4.1. Parse trees for semijoin expressions.
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Tab’ (ro)

A1 A2 A3 A4
al 02

al a2 x3’
al

(tag)

R1
Rz

Tab’( n_go " Tab’ (noz)
A A2 A3 A4 (tag) A Az A5 A4 (tag)

al a2 R ol

al a2 x3’ R2

Tab’( Tab’ (._e2)

A A2 A3 A4 [(tag) A A2 A5 A4 (tag)

04 _R5

A A2 A5 A4 (tag)

FIG. 4.2. Essential subtableaux for Fig. 4.1.

"sources" for rows of Tab’(to). I.e., Tab’(no) iff has an image in Tab’(to) given
by the sequence of projections "between" no and to. (This concept is formalized in
4.3.) For example, row(al, a2, a3,) of Tab’(ie2) (see Fig. 4.2) has the image
(al, a2, x3’,)=II((al, a2, a3,), {A1, A2},X(nOl)) in Tab’(no1), and (al, a2, x3’,) has
itself as an image in Tab’(to).

A leaf of Parse(E) is essential if its essential subtableau is nonempty. A leaf is
essential for Ri if Ri is the tag in its essential subtableau. For example, in Fig. 4.2, iel
is essential for 111, while lea is not essential for any relation schema. The following
lemmas prove that Parse (E) contains at least one essential leaf for each Ri D.

LEMMA 4.3. Let E be any semijoin expression equivalent to q[R1], and let no be
any nonleaf node of Parse(E). Then Tab’(no) (Tab’(It) U Tab’(rc))[ATTR(ic)].

Proof. Tab’(k) {t Tab(ic)lt[ATTR(no)] Tab’(no)}, and Tab’(re)
{t Tab(rc)]t[ATTR(no)] Tab’(no)}, by definition of Tab’. Therefore

(Tab’(lc) U Tab’Crc))[ATTR(Ic)]

{t’l(::lt e Tab(It) U Tab(re))(t’ t[ATTR(ic)] A t[ATTR(no)] e Tab’(no))}

Tab(k) U Tab(re))(t’ [ATTR(ie)] ^ t’ Tab’(no)}, since

ATTR(Ic) ATTR(no) because no and lc have the same leftmost descendant

{t’l(3t Tab(le) U Tab(re))(t’ t[ATTR(Ie)])}

r3 {t’l(Elt Tab(k) U Tab(rc))(t’ t[ATTR(Ic)] Tab’(no))}

Tab(no) 71 Tab’(no), since Tab(no) (Tab(it) U Tab(rc))[ATTR(Ic)]

Tab’(no), since Tab’(no)
_
Tab(no), by definition of Tab’. !-!
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LEMMA 4.4. Let E be any semifoin expression equivalent to q[Rl], and let ro be
the root of Parse(E). Then Tab’(to) contains a row with tag Ri for i= 1 n.

Proof. By the definition of a NJ query, q=Rl[]’" []Rn, and Tab(q)=
7=1 Tab(R/). Tab(q) contains rows with tags Rx,.. , Rn. Tab(q[R]) (Tab(q))[Rx]

also contains rows with these tags, since the tableau projection operator defined in
2.3 never deletes or changes a tag. By the definition of essential sub-
tableaux, Tab’(to)= 0(Tab(q[R])) for some containment mapping 0. Tab’(to) must
also contain rows with tags R1, , R since containment mappings preserve tags. ?l

LEMMA 4.5. Let E be any semifoin expression equivalent to q[Ra]. Then Parse(E)
contains at least one essential leaffor each Ri D.

Proof. By Lemma 4.4, Tab’(to) contains a row with tag Ri for each Ri D. By
Lemma 4.3, if Tab’(to) contains a row with tag Ri, then either Tab’(lc) or Tab’(re)
must contain such a row. Applying this argument inductively, some leaf le must have
such a row in Tab’(le). Therefore le is essential for Ri. [3

4.3. Labeled essential paths. Let E be any semijoin expression. For any pair of
nodes {no, no’} in Parse(E), let P be the path between the nodes, and define
label({no, no’})- t3 all nodesno"onpATTR(no"). We shall prove that if iei and le. are
essential leaves for Ri and R. respectively, then label({leg, lei}) Ri t Ri.

4.3.1. The ancestor mapping. The ancestor mapping relates the tableau for any
node no to the tableaux of its ancestors in the parse tree. The ancestor mapping is
defined recursively as follows:

1. If an no, then Ancno, is the identity function.
2. If an is the parent of no, Anco,a maps tableau T into

H(T, ATTR(an), X(an)) T[ATTR(an)].
3. If an is any other ancestor of no, and p (no, n, , nl, an) is the path between

no and an, then

Ancno.an Anc,o.,l Anc,l.,2 Ancn.an.

It is obvious that Anco,a(Tab(no))_Tab(an) for all nodes no and ancestors an.
Lemma 4.6 proves that this property holds for essential subtableaux.

LEMMA 4.6. Let E be a semijoin expression equivalent to q[R], let no be any
node of Parse(E) and let an by any ancestor of no. Then Anco,an (Tab’(no))

_
Tab’(an).

Proof. The proof is by induction on the distance (i.e., number of edges) between
no and an.

Basis steps. If distance 0, then no an, Anco,a is the identity function and the
result is immediate.

If distance- 1, then an is the parent of no. Let lc and rc denote the left and right
children of an, respectively. Notice that no {re, lc}. By Lemma 4.3

Tab’Can) (Tab’(k) U Tab’Crc))[ATTR(ic)]

(Tab’(k)U Tab’(rc))[ATTR(an)] since every node has the same attributes
as its left child

Tab’(lc)[ATTR(an)] U Tab’(rc)[ATTR(an)]

AnClc, (Tab’(k)) U Ancrc, (Tab’(re)).

Thus the result holds for distance- 1, whether no- lc or no- re.
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Induction step. Let pa be the parent of no. By the definition of Anc, Anc.o,,.
Anc.o,.a" Anc.a,a.. Therefore

Anco,a(Tab’(no)) Ancpa,an (Anc,o,pa (Tab’(no))

Ancpa,a (Tab’(pa)), (since Tab’(pa)
_
Anc,o,pa (Tab’(no))

by the basis step)_
Tab’(an), (by the induction hypothesis).

The next two lemmas use the ancestor mapping to establish a relationship between
labeled paths and distinguished variables in tableaux.

LEMMA 4.7. Let be a row o a tableau, and let t’ t[U’] ]:or some U’
_
U. Then

t’[Ak] ak iff t[Ak] ak and Ak E U’.
Proof. The "if" part is immediate from the definition of tableau projection. There

are two cases for the converse.
Case 1. t[Ak] 7 ate. t’[Ak 7 ak in this case, because tableau projection never maps

a nondistinguished variable or blank into a distinguished variable.
Case 2. Ak U’. The same conclusion holds in this case since if t[Ak]--ak and

Ak: U’, the projection operator will map t[Ak] into some nondistinguished variable
x.

LEMMA 4.8. Let E be any semifoin expression, let ie be a leaf of Parse(E),
let Tab(le)={t}, and let an be any ancestor of ie. Then ]:or all attributes Ak,
Ance,a,(t)[Ak] ak iff A label({le, an}).

Proof. Let t’= AnCle,(t) and let P (le, nl,’’ ", nt, an) be the path from le to
an. By the definition of Anc/e,a,

t’= ((... ((t[ATTR(nl)])[ATTR(n2)])...)[ATTR(n/)])[ATTR(an)].
Applying Lemma 4.7 iteratively yields that t’[Ak]=ak iff t[Ak]=atc and Ak
f’l i=1 ATTR(ni) f’l ATTR(an). Moreover, t[Ag] ag iff A Ri, where Ri tag(t)’, and
since every leaf is its own leftmost descendant, ATTR(le)= Ri. Thus t’[A] a iff
Ak ATTR(ie) i=11 ATTR(ni) f) ATTR(an) label({le, an}).

4.3.2. The form of Tab’(to). Let E be a semijoin expression equivalent to q[R],
and let ro be the root of Parse(E). Tab’(to) has a very simple structure which we can
exploit. In particular, we shall prove that each column contains at most one variable,
either distinguished or nondistinguished. Moreover, the variable in the Ak column is
distinguished iff Ak R1.

LEMMA 4.9. Let X {x 1,"’’, x,} be a set of nondistinguished variables, where
m IU]. Tab(q[R]) ={t,..., t}, where for 1,..., n

(a) tag (ti)= Re; and

ak

(b) ti[Ak] Xk

blank

ifAg Ri R,
ifAk Ri R,
ifAk = Ri.

Proof. Tab(q[R1]) (Tab(q))[R,] U in=l Tab(Ri))[R] ({t, ’, t’})[R1],
where for 1,..., n

(a) tag (tl)= Ri, and
ak if Ak Ri,

(b) [A]
blank if Ak Ri.

The result follows by application of tableau projection to Tab(q).
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LEMMA 4.10. Let E be a semi]oin expression equivalent to q[111]. For all Tab(E),
if t[Ak] ak then Ak R1.

Proof. Since E-=q[R1], there exists a containment mapping 0 from Tab(E) to
Tab(q[R1]). 0 must preserve distinguished variables, so if t[Ak] ak, then (O(t))[Ak]
ak. And for all t’ e Tab(q [R1]) if t’[Ak] ak then Ak e 111, by Lemma 4.9.

LEMMA 4.11. Let E be a semi]oin expression equivalent to q[R1] and let ro be the
root of Parse(E). LetX {Xl, , x,,} be a set of nondistinguished variables. Then

(i) for all Ak 111 and for all Tab’(to), t[Ak] ak or is blank;
(ii) for all Ak 111 and for all Tab’(to), t[Ak] x or is blank.
Proof. Let 0 be a containment mapping such that 0 (Tab(q[111]))= Tab’(to); 0

exists by definition of essential subtableaux. By Lemma 4.9 each column of Tab(q[111])
contains at most one variable. Since 0 must preserve equality of elements and can
never map blanks into variables, each column of Tab’(to) also contains at most one
variable.

(i) If Ak G 111, the variable in the Ak column of Tab(q[R1]) is ak. Since 0 must
preserve distinguished variables, the variable in the Ak column of Tab’(ro) is
also ak.

(ii) If Ak R1, t’[Ak] ak for any t’ Tab’(to), by Lemma 4.10. So in this case the
variable in the Ak column of Tab’(to) must be Xk.

4.3.3. Projectors. Let E be a semijoin expression equivalent to q[R1] and let le
be an essential leaf for Ri in Parse(E). Let Tab(le)= {t} and t’= mncte, (t). Since le
is essential, Lemma 4.6 proves that t’ Tab’(ro). Choose any Ak 111. By Lemma 4.11,
t’[Ak] ak, and so by Lemma 4.8, Ak label({le, to}). In other words, there exists a
node no on the path from le to ro such that Ak ATTR(no). The first such node (i.e.,
the one closest to ie) is called the Ak-projector of le. Intuitively, this is the node that
"projects ak out Of t". This intuition is formalized by the following lemma.

LEMMA 4.12. Let E be a semifoin program equivalent to q[R1]. Let le be an
essential leaf for 11i in Parse(E), let Ak R1, and let p (ie, hi, n2," nb l’O) be the
path from le to ro. Also let Tab(le)= {t}, and let no be the Ak-pro]ector for le. Then

(i) if ni is any node before no in p, Anc/e,, (t)[Ak] ak; while
(ii) if ni is no or any node after no in p, Anc/e,,, (t)[Ak] Xk for some nondistin-

guished variable Xk.

Proof. (i) Ak ATTR(Ie), since ie represents Ri. Also Ak ATTR(n/) for every
n before no since no is the first node in p that does not contain Ak. Thus A
label({le, hi}) for all ni before no, and the result follows by Lemma 4.8.

(ii) By the definition of an Ak-projector, Ak - ATTR(no) and so AnCle,,o (t)[Ak]
ak by Lemma 4.8. Since projection operators never map variables into blanks,
AnCle,o (t)[Ak] Xk for some nondistinguished variable Xk. Subsequent projections
cannot change a nondistinguished variable, so the result follows.

LEMMA 4.13. Define E, le, and no as in Lemma 4.12, and letAk 11i 111. Then:
(i) The nondistinguished variable Xk assigned to AnCle, (t)[Ak] is distinct from

all nondistinguished variables in the tableaux of no’s children.
(ii) le is in the right subtree of no.
Proof. (i) follows from the definition of tableau projection. (ii) holds because

ATTR(Ic) ATTR(no) for all nodes. I-1
The final lemma of this subsection considers a pair of leaves, iei and lei, which

are essential for 11i and R, respectively. Let Ak 11i ("l 11i- R1. It is evident that le
and lei must both have Ak-projectors. The critical fact proved in the next lemma is
that these Ak-projectors must be identical.
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LEMMA 4.14. Let E be a semi]oin expression equivalent to q[R1], and let lei and
le. be essential leaves in Parse(E) for Ri and Rj, respectively. Then ’or all Ak
Ri (3 Rj-R the Ak-profector ]:or lei is also the A-profector ]or ie..

Proof. Let Tab(lei) {ti} and let t’i AnClei, (ti). Select any A e R f3 Ri Rl. By
Lemma 4.12(ii), tl[A]= x for some nondistinguished variable xik. Define t., t} and
x analogously. By Lemma 4.6, t’i and t. are elements of Tab’(to), while by Lemma
4.11 Tab’(to) contains at most one variable per column. It follows that xi xi. Now
let no/ and no. be the A-projectors for iei and lei, respectively. We shall prove that
if noi noi, then xik x., contradicting the argument above. There are two cases:

1. no/is an ancestor of no. (or vice versa); or
2. noi and noi are incomparable nodes.

In the first case, let ch. be the child of no/that lies on the path between noi and noi.

By Lemma 4.12(ii), AnClej,chj (ti)[Ak]= xik and so xik is a nondistinguished variable
hat is present in a child of noi. Consequently, by Lemma 4.13(i), AnClei,noi (ti)[A] xi.
But by Lemma 4.12(ii) AnCle,,no, (ti)[Ak]= t[A], while tl[A]=xi by assumption.
The conclusion is x xi as claimed.

In the second case, Tab(no/) and Tab(no.) are distinct tableaux and we are required
to assume they share no nondistinguished variables (see 2.3). Moreover by Lemma
4.12(ii) AnCle,,no, (ti)[Ak] tl[Ak] Xik and similarly AnClej,no (ti)[Ag] Xk. Thus, Xik
and Xk are respectively nondistinguished variables in Tab(noi) and Tab(no.), and
Xik Xjk follows in this case as well.

4.3.4. Labeled paths between essential leaves. We now use the ancestor mapping
and the notion of Ak-projectors to prove the main result of step 3 of the proof of
Theorem 2.

LEMMA 4.15. Let E be a semijoin expression equivalent to q[R1], and let lei and
le. be essential leaves in Parse(E) for Ri and Ri, respectively. Then label({lei, le.})=
Ri f R.

Proof. label({le, ie.})
_
Ri R is obvious from the definition. To prove inclusion

in the opposite direction there are two cases.
Case 1. Ak Ri f R-R. Let no be the A-projector of lej. In addition, by

Lemma 4.13(ii), le/ and ie are both descendants of rc, the right child of no. By the
definition of an A-projector, A ATTR(no’) for every no’ between ie/ and rc, and
le and rc. Thus A label({ie i, rc}) and Ak slabel({ie., rc}). Finally, since the path from
iei to le is a subset of the (possibly repeated) path from le/to rc to le., label({le/, le})

_
label({lei, rc}) f-I label({le., rc})

_
{Ak}.

Case 2. Ak s Ri f’l R. f’)R1. Let Tab(lea)= {ti} and let tl mncle,,ro (ti). By Lemma
4.6 t’i Tab’(ro). Since A Ri, ti[Ak] is nonblank, and since projections never map
variables into blanks, tl[Ak] is also nonblank. Since Ak S R, Lemma 4.11 proves that
t’i[Ak] ak, and so by Lemma 4.8 Ak label({lei, to}). A symmetric argument shows
that Ak label({le., to}). Thus label({iei, let})___ {A} follows by the same argument as
in Case 1. 71

4.4. Obtaining a tree qual graph. Let E be a semijoin expression equivalent to
q[R1]. Sections 4.2 and 4.3 have established two important similarities between the
essential leaves of Parse(E) and a tree qual graph TQG that represents q. Section 4.2
has shown that Parse(E) contains at least one essential leaf per relation schema; i.e.,
the essential leaves of Parse(E) are a superset of the nodes of TQG. Section 4.3 has
shown that the path between each pair of essential leaves is labeled with the intersection
of the leaves’ attributes; this property is similar to the property of U-connectivity that
holds in TQG (see 2.2). In addition, Parse(E) is a tree.
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Parse(E) differs from TQG in one important respect: it contains too many nodes.
All nodes of Parse(E) that are not essential leaves have no place in TQG. Also,
Parse(E) may contain multiple essential leaves per relation schema whereas TQG
contains exactly one node per relation schema. In this section we prove that the
"extra" nodes of Parse(E) can be eliminated without destroying the "U-connectivity"
of the graph and without destroying its treeness.

We transform Parse(E) iteratively, eliminating one node and one edge at each
step. We begin by associating each node of Parse(E) with the relation schema represen-
ted by its leftmost descendant; i.e., no is called a node for Ri if its leftmost descendant
represents the expression Ri. Also, we use the term essential node in place of essential
lea/:. T1," ", TL denote the sequence of graphs obtained by our transformation, with
T1 Parse(E). Finally, for 1,..., L, and for every no/ and no/in TI,

label/({noi, no/}) [..J ("1
all paths P all nodes

between no/and path P
no/in TI

ATTR(no).

(We shall prove that each TI is a tree and so the "union" in the above definition can
be dropped.)

The transformation from TI to Tl/l occurs via rule Tr: Let no be any essential
node for any Ri, 1 <--i --< n, and let no’ be any other node for Ri, essential or not. The
transformation has two steps.

1. Eliminate the first edge on the path from no’ to no, thereby disconnecting the
graph.

2. Reconnect the graph by merging no and no’; to be precise, replace every edge
{no’, no"} by {no, no"}, and then remove no’ from the graph, no remains in the graph,
and remains an essential node for

Tr is illustrated in Fig. 4.3. Tr/ denotes the successive application of Tr until no
further transformations are possible. Intuitively, Tr/ is correct if Tr/(Parse(E)) is a
tree qual graph that represents q. We characterize correctness by four properties:

(i) terminationmthe sequence T1," ., TL must be finite.
(ii) uniqueness o] nodes--Tc must contain exactly one node for each relation

schema in D.
(i/i) treenessmT must be a tree.
(iv) For all nodes no/ and no/ in To, labelc({no/, no/})= Re [")ll/, where no/ is a

node for Ri and no/is a node for
LEMMA 4.16. I] properties (/)-(iv) hold, TL is a tree qual graph that represents q.
Proo]. By (ii), Tc has the correct structure for a qual graph. By (i/i), T is a tree.

By (iv) T represents q, since this property implies that for all Ak U, Class (Ak) forms
a connected subgraph of Tt_; i.e., T/ is U-connected.

The remaining task is to prove that Tr/(Parse(E)) satisfies properties (/)-(iv).
LEMMA 4.17. Let E be a semijoin expression equivalent to q[R1]. Then

Tr/(Parse(E)) satisfies properties (i)-(iii).
Proof. (i) Termination is ensured since TI/ is strictly smaller than TI for

1,... ,L-1.
(ii) TL contains at least one node per relation schema since Tr preserves essential

nodesmi.e., if TI contains an essential node for lli then so does Tr(T/)and Parse(E)
contains at least one essential node per schema by Lemma 4.5. Tc contains no more
than one node per relation schema, else T/. could be further transformed by Tr,
contradicting the definition of Tr/.
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FIG. 4.3. Cases ]:or Lemma 4.18.

(iii) Tr preserves treeness, since it eliminates one edge and one node from its
operand while preserving the connectivity of the remaining nodes. l

LEMMA 4.18. Let E be a semifoin expression equivalent to q[R1]. Then
Tr/(Parse(E)) satisfies property (iv).

Proof. We shall prove that Tr preserves essential labels; i.e., if label({noi, no.})=
ATTR(noi) f’l ATTR(noj) for every pair of essential nodes in Tt, then the same property
holds in TI/I. Since the property holds in Parse(E) by Lemma 4.15, this suffices to
prove the lemma.



766 PHILIP A. BERNSTEIN AND NATHAN GOODMAN

Define no and no’ as in the definition of Tr and let nx and ny be distinct essential
nodes of Tt, with nx no’ and ny no’. Thus nx and ny are essential nodes of Tt+l as
well. We consider three cases.

Case 1. The path from nx to ny in Tt does not includes no’. In this case, the
transformation from Tt to Tt+l does not affect the path between nx and ny, hence
does not affect their label.

Case 2. The path from nx to ny in Tt include no’ and no (see Fig. 4.3a). In this
case, the transformation shortens the path from nx to ny by "splicing out" the portion
from no to no’. I.e., if the path in Tl is (nx, hi, nk, no, , no’, nk+l, , ny), the
path in Tt+l is (nx, nx,...,n,no, n+l,...,ny). Thus labelt+l({nx, ny})
labelt({nx, ny}). Since labelt({nx, ny}) ATTR(nx) ["1ATTR(ny) by assumption, and
labelt+l({nx, ny})

__
ATTR(nx) ATTR(ny) by definition of label, labelt+l({nx, ny})

ATTR(nx) ATTR(ny) as desired.
Case 3. The path from nx to ny in Tt includes no’ but not no (see Fig. 4.3b).

Since labelt({nx, ny}) ATTR(nx) 71ATTR(ny) by assumption, and since no’ is on the
path between these nodes, ATTR(no’)_ATTR(nx)YlATTR(ny). The transformed
path has the form (nx,..., no,..., ny). By definition of Tr, no is an essential node,
and so Cases 1 and 2 prove that labelt+l({nx, no})= labelt({nx, no})= ATTR(nx) 71
ATTR(no); similarly labelt+l({ny, no)) ATTR(ny) 71ATTR(no). Thus
labelt+({nx, ny}) label/+({nx, no}) f’l label+l({ny, no}) ATTR(nx)
ATTR(no). However, ATTR(no)=ATTR(no’) and we have already shown that
ATTR(no’)

___
ATTR(nx) f’) ATTR(ny). Consequently, label/+({nx, ny}) ATTR(nx) 71

ATTR(ny) as claimed.

4.5. Conclusion of proof. The proof began by assuming that q has a full reducer
$$. Given this assumption 4.1 proved that a semijoin expression E equivalent to
q[R1] must exist. Section 4.2 proved that Parse(E) must contain at least one essential
leaf for each Ri D, and 4.3 proved that these essential leaves are"U-connected";
if noi and noj are essential for Ri and R., respectively, then label({noi, noi}) Ri 1") Ri.

Finally 4.4 proved that Parse(E) can be transformed into a tree qual graph that
represents q. Thus we have proved the following theorem.

THEOREM 2. If q has a full reducer, then q is a tree query.

5. Tree query membership algorithm. Theorems 1 and 2 prove that an NJ query
has a full reducer iff it is a tree query. For this result to be useful we need an efficient
algorithm that tests whether an NJ query is a tree query, and constructs a full reducer
for the query if it is a tree query. An algorithm that solves this problem for single
attribute semijoins is presented in [BC]. Algorithms for the natural semijoin case
appear in [BG1], [YO], [YO1]. In this section we present a refined version of the
algorithm described in [BG1].

Let q be the NJ query over D. For each A U, let Weight(A) IClass(A)]- 1 the
number of edges in a spanning tree for Class(A). Also let Weight(q) Y,AU Weight(A).
Let QG be any qual graph over D. For each edge {Ri, R/} QG, Weight(QG, {Re, Ri})
]R/fqRI; Weight(QG) EEot; Weight(QG, E).

LEMMA 5.1. Let TQG be a tree qual graph over D. Then
(i) Weight(TQG)-<_ Weight(q); and
(ii) Weight(TQG) Weight(q) iff TQG represents q.
Proof. For each A sU, let E(A)={{Ri, Ri}sTQGIA R/(Ri}, let G(A) be the

subgraph of TQG whose nodeset is Class(A) and whose edgeset is E(A), and let
Weight(TQG, A) IE(A)I. Observe that Weight(TQG) AUWeight(TQG, A).
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(i) For each A eU, IE(A )I <-- IClass(A)I -1, since G(A) is acyclic; i.e.,
Weight(TQG, A) <_- Weight(A). Weight(TQG) -<_ Weight(q) follows, since
Weight(TQG) 2A U Weight(TQG, A _-< 2A J Weight(A Weight(q ).

(ii) If TQG represents q, it is U-connected, by definition. This means that G(A)
is a connected graph for all A e U, and for G(A) to remain acyclic, I/(A)[-
[Class(A)l- 1; i.e., Weight(TQG, A) Weight(A). Thus Weight(TQG)
2AU Weight(TQG, A) 2AeU Weight(A) Weight(q).

If TQG does not represent q, it is not U-connected and, for some A’ U, G(A’)
is not a connected graph. For G(A’) to remain acyclic, IE(A’)[<IClass(A’)I- 1 is
required, i.e., Weight(TQG, A’) < Weight(A’). Therefore Weight(TQG) [2AU-{A’}
Weight(TQG, A) + Weight(TQG, A’)] < [EAU-{A’} Weight(A) + Weight(A’)]
Weight(q). I.e., Weight(TQG)<Weight(q) as claimed. 1

Lemma 5.1 suggests the following tree query membership algorithm.
ALGORITHM TQ.
Input" data schema D.
Output: tree qual graph TQG that represents the NJ query q over D, if one

exists; else FALSE.
1. Let QG+be a complete graph over Dmi.e., the edgeset of QG+ is

{{Ri, R.}]gi, g.O ^ /’}.
2. Let TQG be a maximal weight spanning tree of QG/.
3. If Weight(TQG) Weight(q), then output TQG, else output FALSE.
end.
The correctness of Algorithm TQ follows immediately from Lemma 5.1. The

algorithm can be implemented with O(m. n) time complexity, where m [UI and
n IDI. Each Ri D is represented by a bit vector ATi of length m such that ATi[k 1
if[ A Ri. This representation can be constructed’in O(m. n 2) time. The weight of
all edges in QG+ can also be constructed in O(m. n 2) time. The weight of all edges

2)in QG+ can also be computed in O(m.n time by the following loop
for l<=i<]<-_n do

Weight(QG+, {R, R.}) the number of 1-bits in ATi ^ ATE.= ATi[k] ^ ATi[k].
end.

These weights are used as input to Prim’s maximal spanning tree algorithm [Prim],
which has O(n) complexity. Weight(TQG) can be calculated in linear time and
Weight(q) can be determined in O(m. n) time. Overall, then, the complexity of the
implementation is O(m. n), as claimed.

6. Conclusions and open problems. We have proven that an NJ query has a full
reducer composed of natural semijoins iff it is tree query, and we have presented an
efficient tree query membership algorithm. Thus, the significance of tree queries
established by [BC] for single attribute semijoins has been extended to the general case.

The following open problems remain.
1. Let D be a database schema whose NJ query q is cyclic. We have proven that

for all semijoin sequences SJ, there exists a state Dbd, such that SI does not fully
reduce Dbad. The result in [BC] is tighter; they prove there exists a state Dbad, such
that for all SI, SJ does not fully reduce Dbad. The tighter result for the general case
remains open.

Note added in proof. The tighter result has recently been proved in [BFMMUY], [GS].
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2. Another research direction is to consider more general queries, e.g., arbitrary
expressions over project and natural join. Since equivalence and minimization are
NP-complete problems for this class of queries [ASU], [CM], we expect full reducer
questions to be difficult as well.

3. It is also interesting to study queries which permit "inequality joins". In [BG2],
we consider queries over <, _-< and =; we characterize the subclass that have full
reducers composed of single attribute semijoins and present an efficient membership
algorithm for this subclass. Interestingly, some queries that have full reducers are not
tree queries. In [YO1], a tree query membership algorithm is presented for queries
over <, _-< and with "multiattribute" semijoins. An open problem is to characterize
the inequality join queries that have full reducers composed of multiattribute semijoins.

4. We have only studied the existence of full reducers and have not concerned
ourselves with their efficiency. In a system context, the latter problem is critically
important. Heuristic algorithms that construct efficient sequences of semijoins for
arbitrary NJ queries are reported in [BGWRR], [HY]. Algorithms that construct
optimal sequences for special types of tree queries are described by [CH], [GD], [HY].
The optimization problem for arbitrary queries remains open.

To date, semijoins have been recommended for distributed database systems and
database machines. We conjecture that semijoins and the concept of "reduction" can
also be valuable tactics in conventional database implementations. We see this issue
as a step toward an integrated theory of relational query processing.

Appendix A. Mapping equijoin queries into natural join queries. Syntactically,
an equifoin query consists of a qualification which is a conjunction of clauses of the
form Ri. A R.. A’, where A Ri and A’ Rj. Semantically, an equijoin query with
qualification Q maps database state D into {(rl," ", rn)Rl(D)
Rn(D)IQ((rl,""", r)) is true under the substitution Ri. A ri[A], etc.}. The natural
qualification Over scheme D is ^ a,,ljo ^ Al,nlj gi. A R/. A. The query with this
qualification is called the natural query over D.

LEMMA m. Let q be the natural query over D and q’ the NJ query over D. For
all states D, q (D q’(D denotes isomorphism).

Sketch of proof. Let f map tuples (rl,’’’, r,) into elements of dom (U), where
f((rl,... ,r,))=r such that r[Ri]=ri for i= 1,...,n. f is well defined for all
(ra,. , r) q(D) and is the desired isomorphism. I-1

We can map any qualification into a natural qualification by renaming attributes
in the qualification and the database schema. There are three steps. Let Q be a
qualification over D.

1. Rename attributes Q and D so that all relation schemas are disjoint.
2. Close Q under transitivity of equality.
3. While Q contains a clause Ri. A R.. A’ where A A’:

3.1 replace A’ by A in
3.2 replace R.. A’ by Ri. A wherever it appears in Q;
3.3 if ], restrict the state of Ri by the clause.

It is easy to prove that the renamed qualification is natural over the renamed
database schema, and the renamed qualification is isomorphic to the original one up
to attribute names [BG]. Since natural queries are isomorphic to NJ queries by Lemma
A, our main result follows.

PROPOSITION A. For every equijoin query there exists an isomorphic NJ query
(over a possibly different database schema).
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Appendix B. Natural join queries and qual graphs. The relationship between
NJ queries and qual graphs is developed fully in [BG]. This relationship is mediated
by a subclass of the equijoin queries called subnatural queries. A subnatural query is
one whose qualification has the form ^ R,,RjD ^ aX_R,CRj Re. A Rj. A. To represent
subnatural queries, qual graphs are extended to include edge labels, with
label({Re, Rj})Ref)R. A labeled qual graph QG represents the query with
qualification

^ ^ Re.A R. A.
all edges Alabel({Ri,Ri})

{Ri,Ri} in QG

A labeled qual graph is A-connected if for all Ri, R Class(A), the graph contains
a path P from Re to R such that A e (’]all edges E in P label(E). A labeled qual graph is
U-connected if it is A-connected for all A U. Labeled U-connectivity implies
unlabeled U-connectivity since label({Re, R.})

_
Ri I’l R for all edges. Conversely, every

U-connected unlabeled qual graph can be transformed into a U-connected labeled
qual graph by assigning label({Ri, Ri}) Re f’) R. for all edges {Ri, Ri}.

In 2 we said that an unlabeled qual graph represents an NJ query iff the graph
is U-connected. In this appendix we justify the definition by proving that a labeled
qual graph represents a natural query iff the labeled graph is U-connected. It follows
that an unlabeled qual graph represents an NJ query iff the same qual graph with
maximal labels represents a natural query; and by Lemma A, the two queries are
isomorphic.

LEMMA B. Let q be the query represented by QG. q (Ri. A Rj. A) iff QG
contains a path P from Ri to R such that A f’) all edges E in P label(E).

Sketch of proof, q (Ri. A Ri. A) by transitivity of equality iff P exists, and
transitivity of equality is a sound and complete inference rule for equijoin queries. [3.

PROPOSITION B. QG represents a natural query iff it is U-connected.
Sketch of proof. Let QG+ be the U/f) transitive closure of QG, i.e., QG+ is a

complete graph over the nodeset of QG, and for all Re, R. D; the label of {Re, R.} is

label+({Ri, Ri}) U f) label(E).
all paths, p all edges
in QG from E in P
Ri to R

By Lemma B, QG+ represents the same query q as QG, and q =), (Ri. A Rj. A)
iff A e label+({Re, R.}). By definition, q is a natural query iff q => (Ri. A R.. A) for
all A U and all Re, R Class(A), and so q is natural iff A label+({Re, R}) for all
A e U and all Re, Rj Class(A). The latter property holds iff QG is U-connected. 1

Appendix C. Queries with target lists. Target-lists are a mechanism for specifying
a query followed by a projection. Target lists or some comparable facility are supported
in virtually every relational query language. In this appendix we show that target lists
do not change our main results by showing that a query with a target list has a full
reducer iff the query (without the target list) is a tree query.

Let q be the NJ query over D and let t_ U, t { }. Let D be any database state.
A full reduction of D with respect to t is D’ such that (Re(D’))[Ri 1")t] (q(D))[Ri f)t]
for 1,..., n. A semijoin program S$ is a full reducer for q[t] if for all states D,
S$(D) is a full reduction of D with respect to t.

THEOREM C. q[t] has a full reducer iff q is a tree query.
Sketch of proof. If q is a tree query it has a full reducer by Theorem 1, and any

full reducer for q is obviously a full reducer for q[t].
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To prove the converse let Ri be any relation schema such that Si (’] t l. Let us
augment D by adding the relation schema 11 Si I"] t, let D’ be the resulting database
schema, and let q’ be the NJ query over D’.

Let SJ be any full reducer for q[t], and let SJ’= (Ri<]R’i). SJ. (RI<]Ri). Since
SJ fully reduces Rg[R] for all states D of D, SJ’ fully reduces R for all states D’ of
13’. That is, for all states D’ of 13’, Ri(SJ’(D’))= (q’(D))[R]. Also, by Lemma 4 1
there exists a semijoin expression E such that for all states D’, E(D’)= R(SJ’(D’)).
It follows that E=q’[R]. But if such an E exists, 4.2-4.4 prove that q’ is a tree
query. The theorem follows since if q’ is a tree query, so is q. 1-]
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MINIMIZING THE NUMBER OF EVALUATION PASSES
FOR ATTRIBUTE GRAMMARS*

KARI-JOUKO RIH,t AND ESKO UKKONEN:I:

Abstract. The problem of constructing multi-pass evaluators for attribute grammars is studied. We show
that the construction algorithm used heretofore can in the worst case produce evaluators which perform
2n- passes over the parse tree, where n is the minimum number of passes required. Furthermore, the
problem of constructing an optimal evaluation order is shown to be NP-complete. We then develop a new
characterization for attribute grammars evaluable in passes. It can be directly applied as an efficient
membership test. Finally, the characterization is used for deriving a polynomial time construction algorithm
for a large subclass of pass-oriented attribute grammars. The subclass is argued to be of practical importance.

Key words, attribute grammars, multi-pass evaluators, NP-completeness, approximation algorithms

1. Introduction. Attribute grammars were introduced by Knuth [10] for describ-
ing the semantics of context-free languages. Just as it is possible to automatically
generate parsers for context-free grammars, methods have been devised which can be
used to generate so-called semantic evaluators for attribute grammars. A review of
various evaluation techniques and of the corresponding construction algorithms is given
in [3].

In pass-oriented evaluators attributes are evaluated during one or more depth-first
traversals (called passes) of the parse tree. Such evaluators have attracted particular
attention because of the natural way in which the evaluation passes model the
compilation passes in a conventional hand-written compiler. One-pass evaluators have
been studied in [11]. In this paper we concentrate on the construction of efficient
multi-pass evaluators for grammars which cannot be evaluated in a single pass.
Although it has been shown that in principle all translations can be described using a
one-pass grammar [10], there are simple examples of features which are more con-
veniently described using multi-pass grammars [4].

The declarative nature of attribute grammars is partly due to the fact that the
evaluation order of attributes is not explicitly given in the grammar. Thus it is the task
of the construction algorithm to assign the attributes to evaluation passes. T15e first
such algorithm was proposed by Bochmann [2]. He allows only left-to-right evaluation
passes. This restriction yields a simple construction algorithm which is easily seen to
produce evaluators performing a minimum number of passes.

Optimizing compilers also contain algorithms which work backwards from the end
of the program to its start, i.e., algorithms which are most conveniently described using
attributes which require a right-to-left evaluation pass (see, e.g., [6]). As a generaliza-
tion of Bochmann’s evaluators, Jazayeri [5] suggested that right-to-left passes should
alternate with left-to-right ones. Evaluators that may perform both left-to-right and
right-to-left passes are called alternating semantic evaluators. Clearly, the class of
gr.ammars suitable for such evaluators (called ASE grammars) strictly contains the
grammars accepted by Bochmann’s method.

It was soon realized [9] that the approach of [5] is wasteful, since some of the
passes can be merged with neighboring ones. Based on this observation, a new form

* Received by the editors December 19, 1979, and in final form November 20, 1980.
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of the construction algorithm was developed in [14] and [15]. This algorithm is given
in Fig. 1. We assume that the reader is familiar with attribute grammars as defined in
[10]. Let A denote the set of attributes in the grammar. The algorithm computes the
number of passes, denoted by mASE. Furthermore, for each pass p from 1 to mASE it
defines the following entities:

L, indicating a left-to-right pass,
do

R, indicating a right-to-left pass,

the set of attributes evaluated during the pth pass.

The string did2" dmASE is called an evaluation order for the attribute grammar.

algorithm ASECONSTRUCTION;
begin

p:=0; B:=A;
repeat

p:=p+l;
Ar := NEXTSET (B, L);
An := NEXTSET (B, R);
if An AL then (do, Ao):= (L, AL) else
if AL c An then (d Ao) := (R, An) else

(do, Ao) := SELECT (p, AL, AR) fi fi;
B: B-A,

until B v AL An f
ifB=(R)

then mnsz := P
else the grammar cannot be evaluated using the ASE technique

fi
end of ASECONSTRUCTION;

FIG.

The main algorithm in Fig. 1 uses the subalgorithm NEXTSET (B, d) for computing
for the set of remaining attributes B the subset which can be evaluated during the next
pass in case the direction chosen is that indicated by d. NEXTSET is based on
repeatedly inspecting the semantic rules and deleting from the attribute set those
attributes which present conflicts with the evaluation direction under consideration.
Similar versions of the NEXTSET algorithm are given in [13]-[15] and will not be
repeated here.

More interesting is the way the direction for the next pass, dp, is chosen. If one of

AR and AL is contained in the other, the direction for the larger set is chosen; this
choice is clearly optimal. If the sets are incommensurate, the decision procedure
SELECT is used. In this case both [14] and [15] proposed to let the evaluator alternate
its direction as originally suggested in [5]. This means that SELECT is specified as in
Fig. 2.

algorithm SELECT (p, AL, An);
begin

if p 1 then return (L, AL) else
if d-t R then return (L, AL) else return (R, An) fi fi;

end of SELECT;

FIG. 2
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Although Bochmann’s algorithm always produces left-to-right evaluators which
require a minimum number of passes, the possibility of choice introduced by right-to-
left passes has the effect that mASE is not necessarily minimal. Let mopt denote the
minimum number of passes required when the attributes are assigned to passes in the
best possible manner. In 2 we give a grammar for which mASE 2mopt--1. This
situation is the worst possible" we will also show that for any grammar mASE <

2mopt-- 1, when SELECT is specified as above.
It would be desirable to be able to specify SELECT so that no more than mopt

passes are ever produced. However, in 3 we will show that this problem is NP-
complete. If we wish to achieve optimality in the general case, we have to abandon
efficiency.

In order to develop a polynomial approximation algorithm we first derive a new
characterization for multi-pass attribute grammars in 4. This characterization is then
used in 5 as the basis of a new construction algorithm which, although nonoptimal in
the general case, produces optimal evaluators for a larger class of grammars than the
algorithm of Fig. 1.

2. Nonoptimality of the selection algorithm. We say that a construction algorithm
is optimal if it always produces evaluators which use only mopt passes. This definition,
though but one of several possibilities, is natural: in traditional implementations of
multi-pass evaluators (e.g. [16]) a decrease in the number of passes results in savings
in the overhead caused by traversing the tree. Even in approaches where the number
of passes is not of equal importance [7], the optimality of the construction algorithm
in the above sense decreases the lifetime of attributes, which is good for storage
management [8], [13].

Nonterminal Inherited attributes Synthesized attributes

Z
Xl al, bl, Cl, dl Pl, ql, rl
Xi, 2,. , n 1 ai, bi, Ci Pi, qi, ri

Productions with semantic rules

o z-,xfxf

1Xi+1
i=1,...,n-3

L R3 X,,-z X,,_IX,,_

4 Xn_l-X

ax(X[) constant
bl(X constant
c(X) p(X)
dx(X) constant

pi(Xi) bi(Xi) + ci(Xi)
qi(Xi)- ai(ai) + Pi+l (x/L+1)
ri(ai) Pi+l(X+l

ai+l(X/L+l ) constant
bi+l(X/+l )- constant

LCi+l(Xi+ )<---Pi+I(X/R+I
ai+I(X/R+I q XiL+
bi+l(X/R+x )<-- ri+l(X/L+l
Ci+l(X/+l ) constant

like 2 with the following exception:
Rb,-(X,-1 ) constant

Pn-l(Xn-1) bn-l(Xn-1) + Cn-1(Xn-1)
qn-l(an-1)-an-l(an-1)
r._a(X.-1) constant

FIG. 3

al(X) ql(Xf)
bl(X) r(X)
Cl(X constant
d(X) pl(X)
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We demonstrate the behavior of the construction algorithm using an example
grammar given in Fig. 3. Here x denotes an arbitrary terminal symbol. The superscripts
L and R are used to distinguish two occurrences of the same nonterminal in a
production.

This grammar generates exactly one attributed parse tree, fragments of which are
shown in Fig. 4. Inherited attributes are shown on the left and synthesized attributes
on the right of each nonterminal. Attributes with no entering dependency arcs are
constants.

2 b2 2

n-2 n-* 2 Xn-2n- n- A

b o n- qn-i Vn-i

x x

FIG. 4

The evaluation order produced by ASECONSTRUCTION is given in Fig. 5.
By inspecting the dependencies in Fig. 4 we note that none of the attributes ai, qi

(i 1, , n 1) contributes in the evaluation of the other attributes. Consequently,
also the evaluation order in Fig. 6 could be used.

Thus we see that for the grammar in Fig. 3, mASE 2mopt-- 1.

pass direction dp attributes to be evaluated

L an-l, bn-1, qn-1, rn-1
2 R Cn-1, Pn-1, rn-2
3 L an-z, b.-2, q.-2

4 R Cn--2, Pn-2, rn-3
5 L a.-3, b.-3, q.-3

2n-3 L al, bx, ql

2n-2 R cl, p
2n-1 L da

FIG. 5.
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pass direction d attributes to be evaluated

1 R bn-1, Cn--1, Pn-1, rn-1, rn-2
2 R bn-2, Cn--2, Pn-2, rn-3
3 R bn-3, Cn-3, Pn-3, rn--4

n-1 R bl, cl, pl

n L ai, qi (i 1,. n 1), dl

FIG. 6

The basic reason for the nonoptimality of ASECONSTRUCTION is that we do
not know which direction to choose when At and AR are incommensurate. The
SELECT algorithm follows the heuristics that the direction of the next pass is opposite
to the direction of the preceding pass. This decision has the consequence (proved in
Lemma 1) that when an attribute becomes ready for evaluation, its evaluation is not
delayed for more than one pass. Thus SELECT tries to take new attributes into the
evaluation process as soon as possible hoping that this would make other attributes
evaluable.

Let ASE (p) U’- Ai when p < mASE, and ASE (p) A for p > mASE. We have
LEMMA 1. Let At and AR be the sets computed for pass p in ASECONSTRUC-

TION. Then At UARc ASE (p + 1).
Proof. Suppose that we choose AL as Ap (the other case is symmet.ric). Thus

AL ASE (p) c ASE (p + 1). Let A[ and A. be the sets computed for determining
the direction of pass p+ 1 Clearly, AR-ALCA’R. If AR C AL then Ap/l =A’L,
otherwise Ap+l A’R. In either case, AR (AR AL). I..J (AR --AL) AL A’R c
A, U Ap+ c ASE (p + 1).

We can use Lemma 1 to show that the grammar in Fig. 3 represents the worst case
for ASECONSTRUCTION.

THEOREM 1. For any attribute grammar, mASE--<--2mopt--1.
Proof. If mopt-- 1, we clearly have mASE 1, and the result is immediate. Suppose

then that mopt > 1. Let OPT (p) denote the set of attributes that have been evaluated
after the pth pass when the attributes are assigned to passes in an optimal manner, i.e.,
when only mopt passes are required. We will show that

(*) OPT (p)c ASE (2p) for p 1, 2,. ., mopt-- 1.

1) Let At and AR be the sets computed for the first pass in
ASECONSTRUCTION. Clearly, OPT (1)c At or OPT (1)c AR. By Lemma 1 we
have OPT (1)c ASE (2).

2) Suppose that (*) holds for p 1, 2,.. , k- 1. If OPT (k)c ASE (2(k- 1)),
(*) follows for p k. Otherwise let At and AR be the sets computed for pass 2k- 1,
and let S=OPT(k)-ASE(2(k-1)). Since OPT(k-1)cASE(2(k-1)), S is a
subset of the attributes in the kth pass in the optimal evaluation order. Hence
must be evaluable in a single pass. Thus ScAt or SCAR, yielding OpT (k)c
ASE (2(k 1)) U S c ASE (2(k 1)) U (At AR). By Lemma 1, ASE (2(k 1))
(At U AR)c ASE (2k), which proves (*).

Consider finally the case k mopt. Let again S OPT (mopt)-ASE (2(mopt-1))
and At and AR be the sets computed for pass 2mopt-1. Since OPT (mopt)--A, we
have ASE (2(mopt- 1)) U S A. Hence At c S and AR c S. On the other hand,
S c At or S c AR, since S is evaluable in a single pass. Therefore At
and only one pass is required for enlarging ASE (2(mopt-1)) into A. Thus mASE_<

2mopt-- 1. I-1
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A simple solution which yields an optimal evaluator is to delay the choice of
direction if AL and AR are incommensurate, and to see how many passes each choice
would produce. This means that SELECT would call ASECONSTRUCTION recur-
sively for suitably reduced grammars. However, since each pass can contain only one
attribute, such a recursive approach would clearly result in an exponential algorithm.
On the other hand, the result of the next section indicates that in the general case there
is not much hope for anything better.

3. Intractability of the construction of optimal evaluators. If we add nondetermin-
ism to the SELECT algorithm so that it every time guesses the right choice, we
obviously get an algorithm in class NP for constructing an optimal evaluator. To show
that the problem of constructing an optimal evaluator is actually NP-complete, we
transform the shortest common supersequence problem over binary alphabet into the
optimal evaluator construction problem.

Given a string S over an alphabet E, a supersequence S’ of S is any string
S’-- WoSIWIS2W2 SmWm over such that S $1s2 Sm and each w E*’, we also
say that S is a subsequence of S’. A common supersequence of a set of strings
6e {S,..., S"} is a string S over such that S is a supersequence of each S. The
shortest common supersequence problem is defined as follows" given an alphabet , a
finite set of strings from *, and a positive integer k, is there a common super-
sequence of of length _-<k? This problem was shown to be NP-complete by Maier
[12], provided that the size of the alphabet is _->5. The result has been sharpened to
any alphabet with at least two elements in [18]. This latter result will be used to prove
Theorem 2.

Nonterminal Inherited attributes Synthesized attributes

Productions with semantic rules

Z Y1 Y2"" Yn (no semantic rules)

if mi > 0 then
i(xiR)<_bil(X)}if sl L then {a](X) constant; al

else {a(X)+- b(X)’ a(X)<- constant}

for/’=2,. , mi do
if sl. L then

R L{ai(Xi )bi(Xi
Rif s_ L then {a. (Xi)- b/_(Xi )}

else {a (X/) Lbi_l(X )}
fi

else co s R oc
{a(X) bi(Xi )}
if R

Si=l L then {a. (XiR)- bi_a(Xi )}
else {a (X/R) bi-li(X/)}

fi
fi

od

b (Xi)+ a (Xi), j 1,’’’, mi

FIG. 7
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THEOREM 2. The problem of constructing an alternating semantic evaluator which
uses a minimum number of passes is NP-complete.

Proof. We will use reduction from the shortest common supersequence problem
over alphabet {L, R}. Suppose we are given sequences {S 1, , Sn} in E* and

where mi >0. We construct for Y anan integer k. For each S i, let Si= sls2 ...s,,,
attribute grammar G given in Fig. 7.

The grammar generates exactly one attributed parse tree. As an example, suppose
that S3 LRRLL. The dependencies induced by the grammar for the subtree with root
Y3 are shown in Fig. 8.

FIG. 8

We will first prove
LEMMA 2. S ss2 Sm is an evaluation order for G if and only if $ is a common

supersequence of 5.
Proof. 1) If. Suppose that S is a common supersequence of 5e. We show that the

attributes in the subtree with root Yi can be evaluated using $. Since the attributes in
different Y-subtrees do not interfere with each other, this proves that all the attributes
in G can be evaluated using S.

Let ]o," ", ],,, be a sequence of indices such that
(1) ss si, S%
(2) s s for all fi_ < k </%, r 1,. mi (define jo 0).
The existence of such a set of indices is guaranteed because S is a supersequence of S.
These indices can be used to prove:

LEMMA 3. For each r 1, mi, exactly the attributes {a r, b} are evaluated
during the/’th pass, when S is used as the evaluation order.

Proof. 1) r 1 Suppose that s L (the other case where s R is analogous).
By the construction, the attributed parse tree contains the dependency chain a(Xi)
b(X)a(XR ). In a pass-oriented evaluator all the instances of an attribute must be
evaluated during the same pass; in particular, this holds for ai(X) and a(X).
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Because of the above dependency chain, the direction of this pass has to be left-to-right,
and b must be evaluable during the same pass. On the other hand, on a left-to-right
pass nothing prevents the evaluation of a and bl. By the definition of/’1, the first
left-to-right pass is the hst one. We conclude that a and bl will be evaluated on the
/’1st pass.

Furthermore, all the remaining attributes in the Yi-subtree depend (directly or
indirectly) on b(X). Thus none of them can be evaluated during the passes which

(x/L) <--- b (X). Sinceprecede the/’1st pass. If $2 --L, the dependency is caused by a2
the direction of the hst pass is left-to-right, a2 cannot be evaluated during this pass. If

(x/R) -- b (x/R) - a (xR) In this case a2 cans2 R, the dependency is caused by a2
never be evaluated on the same pass as bl and a l, no matter what the direction of the
pass is. Thus we conclude that the set of attributes evaluated during the hst pass in the
Yi-subtree is exactly {a, b }.

2) Suppose the lemma holds for r 1, , k; we must show that it holds also for
r k + 1. From the point of view of the jk+lst evaluation pass, all the attributes
evaluated during previous passes can be regarded as constants. By the induction
hypothesis, in the Yi-subtree this concerns exactly the attributes a and b r,r=l,.. ",k.
As a consequence, the situation for the attributes a k+l and b k/l is just like that for a
and bl in case 1). By carrying out the same steps as in case 1) we obtain the result. 71

ProofofLemma 2 continued. By Lemma 3, all the attributes in the Yi-subtree are
evaluated during passes h, J-," ",j,,, proving the if-part.

2) Only if. Suppose that S is not a common supersequence of 6e. Then there must
exist at least one sis 6 such that S is not a subsequence of S. It is an immediate
consequence of Lemma 3 that the attributes in the Yi-subtree cannot be evaluated
using S as the evaluation order. Thus S is not an evaluation order for G. fi

COROLLARY 1. G has an evaluation order of length <=k if and only if 6 has a
common supersequence of length <-_k.

It is obvious that the construction of the attribute grammar G can be carried out
in a number of steps which is polynomial in the size of 6e. The theorem then follows
from Corollary 1 and [1 8].

We proceed by developing an approximation algorithm which can be performed
in polynomial time and which produces optimal evaluators for a large class of gram-
mars. To do this, we first isolate from the attribute grammar the essential information
required for assigning attributes to passes.

4. Characterization of ASE grammars. A dependency graph D (V, E) for an
attribute grammar G has as vertices the set of attributes, i.e., V A. The arcs (a, b)
denote the dependencies, i.e., (a, b) s E if a is used in some semantic rule which defines
b. Moreover, arcs are labeled by the symbols L, R, ANY and NO. The label of an arc
(a, b) is denoted by (a, b) and it will be defined below so that it indicates the following:
if the attributes a and b are to be evaluated during the same pass, the direction of the
pass must be left-to-right ( (a, b) L), right-to-left ((a,b)=R), or either one
((a, b)= ANY); the label (a, b)= NO indicates that a and b must be assigned to
separate passes.

The types of dependencies which cause each of these labels to be attached to an
arc are described in Fig. 9. Here denotes an inherited attribute and s a synthesized
attribute.

We assume that the attribute grammar G is in canonical form [5]; i.e., attributes
that are defined within a production are not used as arguments within the same
production. It is well known that all attribute grammars can be transformed into
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FIG. 9

canonical form by simple textual substitution [5]. In a canonical grammar all attribute
dependencies are of one of the forms in Fig. 9. Thus we have a rule for finding for each
dependency the label induced by it.

Different semantic rules may induce different labels to be attached to an arc.
However, we shall attach only one label to each arc. The following principle is used
for finding the label 8 induced by a set of labels A c {L, R, ANY, NO}:

Rule 1. 8 (A) if NO e A v (L e A ^ R e A) then NO else
if L A then L else
ifReAthenR else ANYfififi

For instance, for the grammar in Fig. 3 we get the labeled graph of Fig. 10.

L ANY L L LANY

FIG. 10

Let the graphs Di (V/, Ei), 1 <-_ <-r, be the strongly connected components of a
dependency graph D (V, E). That is, a and b are in the equivalence class Vi if and
only if there is a directed path (of length zero or more) from a to b and from b to a
in D. Moreover, each Eg {(a, b) Ela, b Vi}. For each Di we define the label of Dg,
denoted by t(Di), as the label obtained by applying Rule 1 to the set A=
{6(a, b)l(a, b) Ei}. Note that if Ag , Rule 1 yields the label ANY. Each Di is also
called a strongly connected 6(Di)-component of D. The compressed dependency graph
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C for a dependency graphD (V, E) is defined as C (V’, E’), where V’= { V/[(Vi, Ei)
is a strongly connected component of D}, and (V1, V2) E’ if there are vertices a, b in
V such that a V1, b V2, V1 V2, and (a, b) E. The labels of the strongly connected
components and those of their connecting arcs are carried over as the labels of the,

vertices and arcs of the compressed dependency graph. For instance, for the depen-
dency graph in Fig. 10 we get the compressed dependency graph of Fig. 11.

FIG. 11

(n- ’qn-1 ) L

n-i ’n-i

LEMMA 4. In alternating semantic evaluators, all the attributes V of a strongly
connected component Di Vi, Ei) of a dependency graph D must be evaluated during
the same pass.

Proof. Suppose that a V/ and b V/, and b is evaluated on a later pass than a.
Since D is strongly connected, there is a path from b to a in D, and thus in D. But this
means that some instance of a depends on some instance of b. Because in a pass-
oriented evaluator all the instances of an attribute must be evaluated during the same
pass, b cannot be evaluated on a later pass than a, a contradiction. 1

LEMMA 5. Let Di- (Vi, El) be a strongly connected component of a dependency
graph D such that 6(D) NO and in the compressed dependency graph there are no arcs
entering V. Then the attributes in V can be evaluated in a single pass of an alternating
semantic evaluator.

Proof. We will show that the attributes in V can be evaluated during a pass in the
direction indicated by 6(D). By assumption, 6(Di)#NO; if 6(Di)=ANY, either
direction can be chosen. Consider then a left-to-right pass, i.e., 8(D)= L or 3(Dg)-
ANY (a right-to-left pass can be handled analogously). To prove the lemma, it is
sufficient to show that for any attribute a V and for any instance of an associated
nonterminal X, all the argument values needed for evaluating a(X) are available by
the time of evaluation.

Case 1. a is inherited. Since 3(D) R and 3(D) NO, Rule 1 implies that there
are no R-arcs or NO-arcs in Ei. By Fig. 10, all the dependencies directly affecting a
are of the two forms in Fig. 12.

X0

Xl XJ a Xk Xn Xl Xk X
a n

FIG. 12
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Since there are no arcs entering V/in the compressed dependency graph, we have for
each such argument s or that s Vi and Vi. By the evaluation procedure (and by
the induction principle), we know that both s(X) and i(Xo) have been evaluated before
the evaluation of a(Xk) during the pass under consideration, since the direction of the
pass is left-to-right.

Case 2. a is synthesized. By Fig. 10, all the dependencies directly affecting a are
of the two forms in Fig. 13.

X1 X
n

OF

FIG. 13

Again, the evaluation procedure and the induction principle tell us that i(Xo) and s(X.)
have been evaluated before the evaluation of a(Xo) during the pass under considera-
tion, even regardless of the direction of the pass. fi

THEOREM 3. An attribute grammar G can be evaluated using an alternating
semantic evaluator if and only if its dependency graph D does not contain strongly
connected NO-components.

Proof. 1) If. Let C (V’, E’) be the compressed dependency graph for D
(V, E). Obviously, C cannot contain any cycles. Furthermore, since V’ is finite there
must be a node V in V’ with in-degree zero. Thus the attributes in V depend on noiae
of the other attributes. By Lemma 5, the attributes in V/ can be evaluated during a
single pass with direction 8 (V). If 8 (V) ANY, either one of L and R can be chosen;
the assumption guarantees that 8(V,.) NO. Since the attributes in Vi can be regarded
as constants from the point of view of the remaining passes, the node V and all arcs
leaving it can be deleted from C. The above process can be repeatedly applied to
reduced graphs, until all the nodes in V’ are chosen in some order Vh V. V.r. The
evaluation order for G is given by 8 (Vh)8 (V.) 8 (Vr), where each ANY is arbitrarily
replaced by L or R.

2) Only if. Suppose that D contains a strongly connected NO-component Di
(V, Ei). Since 8(Di) NO, Rule 1 indicates that either 8(a, b) NO for some (a, b) Ei,
or there are arcs (a, b) Ei and (a’, b’) E such that 8 (a, b) L and 8 (a’, b’) R. In the
former case a and b cannot be evaluated during the same pass, contradicting Lemma
4. In the latter case a and b can only be evaluated during the same pass if the direction
of the pass is left-to-right. Similarly, a’ and b’ require a right-to-left pass. Thus the
direction of the pass can never be chosen so that all of a, b, a’ and b’ could be evaluated
during the same pass, again contradicting Lemma 4. fi

Similarly we can prove that an attribute grammar G can be evaluated using a
multi-pass left-to-right evaluator if and only if its dependency graphD does not contain
strongly connected NO- or R-components.

Our modified construction algorithm is based on Theorem 3. We first construct
the compressed dependency graph to check that the grammar belongs to the ASE class.
This membership test is efficient. Let zr denote the number of attribute dependencies
in the attribute grammar G, i.e., 7r is the sum of the number of attributes on the right-
hand sides of semantic rules. The construction of the dependency graph D (A, E) is
of time complexity ’(MAX (IAI, )), and finding the strongly connected components
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has time complexity e(MAX ([AI, [El)) (cf. [19]). Since the complexity of the
membership test is thus (MAX ([AI, r)). For grammars not in the ASE class this is
much better than using ASECONSTRUCTION, which may form a large part of the
evaluation order before finding out that the job cannot be completed.

If the label of each arc in the dependency graph is augmented with a list of
production numbers inducing the arc (and the label), we can for non-ASE grammars
print a complete legend of the semantic rules which cause the ASE conflicts. This is
useful for transforming the grammar into ASE form.

For the grammars which pass the membership test we form the evaluation order
using the algorithm of the next section.

5. A new algorithm for constructing the evaluation order. For a compressed
dependency graph C (V’, E’) we recursively define the sets L(k) and R(k), k >-_0, as
follows.

L(k)= VIVe V’- U R(])and(V)e{L, ANY}and (Vh, V)E’

}implies (Vh eL(k) and (Vh, V) e {L, ANY}) or Vh e R(])

The definition of R (k) is obtained by interchanging the roles of L and R. Intuitively,
it is easy to see that L(k) is the set of blocks of attributes which can be evaluated during
a left-to-right pass immediately after k preceding right-to-left passes. Thus the sets A
and A computed in ASECONSTRUCTION correspond to L(0) and R (0).

Our purpose is to modify ASECONSTRUCTION by adding to it tests which
guarantee the optimality of the choice of evaluation direction in certain situations.
Therefore we say that L(0) is complete if L(k) L(O) for all k > 0, that is, the set of
attributes evaluable during a left-to-right pass will not grow regardless of the number

algorithm ASECONSTRUCTION’;
begin

p := 0; V" := V’; E" := E’; maxk := IAI;
repeat

p:=p+l;
compute L(i) and R(i) for the graph (V", E") for =0,..., maxk;
if R(0)c L(0) then (do, Ap):= CHOOSE (L, L(0)) else
it L(0) c R (0) then (d, Ao) := CHOOSE (R, R (0)) else
if L(0) is complete then (do, Ao) := CHOOSE (L, L(0)) else
if R (0) is complete then (do, Ao) := CHOOSE (R, R (0)) else

kL := MIN {klL(k) L(0)};
kn := MIN {klR(k)- R (0)};
(do, Ao):= SELECT (p, L(0), R (0), kL, L(kL), kR, R (kn))

fifififi;
V" := V"\(if do L then L(O) else R (0));
E" := E" 0 V" V";
maxk:=maxk- lAp

until maxk O’
mASE’ :--" P

end of ASECONSTRUCTION’;

algorithm CHOOSE (d, );
begin

return (d, U vv V/)
end of CHOOSE;

FIG. 14
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of right-to-left passes. The completeness of R (0) is defined similarly. If either L(0) or
R (0) is complete, there is no reason for delaying the choice of the corresponding
direction: doing some passes in the opposite direction will never help. This observation
gives rise to the modified construction algorithm given in Fig. 14. It takes as input the
compressed dependency graph C (V’, E’) for an attribute grammar G which is known
to satisfy the ASE membership test. The algorithm computes the number of passes
mASE’, the evaluation order did2"’" d,,,.s,, and the sets of attributes Ap evaluated
during the pth pass. We have anticipated further refinements by adding some para-
meters to the call of SELECT.

By the preceding discussion, our modification of the construction algorithm is an
improvement over the version in Fig. 1 in that our algorithm is able to guarantee the
optimality of the evaluation order more often, i.e., for grammars which do not require
the call of SELECT. However, as soon as SELECT is called even once there is not
much that can be said about the relation of the algorithms in Figs. 1 and 14. It is easy
to construct artificial examples where each performs better than the other, The upper
bound given in Theorem 1 is easily seen to hold also for the modified algorithm (with
SELECT specified as in Fig. 2).

Initial investigations [17] show that for real attribute grammars the number of
right-to-left passes is small. This leads us to conjecture that even our slight modification
of the original algorithm is in practice sufficient for preventing the algorithm from
getting into dead-end sidetracks. For instance, for the grammar in Fig. 3 our algorithm
is able to produce the optimal evaluation order, as shown in Fig. 15.

pass L(0) complete? R (0) complete? do Ap

1 {{an-l, qn-1}, no {{r._}, {bn-1}, yes R {r._, b._, Pn-1,

{r._}, {b._}} {p._, c._}, {r.-2}} c._, rn-2}

2 {{a._, q._},
{a.-2, q.-a},
{b.-2}}

n 1 {{a._, q._},
{a._:, q._},
"’’, {al, ql}, {bl}}

n {{an-I, qn-x},
{a._, qn-2},
"’’, {al, q}, {d}}

no {{b.-z}, {Pn-2, cn-2}, yes
{r.-3}}

R {bn-2, Pn-2, Cn--2, rn-3}

no {{b}, {p, ca}} yes R {ba, px, ca}

n--1

L U {ai, qi} U {dx}
i=l

FIG. 15

In fact, the observations in [17] lead us to question the practicality of the present
heuristics in SELECT which favors changing the previously chosen evaluation
direction. It might be better to stick to one direction until this choice has increased the
size of the opposite pass. This principle, augmented with a technique for breaking ties,
is contained in a modification of SELECT given in Fig. 16.

It is fairly easy to implement the computation of an L(i) or R (i) set using depth-
first search in time (?(MAX (Iv"l, IE"I)) (see, e.g., [1]). Thus we immediately get the
time bound If(MAX (IAI 3, 1312. IEI)) for ASECONSTRUCTION’. Recalling the
(?(MAX (IA I, 7r)) complexity of the membership test, we conclude that our modified
construction algorithm has time complexity (?(MAX (IAI3, ]AI. IUI, r)). This bound
could be improved by computing the L(i) and R(i) sets more intelligently, i.e., by
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avoiding their recomputation each time in the inner loop. Since [E -<_ [AI 2, this would
bring the complexity of the modified algorithm down to 6(MAX (IAI3, "r/’)), which was
obtained for the original algorithm in [13].

algorithm SELECT’ (p, L(O), R(O), kL, L(kL), kR, R(kR));
begin

if kR < kL then return (CHOOSE (L, L(0))) else
if kL < kR then return (CHOOSE (R, R (0))) else
if L(kL)-L(O)I> IR(kR)-R(0)] then return (CHOOSE (L, L(0))) else
if IR(kR)-R(O)I>IL(kL)-L(O)I then return (CHOOSE (R, R(0))) else
if p then return (CHOOSE (L, L(0))) else
if dp-1 R then return (CHOOSE (L, L(0))) else return (CHOOSE (R, R (0)))
fifififififi

end of SELECT"

FIG. 16

Our experience with real attribute grammars is that the construction algorithm is
very fast. Even the largest grammars for languages like Pascal or Simula can be
processed within a minute. If the optimality of the evaluation order is not guaranteed,
i.e., if ASECONSTRUCTION’ has to call SELECT’, it might therefore be worth while
to perform the algorithm several times with some variations. For instance, the version
of SELECT’ in Fig. 16 favors the direction left-to-right for the first pass, but the
opposite choice could produce an altogether different evaluation order.

It has been observed [13] that if attributes are assigned to passes starting from
the end rather than from the beginning, the resulting evaluation order tends to get
shorter. Our algorithm can be immediately used to produce such evaluation orders.
Let C--(V’, E’) be the compressed dependency graph for an attribute grammar.
Applying ASECONSTRUCTION’ to the inverted graph (V’,E") where E"=
{(V, V.)I(V., V/)E’} yields a sequence did2"" d,As,, the inverse of which is an
evaluation order for G. Here, too, we can try both choices for the initial pass.

If several evaluation orders are produced as suggested above, the shortest is
chosen. If there are several possibilities of equal length, we can choose the one which
is best for memory management [13]. That is, let first(a) be the number of the pass
which is used for evaluating attribute a, i.e., a afirst(a), and let last(a) be t.he number
of the pass where a is used for the last time, i.e., last(a)= MAX {pl(a, b)E and
first(b)=p}. The lifetime of attribute a is defined as lifetime(a)=last(a)-first(a).
From several evaluation orders of equal length we choose the one which minimizes
EaA lifetime(a).

6. Conclusions. We have demonstrated that the algorithm for constructing alter-
nating semantic evaluators produces nonoptimal evaluators. If the minimal evaluator
uses n passes, the evaluation order produced by the construction algorithm can contain
2n 1 passes. Furthermore, the problem of constructing optimal evaluation orders was
shown to be NP-complete.

A dependency graph was introduced as a convenient data structure for dealing
with pass-oriented attribute grammars. It was used in deriving a new characterization
for the class of grammars which can be evaluated with alternating semantic evaluators.
The characterization provides a direct and efficient membership test for ASE gram-
mars. Furthermore, the dependency graph can easily be augmented so that the
membership test can produce complete diagnostics of ASE conflicts.

Finally, we used the dependency graph to develop a new construction algorithm
for alternating semantic evaluators. Our algorithm can guarantee the optimality of its
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result for a class of grammars which strictly contains the class for which the algorithm
used so far can guarantee optimality. Moreover, in cases where optimality is not
guaranteed our algorithm uses several heuristics which are based on the properties of
the attribute grammar. Thus we expect it to behave better than the original algorithm
which simply alternates the evaluation direction independently of the grammar.
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COMPLETENESS, APPROXIMATION AND DENSITY*
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Abstract. Polynomial time approximations to exponential time computable problems (EXP) are
considered from the point of view of structure. Infinitely often speedable and almost everywhere complex
problems are studied using the notions of polynomial time productivity and immunity. In particular, the
existence of a polynomial time immune set which is not polynomial time approximable at all but which is
polynomial time tt-complete in EXP is proven. The relationship between completeness and approximability
is also studied. It is shown that being polynomial time m-complete in EXP does not provide any control
of the probability of erroneous approximations.

Key words, complexity, polynomial time, exponential time, approximations

1. Introduction. Many commonly encountered important problems appear to be
intractable in the sense that no polynomial time algorithms are known for solving
them (see, for example, [7]). Heuristic algorithms have been hoped to yield approxi-
mate solutions in polynomial time. Worst case analysis has shown that many practically
useful heuristic algorithms are not polynomial time algorithms in the worst case.
Furthermore, for many important combinatorial problems, it has been shown that no
polynomial time algorithm can solve the corresponding worst case approximation
problem unless P--NP, which is widely believed to be false [6], [16]. However, many
practically useful heuristic algorithms are, on the average, polynomial time bounded.
For instance, Karp [10] has given a theoretical framework for average case analysis
and has shown that in this framework many intuitively sound algorithms are indeed
"good" algorithms.

This paper involves the average case analysis of polynomial time approximation
from an abstract point of view. L. Berman and Hartmanis [3], [9], while examining
the structure of complete sets, showed that a complete set for a deterministic class
must have an infinite "easy subset" and that no sparse sets can be complete. A similar
result for NP-complete and PSPACE-complete sets is observed by P. Berman [4] and
Meyer and Patterson [14]. This paper reports a further study along this line of the
structure of exponential time computable sets. We show that, despite the fact that
many-one completeness guarantees an infinitely often speedup, truth-table complete
sets may be not approximable at all. We also consider the question of the size of the
"easy subsets" of complete sets and are able to answer an open question asked by L.
Berman. Our result reveals that completeness is not a useful tool in classifying
intractable problems according to their approximability.

Let be a finite set of symbols and Z* be all finite strings of symbols over E. A
problem is a language contained in Y_,*. Let Ixl denote the length of x ,E*. Consider
the following simplified view of approximation.

For each problem $ which is not polynomial time computable, A is a polynomial
time approximation algorithm for S if:

(1) There exists a polynomial p such that, for any x Y,*, A(x) halts in p([xl) or
fewer steps and A(x) 1 (accepts x), 0 (rejects x), or "?" (does not know the answer).

(2) For every x,A(x)= l:ff x S, andA(x)=O::x:S.

* Received by the editors August 16, 1979 and in final revised form on January 26, 1981. This research

is based in part on the first author’s doctoral dissertation prepared at the Department of Computer and

Information Science, The Ohio State University, under the supervision of the second author.

t Department of Computer Science, University of Houston, Houston, Texas 77004.
5E-116, Bell Laboratories, 600 Mountain Ave., Murray Hill, New Jersey 07974.

787



788 KER-I KO AND DANIEL MOORE

The set {x *" A(x) ?} is called the "definite part" of A. Obviously, the size
of the definite part of an algorithm A determines how good it is.

We first consider the infinitely often (i.o.) speedability and almost everywhere
(a.e.) complexity questions; that is, questions which ask whether there is a polynomial
time approximation algorithm A for S such that the definite part is infinite or not. In
3 we first define the p-productive sets as the polynomial time analogue of the

productive sets and show that there are no exponential time computable p-productive
sets. As a consequence, this notion is not useful in studying the i.o. speedability of
exponential time computable problems (EXP). Then we define the p-immune sets as
the polynomial time analogue of the immune sets. It has been observed by L. Berman
[3] that polynomial time many-one complete sets in EXP are not polynomial time
immune. We show that some polynomial time immune set is polynomial time truth-
table complete in EXP and hence can be used as evidence that, in EXP, polynomial
time many-one complete sets and truth-table complete sets do not coincide.

In 4, the density of a set is defined assuming a uniform distribution over any
initial segment of integers. Based on this definition of density we show that there exist
some polynomial time m-complete problems whose "definite part" is always of density
0. Thus there are no polynomial time approximation algorithms which can solve even
a small fraction of the inputs. Moreover, the "definite part" of polynomial time
m-complete sets can have density ranging from 0 to 1. Hence the polynomial time
m-completeness of a set does not provide any information about its approximability.
Therefore, a different approach needs to be taken in order to more successfully classify
the problems according to their approximability.

Finally, in 5, we give a summary of the currently known results and open
questions on the approximability of complete sets.

2. Preliminaries. Standard definitions of deterministic, nondeterministic and
oracle Turing machines (TM) are used here (see, for example, [1], [15]). The amount
of time used by a machine M (deterministic, nondeterministic or oracle) on input x
is the number of steps in the shortest accepting computation if x is accepted; and the
number of steps in the longest computation if x is not accepted. A Turing machine
M runs in time T for some function T if, for all n > 0, M uses less than T(n) steps
on every input x of length n. Some interesting time bounded classes of problems are
seen in the following.

DTIME(T)(NTIME(T)) {L Z*" L is accepted by some

(non)deterministic TM which runs in time T}.
Let be a class of functions.

DTIME () kJ DTIME(T),

NTIME () kJ NTIME (T),

P DTIME (Poly)= DTIME (hi),
i=0

NP NTIME (Poly)= t3 NTIME (ni),
i=0

EXP DTIME (2linear) [,..J DTIME (2he).
i=0
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The polynomial time reducibilities are those in [11], namely,

<_-: polynomial time Turing reducibility,
-<_: polynomial time truth-table reducibility,
=,,.<P" polynomial time many-one reducibility.

We say that a set L is =<-- (-<P,-, =,,-<P hard in c, for some class c of problems,
if L’ < p L’ " L’7"L (L’ <= t L, =,< L) for all c. We say that L is < -- (--tt-,< p =m-<" complete
in c if L is < -- (<_-- "tt-, =,-<p hard in and L c.

A set L is said to be p-sparse if there is a polynomial p such that, for all n _-> 1,
the cardinality of the set {x eL: Ixl_-<n} is less than or equal to p(n). A set L is said
to be almost polynomial time computable (L APT) if there is a polynomial time
approximation algorithm A for L such that its "uncommitted part" is p-sparse [14].

We know that a finite set is always polynomial time computable because we can
determine the membership of an input in a constant number of steps by using a table
look-up technique. Therefore, for any polynomial time approximation algorithm A
for a set $ P, the "uncommitted part" of A is infinite. Actually, Lynch [13] has shown
that, for every $ P, there exists a fixed uncommitted part.

Let Xs denote the characteristic function of $.

LEMMA 1 13]. If S is a recursive set with S: P, then there exists an infinite recursive
set X

_
S such that

(Vp, a polynomal)(VM, a DTM) [Mcomputes Xs :=> Tt(x) >-P(IXl) a.e. on X],

where TM(x) is the number ofsteps Mtakes to compute Xs(X), and a.e. is the abbreviation

of "for all but finitely many."
The set X is called a polynomial complexity core of S [13]. It is clear that, for

any polynomial time approximation algorithm A for X, the intersection of X and the
definite part of A is finite. The size of a polynomial complexity core of S thus gives
a lower bound on the uncommitted part of any polynomial time approximation
algorithm A for S.

3. P-productive sets and P-immune sets. In recursive function theory, the concept
of productivity has been used to study the speedability of nonrecursive sets. In
particular, Blum and Marques [5] have shown that a recursively enumerable set is
"effectively speedable" if and only if it is "subcreative." We define the notion of
polynomial time productivity and show that there are, unfortunately, no such sets in
EXP.

We assume that a certain enumeration of polynomial time bounded Turing
machines is available, satisfying two properties.

1. The ith Turing machine Mi (with program encoded in a string )ri) has time
clock Pi Ax[x i+ i] attached. On inputs of length x, Mi halts in pi(x) or fewer steps.

2. This enumeration is efficient; i.e., there exist two polynomial time computable
functions &a and t2 and two polynomials ql and q2 such that

&l(i) Mi, &2(Mi) i,

Iil--< ql(l(/, I), I r,I <-- q2(lil) for all 1, 2,. .
Property 1 has been used in [2]. Property 2 is also essential for [2, Lemma 1].

It means that, when (i, x) is an input, we can simulate Mi on x using not more than
polynomially bounded time.

Let Li be the language recognized by
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DEFINITION 1. A recursive set A is said to be p-productive if there is a polynomial
time computable function f (called the p-productive function for A) such that f(i)6
A Li whenever Li

_
A.

THEOREM 1. There exists a p-productive set in DTIME (22" )o
Proof. Let A {ri w.M/ accepts ./ : w in =<22’i*w steps}. We first observe

that A DTIME (22i because for any input of the form AT/i w, we can efficiently
21t. wl

simulate Mi on M/: w for 2 steps using only O(13/i : wt)" 22’iwt steps. Thus,/(
is also in DTIME (22’i ). We claim that is p-productive.

First define f(i)=M 4 0", where m is a number greater than 0 such that )(i) is
padded with zeros so that its length becomes 3"q1([/[)+3. It is clear that ]c is
polynomial time computable by Property 2. Now, if L

_
A we show that f(i) A Li.

1. Suppose, by way of contradiction, )c(i) A. Then, from the definition of A, Mi
accepts f(i) Jr : 0m, Thus, f(i) Li

___
A, a contradiction. Thus [(i) A.

2. Suppose, by way of contradiction, (i) Li. Then Mi accepts f(i) in <-pi([f(i)l)
steps. It is easily seen that pi(If(i)l <- 22tf", since If(i)[ 3. q(lMil)+3. Thus, by
definition of A, f(i) A. This is a contradiction, and so we have shown that f(i) L. ]

THEOREM 2. There is no p-productive set in DTIME (2PIY).
Proof. Assume, by. way of contradiction, that A is p-productive and can be

computed by a deterministic Turing machine (DTM)MA with time complexity 2p’n)

for some polynomial PA. Let ]" be the p-productive function for A with time complexity
bounded by Pr, a polynomial.

Now, for each integer i, construct a DTM MI in the following manner.
For given input x, M simulates MA on x for Ixl +
steps and accepts x only if MA accepts x in Ix[ / steps.

It is clear that the machine M is of polynomially bounded time complexity.
Since the construction of MI is uniform in i, there is a recursive function tr such

that M M,, where {M.} is the standard enumeration of polynomial time DTMs
described in Property 1. In addition, r is polynomial time computable because the
map Ai[rl can be easily computed in polynomial time by attaching a "clock machine"
to MA. So, we may assume the existence of a polynomial q such that q(lil)>-[r(i)l
and I(i)l >--lil.

It is clear from the description of M that Lo-(i) A. So, f(o’(i)) A Lo.(i).
Consider so large that

2lil-a >=pAoproq(li[)"

Then f(tr(i)) A implies that

MA accepts f(cr(i)) in _-< 2 pA(If((i))l) steps

and

PA(II((i))I) paopr(l(i)l)

PAoproq(li[)2lil-a <-- i.

Thus, MA accepts f(cr(i)) in --<_2 steps, or <=[f(o-(i))] steps. So, f(tr(i)) is accepted by
M) and is in Li. This is a contradiction and we have shown that such an A does
not exist.

Thus the concept of p-productivity is not very useful in studying the structure of
sets in EXP. On the other hand, p-productivity is not the only tool we have. It is well
known that a recursively enumerable set is m-complete if and only if its complement
is productive. Also, Gill and Morris [8] showed that subcreativity is equivalent to
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"S-completeness." So, we may well consider the relationship between completeness
and speedability. Actually, L. Berman [3] has shown that if S is any set which is
-<_-complete for a deterministic time class T(n), then S has effective i.o. speedup
from T(n r) to polynomial time for some r > 0.

What about other sets which are not _-<-complete? What about =<-complete
sets? These questions are considered next. First we define p-immune sets as the
analogue of the immune sets at the polynomial time level.

DEFINITION 2. An infinite set A is said to be p-immune if, for every subset
B
_
A, B P=>B is finite.
We first show that there exists a set $ in EXP such that both the set S and its

complement are p-immune. In other words, *, the set of all input strings, is a
polynomial complexity core of S.

LEMMA 2 [9]. There exists a set Ao in EXP such that
(i) Ao is not p-sparse, and
(ii) if Ao <- B via p, then p is a one-to-one mapping a.e.
THEOREM 3. Both the set Ao in Lemma 2 and its complement Ao are p-immune.
Proof. First note that Ao must be infinite and co-infinite because otherwise Ao

would be in P and thus =<-reducible to any set, in contradiction to (ii) of Lemma 2.
Assume, by way of contradiction, that Ao has an infinite subset C which is in P.

Now, let B be a <_--complete set in EXP and A0 <- B via 0. Then the function p’
defined by

p(x) ifxC,

Xo if xC,

where Xo is a fixed number in B, -<_-reduces Ao to B but is not one-to-one a.e. This
contradicts (ii) of Lemma 2, and hence such an infinite set C does not exist. In other
words, Ao is p-immune.

A similar proof shows that Ao is p-immune.
We can also construct a p-immune set using a variation of Post’s simple set

construction.
Assume that all numbers are written in binary form as strings in {0, 1}*.
THEOREM 4. There exists a p-immune set which is <-_-cornplete in EXP.
Proof. First construct a set S in EXP such that S is p-immune and, for any n,

IS f’l (x E*" x -<_ 2n}l -<_ log2 n + 1,

by the following algorithm Ms:
Obtain input x;
do 0 to log2
do j=22i to x;

simulate Mi on j for 2Ijl steps;
if j is accepted and j x

then accept x and halt;
else if is accepted and j < x

then go to OUT;
end;

OUT: end;
Reject x and halt.
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We now check the following assertions ((1)-(4))"
(1) S EXP.

If [xl=n, then x <2n+l, and so the execution time of Ms on x is <c1+-
(log2 n + 1).x. (c2" 22n), for some constants Cl and c2, which is O(24n).

(2) $ is infinite.
For any x $, from the algorithm Ms we know that there exists exactly one

such that
(a) _-< log2 x;
(b) the computation of Mi on x is simulated by Ms on x and halts in -<_2 Ixl steps;
(c) (’, 22’-< ] < x) [Mi does not accept/" in <-2 Ijl steps].

2i<.< < lilThe reason is that if M accepts some I, 2 =1 x, in =2 steps then the execution
flows to OUT, and Mi is no longer to be simulated.

Let &’ $-N be defined by b(x)= the described above. We claim that b is
one-to-one.

Assume, by Way of contradiction, that x < y and b(x)= b(y)= i. Then, by (a),
(b) and the fact that b(x)= i, we have i-<log2 [xl and Mg accepts x in -<2Ixl steps.
However, by (c) and b(y)= i, we have that Mi does not accept x in <-2Ixl steps. This
is a contradiction. So, b is one-to-one.

But the fact that b is one-to-one means that

Hence S is infinite.
(3) S has no infinite subset in P.
By way of contradiction, assume that Lk c__ S and Lk is infinite.
Since 2n >pk(n) a.e., we know that the set {x eY_,*" Ix]>2k and M accepts x in

_-<2 Ixl steps} is infinite. Let x be the smallest element in this set. Then x L
___

g.
Consider the workings of algorithm Ms applied to input x. Since Ms will reject

xk, Ms will go through the simulation of M on/" for every 0, 1,..., log2 [xl and
some j 22’, 22‘ + 1,. , x. So, Ms will simulate M on j’s, 22k <= j <= x. But xk is the
smallest number in’ {22k, x} which M will accept in <_-2 Ixl steps. So, Ms will
eventually simulate M on x for 2Ixl steps and accepts x,. This contradicts the fact
that xe S. So, we have shown that S has no infinite subset in P.

(4) IS f’) {x Z*" x <= 2"}]-<_ log2 n + 1.
This has been shown in (2).
Now we construct finite sets $ {y,, y, + 1, , y, + kn 1} where k [log2 n]

and y, nk,,- 2" -k,, + 1, for n 1, 2,. .
First observe the following facts ((5) and (6)).
(5) The function An[yn] is polynomial time computable because n[k,,] can be

computed by binary searching.
(6) For all but finitely many n, $, CI $ # .
Since [$ f3 {x Z*" x -< 2"}1 <- log2 n + 1, we need only to check that, for almost all

n, y, + k, 1 < 2"/2. (So, IS f-) S,[ <_-IS f’) {x Z*’x < 2/=}1 < log2 n <= k,, and hence ]g
S, [_-> 1). But Yn + kn 1 nk,, 2k" <- n 2 <= 2n/2 if n is large enough, and so S 0
for almost all n.

Now assume that the set A is <=Pro-complete in EXP. Let S* SU(LJ{S,," n cA}).
We claim that g* is p-immune and <_- tPt-complete in EXP ((7)-(9)):

(7) S* EXP.
The following .straightforward algorithm for S* works in exponential time. Given

input x, first perform a binary search over k such that Yk <_--X < Yk+ (From (5), this
can be done in p(]xl) steps for some polynomial p.) Then test whether k A. If yes,
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then accept x; otherwise, accept x if and only if x is in S. (Both A and S are in EXP.)
(8) $* is -<-complete in EXP (and so is g*).
We need only show that A <_- S*.
Note that, for n large enough, S fq Sn , so, (’n) In A:Sn S*] where ’n is

the abbreviation of "for all but finitely many n." Thus, A <_- S* via the following
tt-function (f, g)"

f(n) (yn, yn + l, yn + kn -1);
g((n, m l, m2, , mk,))= true if and only if

m m2 mkn true, for large enough n;
f and g are trivial on small n.

(9) $* is p-immune.
Since A is infinite and 0n) [Sn f-)S ], S* must be infinite. Now if B P is a

subset of *, then B
_

and.B must be finite.
Combining Theorem 4 and L. Berman’s result in [3], we conclude that, in EXP,

-<_-complete sets are always i.o. speedable, but some <--complete sets are not i.o.
speedable. In [8], effective speedable sets are shown to be equivalent to S-complete
sets and --<s is incomparable with --<tt. An interesting open question is whether there
exists a polynomial time reducibility <= as an analogue of <-s which satisfies similar
properties.

4. Density and complexity. We have just seen that the size of the cores of sets
in EXP could be as large as the set E* of all inputs, but a -<P,,-complete set must
have an infinite "easy" part. How large can this "easy" part be? Is there an upper
bound for it? We now discuss these questions.

DEFINITION 3 [12]. The density of a set S
__
N is less than (greater than) r, for

O=<r=< 1, if
Is {0, ,

dens (S) <r(>r) a.e.
def n + 1

This definition basically assumes a uniform distribution over any initial segment of
integers. We may compare it wih Karp’s [10] more practical definition.

DEFINITION 4 [10]. Let Sn be a probability distribution over x e {0, 1}. We say
that a set X {0, 1}* is empty a.e. if

Z Pr {X f’l {0,
n-----O

and X Y a.e. if (X Y) IO (Y X) a.e.
Under the uniform distribution, the notion X a.e. is stronger than the notion

dens, (X)= 0 a.e., and p-sparseness is even stronger in the sense that each of the
following conditions on X implies its successor but no two of them are equivalent"

(i) X is p-sparse.
(ii) X a.e. under uniform distribution.
(iii) (/e > 0) [dens (X) < e a.e.].
We now use this definition to study the size of the polynomial complexity cores

of sets in EXP.
THEOREM 5. IfA is <--_-complete in EXP, then A is not almost polynomial time

computable; i.e.,

[B ,4, C
_
A B [A C is not p-sparse.

Proof. This is a simple corollary of Lemma 2 (due to Hartmanis and L. Berman
[9]). Actually, it is proved in [9] that Lemma 2 implies that <--complete sets in EXP
cannot be p-sparse. It can be easily strengthened to show this theorem.
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The above theorem says that the uncommitted part of any polynomial time
algorithm for a =<Pro-complete set in EXP must be greater than any p-sparse set. Can
it be of density 0? Can it be of density 1? We give the positive answers in the next
two theorems.

THEOREM 6. There exists a set A which is <--complete in EXP such that

(=IB, C P)[B
_
A, C

_
A, and lim dens (B U C) 1 ].

Proof. Let X be a -<_-complete set in EXP. Let A {x Z*" (=ly c X)y2= x}.
Then, obviously, A is <= -complete in EXP. To see that A satisfies the above condition,
just let B=, C={xZ*:(=ly
X* (=ly y_,.)y2 x} < e a.e. for all

THEOREM 7. There exists a set A which is <--complete in EXP such that, for
any sets B, C in P,

[B
_
A & C

_
A =), lim densn (B LI C) O.

Proof. First note that, from the proof of Theorem 4, there exists a _-< -complete
set S in EXP such that S is p-immune and S is p-sparse. Thus, for any B, C P, if
B
_

S, C
___

$, then B LI C is p-sparse, and hence dens, (B LI C) < e a.e. for all e > 0;
i.e., lim,_, dens (B t_J C) 0.

All we need to do is modify S to get a <-_-complete set A in EXP such that
density of A is small and A is hard to approximate. This can be done easily" let
Y {x" x is a perfect square}, and f" N Y be a one-to-one, onto, increasing function

b.etween N and I7". (Then, f(n) is the nth smallest element in I7.) Both f and f-1 are
polynomial time computable. Now, for a <--complete set X in EXP, let A
{x Y" (=ly X)y2 x} LI f(S).

It is easily observed that A is <--complete in EXP and that lim,_ densn (A) 0.
So, all we have left is to show that if C s P and C

_
A, then lim,_ dens, (C) 0.

Assume that C s P and C_. Then D C 71 I7" is in P. Now, f-a(D) is also in
P and f-(D)_. So, f-(D) is finite, and hence D is finite. Therefore,
lim,_ dens, (C) -< lim,_ dens, (D) + limn_ dens, (Y) 0. ]

The next theorem, which states that the polynomial complexity core of a
_-<-complete set in EXP can be of any size, solves an open question posed by L.
Berman [3].

THEOREM 8. For any r Q, 0 < r < 1, there exists a set A which is <- m-Complete
in EXP such that

(i) (VB, C P)[[B
_
A & C A]limsup,_ dens, (B LJ C) -< r];

(ii) (B, C P)[B
_
A, C

_
A & liminf,_ densn (B [_J C) => r].

Proof. Intuitively, if r a/b, we consider the intervals of b consecutive integers.
For each such interval, choose a numbers in A, and let the other b-a numbers be
either in A or in A so that A is complex enough. A formal proof follows.

Let Ax be the set found in Theorem 7. That is, Aa is <_--complete in EXP and
if B, C s P, B

_
A and C

_
A x, then lim,_ dens, (B LJ C) 0.

We define A={bx+y’a_-<y<b, xsA}. Then it is easy to see that A is
-<_-complete in EXP (A _-<A via Ax[bx +a]). We check the conditions (i) and (ii)
in the following.

(i) From the definition of A, we have

IA fq {0, 1, , bn 1}1 (b a). IA1 {0, n 1}1.
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Therefore, for n large enough, we have

b-a b
dens" (A) < dens’/b (A1)+b n+l’

and hence,

lim dens" (A)= 0.

Now, if CP and CA, letD=Cf"l{bx+y’0<_-y<a}andE=C-D. Then
limsup’_ densn (D) -<_ limsup’_,o dens,, ({bx + y" 0 <- y < a}) <= r.

The only thing left to show is that lim’_. dens" (E) 0. For each y, a _-< y =< b 1,
let Ey={xE’x--ymodb} and fy(X)= [(x-y)/bl. Then fy is a polynomial time
computable one-to-one mapping on Ey and fy(Ey)_ A1. Since C P, we know that
Ey P, and that/y(Ey) A1 is in P. So,

and

densb" (Ey)=(1/b).dens" (fy(Ey))

lim dens" (Ey)= 0,

since fy (Ey)_ A1 is in P.
Thus,E -1y=a Ey implies that lim’_ dens" (E)= 0. So,

limsup densn (C) <_- limsup dens" (D) + limsup dens" (E) _-< r.

Hence, condition (i) is satisfied by A.
(ii) Let B and C {bx + y" 0 <- y -< a}. Then B and C satisfy condition (ii).
These three theorems tell us that the knowledge that a set is <_--complete in

EXP does not give us any information about its approximability. The next theorem,
which can be proved using a similar technique, shows that, for some <--complete
sets in EXP, the situation may be even worse.

THEOREM 9. There exists a <---complete set in EXP such that for any e > O,
(i) (tB, C P)[B

_
A, C

_
A liminf’_, dens, (B LI C) 0]

(ii) (3B, C P)[B A, C A & limsup’_, dens" (B LI C) 1].

5. Summary and open questions. We have studied polynomial time approxima-
tion to sets in EXP. In summary, we review the following five statements.

1. A set in EXP may be so hard that its polynomial complexity core is exactly ,E*.
2. A <= -complete set in EXP may be so hard that it is p-immune.
3. A -<_-complete set in EXP cannot be p-immune.
4. The polynomial complexity core of a <_--complete set in EXP may be of any

size.
5. The polynomial complexity core of a <=-complete set in EXP is larger than

any p-sparse set. [9]
What about the sets in NP? Can we show similar results? Recently, P. Berman

[4] and Meyer and Paterson [14] solved question 5 for the class of NP-complete sets;
namely, the following problems do not have p-sparse complexity cores unless they
are in P:

NP-complete problems, PSPACE-complete problems, the primality problem
and the graph isomorphism problem.
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The other four questions remain open. We believe that any new results concerning
these questions will lead to better understanding of the structure of the intractable
problems.
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AN EFFICIENT CYCLE VECTOR SPACE ALGORITHM FOR
LISTING ALL CYCLES OF A PLANAR GRAPH*

MACIEJ M. SYSEO

Abstract. All known cycle vector space algorithms for listing cycles of a graph are inefficient, and in
the worst case they compute all vectors of the cycle space. This is a very significant drawback of the cycle
space approach. In this paper, a cycle vector space algorithm for enumerating all cycles of a planar graph,
which produces only cycles of a graph and requires O(n) space and O(n + nc) time (where n and c denote
the number of vertices and cycles of a graph, resp.), is presented. Thus we show that in the class of planar
graphs, the cycle space approach can be as efficient as the backtrack algorithms.

Key words, all-cycle algorithm, cycle basis, cycle graph, cycle space method, planar graph

1. Introduction. A simple graph G=(V(G),E(G)) is a collection of vertices
V(G) and edges E(G). Let n(G) and m(G) denote the number of vertices and the
number of edges of a graph G, resp. An edge is denoted by e uv. Simple graphs do
not contain loops and multiple edges, and only such graphs are considered in this paper.

A sequence of distinct vertices (v0, Vl," ", Vl), >-O, such that Vil)i+l E E(G),
0, 1, 2,. , l- 1, is called a simple path from Vo to v. A closed simple path, that is if
Vo Vl, _-> 2, is called a cycle. A path is nontrivial if _-> 1. In what follows, we shall use
sometimes the same symbol to denote a cycle and the set of its edges.

It is well known that the empty set, the set of all cycles and edge-disjoint unions
of cycles of G, is a vector space called the cycle space of G, over GF(2), the field of
integers modulo 2 with the vector addition of elements defined as the ring sum of sets
of edges. A cycle basis of G is defined as a basis for the cycle space of G which consists
entirely of cycles. The dimension of the cycle-space of a graph G is equal to
tx(G)=m(G)-n(G)+p(G), where p(G) denotes the number of connected com-
ponents of G.

The cycles of a graph are minimal elements of the cycle space of G in the sense
that no cycle can properly contain any nonzero element of the space. The set of cycles
of a graph is a subset of this space and is generally proper. The cycle space of a graph
G consists of 2’) vectors but there are only four reduced graphs with c(G) 2’)- 1,
where c(G) denotes the number of cycles of G. A simple graph is said to be reduced,
if G has no vertex of degree 0 or 1 and, for every vertex of degree 2, the two vertices
adjacent to it are themselves adjacent. Mateti and Deo proved in [5] (see also [6]) that
only the four reduced graphs K3, g4, K4-x and K3,3 have all vectors as cycles, where
Kp and Kp,q denote the complete graph on p vertices and the complete bipartite graph
on p + q vertices, resp.

Mateti and D.eo also presented several classes of graphs for which the ratio of the
number of cycles to the number of all vectors in the cycle space goes asymptotically to
zero as the number of vertices increases, i.e., limn_ (c(G)/2)) 0. For instance,
for a wheel graph Wn we have/z (Wn) n 1 and c(W)= (n 1)(n -2)+ 1.

There are several problems which depend on finding a certain cycle (see [1] and
[9]), a subset of cycles [4] and all cycles of a graph [5], which can be solved by using
the cycle space methods. A cycle space method applied to a graph G starts from a cycle
basis of G and produces the desired solution as an element or a subset of elements of

Received by the editors April 6, 1979, and in revised form December 16, 1980. A preliminary version
of this paper was presented at the International Colloquium on Algebraic Methods in Graph Theory, August
23-31, 1978, Szeged, Hungary and appeared in the Proceedings of the Colloquium (North-Holland, 1980).

5" Institute of Computer Science, University of Wroctaw, P1. Grunwaldzki 2/4, 50-384 Wroctaw, Poland.
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the cycle space of G. For instance, to obtain all cycles of a graph G, one can start from
a cycle basis of G and compute all the 2’o)-/z(G) 1 vectors. Since in general not
every vector represents a cycle, it is necessary to test whether the vector generated
corresponds to a cycle. An attempt to generate only a subset of all vectors and yet
enumerate all cycles of a graph has been made in several papers, but in the worst case,
all known cycle vector space algorithms are inefficient and compute all the 2) vectors
[5]. It is very significant drawback of the cycle space approach.

The main purpose of this paper is to present a cycle space algorithm for listing all
cycles of a planar graph which requires O(n) space and O(n / nc) time. Thus we show
that, in the class of planar graphs, the cycle space approach and backtrack algorithms
are of the same efficiency (for some backtrack algorithms see [5] and [6]).

2. The cycle graph approach. Let {Ci}i be an arbitrary cycle basis of a graph
G. The intersection graph B(G, ) of over the set of edges E(G) is called a cycle
graph of G with respect to c and defined V(B(G, ))= , with Ci and Cj adjacent
whenever #/" and Ci (’1Cj (q E(G) [5]. To distinguish between elements of graphs
and their cycle graphs we will refer to vertices of the graphs and nodes of the cycle
graphs.

Let G be a planar graph, and without loss of generality assume that G is
2-connected. For a given embedding of G in the plane, the set of the interior faces is
a cycle basis of G and such a cycle basis of the plane graph G is called a plane cycle
basis of G. The cycle graph of G with respect to the plane cycle basis of G is denoted
by Gc. Notice, that in the class of 2-connected planar graphs, one can consider the
notion of the cycle graph as a generalization of that of the dual graph. If G* denotes
the geometric dual graph of G then it is easy to see that G is isomorphic to the simple
graph of G* Vex, where Vex denotes the vertex of G corresponding to the exterior face
of G and a simple graph ofa multigraph H is defined as the maximal spanning subgraph
of H, which is a simple graph. Therefore G is planar, and in the sequel we assume that
for a plane graph G, G is also plane (i.e., it has been obtained from G* by removing
vertex Vex and replacing each set of parallel edges by one edge) and a subgraph F of
G is also plane (i.e., it has been obtained from G by removing those nodes and edges
which do not belong to F).

A graph F is said to be a cycle graph if there exist a graph G and its cycle basis, such that F and B(G, c) are isomorphic. Some partial characterizations of cycle
graphs are presented in [8].

Let G be a graph, c {Ci}i be one of its cycle bases, and )j Ci denote the ring-sum
of cycles {Ci}j, where J

_
L It is evident that if C is a cycle of G and C @r Ci then

for any partition I [_J I[ of I’ into two nonempty subsets, Ci intersects i Ci.
Therefore, the subgraph of B(G, ) induced by {Ci}r is connected, and in the listing
of cycles of G only those subsets of vertices of B(G, ) which induce connected
subgraphs of B(G, c) are of interest. However, in general this correspondence
between cycles of G and connected induced subgraphs of B(G, ) is not necessarily
onto.

The algorithm proposed by Mateti and Deo [5] for enumerating all cycles of a
graph utilizing a cycle graph depends on generating connected induced subgraphs of a
cycle graph and then testing whether the corresponding elements of the cycle space are
cycles.

In general, this approach is also inefficient. Let us consider a modified wheel graph
Un embedded in the plane as is shown in Fig. 2.1. We shall prove that the ratio of the
number of cycles of Un to the number of all connected induced subgraphs of U, tends
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0

Ut
U6

FIG. 2.1

to zero. Let co(Un) and c (Un) denote the number of cycles of U, which are contained
in W, and the number of cycles of U, which are the ring-sums of cycle 0 and of some
other cycles contained in W,, respectively. Notice that 0 ) GiI is a cycle of Un if and
only if I =N, where N ={1, 2,..., n-1} or I does not contain cycle 1 and @ii is a
cycle, since 0 03 1 Cex (-J@N-I i, where Cex denotes the exterior cycle of U,, i.e.,
0 1 is the union of edge-disjoint cycles. Therefore, we have c (U) co(U,) + c (U,),
where co(Un)=(n-1)(n-2)+ 1 and c(U,)=(n-1)(n-2/2+2. On the other hand,
let s(U) denote the number of connected induced subgraphs of UT,. We have
s(U) so(U,)+ 2"-1, where so(U,) is the number of connected induced subgraphs of
U, which do not contain node 0 and 2n-1 is the number of those which contain node
0. Thus, lim,_. (c(U,)/s(U))=O.

Notice that if a graph U, is embedded in the plane, as shown in Fig. 2.2, then
c(U’n)=s(U’,,c).

0

5

u

FIG. 2.2

Figure 2.3 shows a graph for which c(H)< s(B(H, c)) for every cycle basis of
H, for details see [11] and [12]. Thus, a graph can have no cycle basis for which there
exists a one-to-one correspondence between the cycles of the graph and connected
induced subgraphs of the cycle graph. Hence, the following question arises.

Problem [5]. Let G be a graph. What cycle basis c of G should be chosen in order
for B(G, c) to have a minimum number of connected induced subgraphs?

Mateti and Deo suggested that maybe B(G, c) has a minimum number of
connected induced subgraphs for a cycle basis c for which the sum of the lengths of
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FIG. 2.3

the basic cycles is a minimum or the number of edges in B(G, ) is a minimum. Paper
[10] contains some counterexamples to these conjectures.

The success of the cycle space algorithm proposed by Mateti and Deo depends on
the efficiency of an algorithm for listing the subsets of nodes of a cycle graph which
induce connected subgraphs and on the method for finding a "good" cycle basis of a
graph.

In view of the above results, two approaches to improving the original algorithm
are possible. First, for a given graph G, we can apply the original algorithm to a cycle
graph of G with respect to a cycle basis which minimizes the number of connected
induced subgraphs of the cycle graph. Since nothing is known about such a cycle basis
or about the method for finding it, at present, we are not able to develop such an
approach. Secondly, one can try to find a suitable cycle basis and modify the algorithm
to obtain the method which prunes unnecessary computations of connected induced
subgraphs which do not correspond to cycles.

In the next section, using the second approach to planar graphs, we develop a cycle
space algorithm for listing all cycles of a planar graph which has the same asymptotic
space and time requirements as the most efficient backtrack algorithms have.

3. An efficient cycle space algorithm for listing all cycles of a planar graph. In the
sequel only plane graphs are considered. Moreover, if G is a plane graph then we take
G as G*-vex. Therefore G is also plane, and every subgraph F of G(G) is con-
sidered as a plane graph; that is, F can be obtained from G(G) by removing edges
and vertices (nodes) from G(G), which do not belong to F. Thus, interior and exterior
vertices, nodes and edges are well-defined notions.

We now prove a lemma which then will be used as the main tool in pruning
unnecessary computations.

LEMMA 3.1. Let G be a 2-connected plane graph and p {Ci}x be its plane cycle
basis. If j Ci is a cycle of G then J contains all the interior nodes, of the subgraph of
G, which is induced by J.

Pro@ Let J I V(G) and let K denote the set of those the interior nodes of
the subgraph of G induced by J which do not belong to J. Suppose that K . If Cex
denotes the exterior cycle of G, then

and hence,

qx=Gq-- (R)
I I-J-K J K

Gq Cex@ G
J I--J-K K

Let us notice that Ci and C have no common edge for s I U {ex}- J K and/" s K,
that is (j Ci is not a cycle. This proves the lemma.
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A connected induced subgraph of G which contains all its interior nodes is called
a full subgraph of Gc. It is not hard to see that every full subgraph F of G can be
obtained from G in the following way: The nodes of V(Gc) V(F) can be ordered as
Vl, v2, , Vl, such that Fi is a full subgraph of G induced by V(Gc) -{Vl, v2, , vi},
where 1, 2,..., and then Fl F.

Figure 3.1 shows that there exists a graph G such that not every full subgraph of
G which can be obtained from G in this way corresponds to a cycle of G. Namely, F
can be obtained from G by removing node 1 but it corresponds to 1 0) 2 ) 3 ) 4 U 1.

2 2

3
G G F

FIG. 3.1

A subgraph of G which corresponds to a cycle of G is called a feasible subgraph
of Gc. Evidently, every feasible subgraph of G is connected and full. LetF be a feasible
subgraph of G; then v V(F) is a feasible node of F if the subgraph of G induced
by V(F)-{v} is also feasible. The following lemma characterizes feasible nodes.

LEMMA 3.2. Let F be a feasible subgraph of Gc. Then v V(F) is feasible if and
only if v is an exterior node ofFand the cycle Co of G corresponding to v has exactly one
nontrivial (i.e., different from a vertex) common path with the cycle CF =()oV(F Co.

Proof. By Lemma 3.1, if V(F)-{v} corresponds to a cycle in G then v is an
exterior node of F. The subgraph of F induced by V(F)-{v} corresponds in G to
Co CF which is a cycle in G if and only if Co and CF have exactly one nontrivial
common path. I-I

Therefore, v is not a feasible vertex of a feasible subgraph F of G if and only if
Co has more than one common path with CF, or Co has no common path with CF. In
the former case, Co cuts CF into at least two edge-disjoint cycles, therefore v disconnects
F, and in the latter, v can be an interior as well as an exterior node of F. It is interesting
that once the exterior nodes of G are labeled as feasible or infeasible, all the feasible
subgraphs of G can be generated without referring to the graph G. This follows from
the following lemma.

LEMMA 3.3. Let v be a feasible node of a feasible subgraph F of G and let F’ be
the subgraph induced by V(F)-{v}. Then u V(F’) is a feasible node ofF’ if and only

(1) u is not a cutnode of F’; and
(2) either u is a feasible node ofF or u is adjacent to v in F.

Proof. Let u V(F’) V(F) -{v}, where v is a feasible node of a feasible subgraph
F of Gc. If u is feasible in F, i.e., if Cu has exactly one nontrivial common path with
CF then it is clear that u is feasible in F’ provided u has not become a cutnode after
removing v from F. If u is not feasible in F and is adjacent to v in F, i.e., if C, and Co
have at least one common edge, then u also becomes a feasible node of F’ provided u
is not a cutnode of F’. Conversely, if u is a feasible node of F’ then evidently u is not
a cutnode of F’ and Cu has exactly one nontrivial common path with @wV(F’ Cw
wV(F) Cw O) C, where Co has exactly one nontrivial common path with)wV(F Cw.
Therefore, either u is feasible or u is adjacent to v in F. 1-1
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It is not hard to see that for every feasible subgraph F of G the nodes of
W V(Gc) V(F) can be ordered as Vl, rE, ,/)1 such that every Fi is a full subgraph
of G and vi is a feasible node of Fi-1, where Fo G, Fl F, and Fi is the subgraph of
G induced by V(G)-{Vl, Va,’" ", vi} for 1, 2,..., I.

Thus, we have succeeded in finding a method which for a 2-connected plane graph
G determines those induced subgraphs of G which correspond one-to-one with the
cycles of G. In what follows, we shall show how to implement this method efficiently.

A feasible subgraph F of G can be uniquely represented by using the sequence
of its exterior face nodes listed in a clockwise order and additionally labeled as feasible
or infeasible; this will be called a code of F and denoted d (F). Notice that, for v d (F),
v is a cutnode of F if and only if v appears in d (F) at least twice.

Figure 3.2(a) shows the cycle graph U of the planar graph U6, embedded as is
shown in Fig. 2.1, and its code in which the feasible nodes are underlined. Figures
3.2(b) and (c) show two feasible subgraphs of U and their.codes obtained from U
by removing feasible nodes 0 and 1, resp.

5 2 5 2

-c ’*cU6 U6 U6

d(U) 012 d(U) 12345 d(U)=O_5_432_

(a) (b) (c)

FIG. 3.2

We now show how all feasible subgraphs of G can be generated.
Let d denote the family of all feasible subgraphs of G and d(U, W) denote the

family of all feasible subgraphs of G which contain all nodes of U and do not contain
the nodes of W and possibly some other vertices of V(G) U W. Let (Vl, rE, ’, vp)
be the sequence of all feasible nodes of G listed in a clockwise order and let
W/. (/91, DE, Vi), where 0 <=/" <_- p and we assume W0 . One can easily show that
c(Wg,{Vg/l})fq(Wh,{Vh/l})= (g,h=O, 1,. .,p,g<h), where we assume
(Wp, {vp+l}) {GO}, since every subgraph of the former family does not contain node
vg/l, which belongs to every subgraph of the latter one. It is also evident that=0 q3(W., {vj+ 1}) , since for every feasible subgraph F of G either F is isomorphic
to G or there exists k (1-<k <-p) such that vi V(F) for/’= 1, 2,..., k-l, and
Vk V(F) therefore F (Wk-1, {vk}). This process of partitioning into nonempty
and disjoint subfamilies can again be applied to each of the subfamilies. For instance,
to partition c(Wk_l, {Vk}), 1 --< k -< p, let us consider the feasible subgraph G, obtained
from G by removing node Vk and all edges incident with Vk. Let
(vl, v2,"’, Vk-1, V’k, V,+I, ", Vk) be the sequence of exterior nodes of G, listed in
clockwise order such that V k,’’’, V,,, are the feasible nodes of G, and lie on the
exterior cycle of Gk between Vk-1 and Vl. It is easy to verify that if ul, u2, , u, => 0,
are infeasible nodes of G lying between Vk-1 and Vk, then either v, Ul if > 0 and
Ul is not a cutnode in G,, or v, is one of the nodes which follow Ul in the code of G,.
Let W ={vl, v2,’’’,Vk-l,V’k,’’’,v},wherek-l<=j<--p, andassumevk-l=Vk-1.
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One can easily verify that (We, +1

1,... ,pk, g<h), where we assume (Wk,{vpk/l})={G;}, and
(g,h=k

i=k-1

Therefore we have the following lemma.
LEMMA 3.4. Let (vl, V2, Uq) be the code o]:a feasible subgraph Fo]:G c, and let

@ denote the family of all feasible subgraphs of F which contain the nodes
{v, v2, , v}, where 1 <= k <q. Let (v,v2, vk,), where k <kl< k2<" <k <-

q, denote the sequence of all feasible nodes oj F listed in a clockwise order and lying on
the exterior cycle ofF between vk and v 1. Then, can be partitioned into the subfamilies
o(W_l, {vj}), where W-I {vl, 1.)2,"’, l.)k, /-)k+l, Ukj-1} and ] 1, 2,..., l.

It is easy to see that the generation of all feasible subgraphs of G by partitioning
as it is shown above corresponds to a breadth-first search of J.
We are now ready to present a cycle space algorithm for listing all cycles of a planar

graph G, which utilizes a cycle graph with respect to a plane cycle basis of G and is
based on the above consideration.

ALGORITHM. Let G be a simple graph with n vertices and m edges given in the
list form {A(v)lve V(G)}. Without loss of generality we may assume that G is
2-connected and m <-3n- 6. If G is not 2-connected then, using a depth-first search,
it can be divided into biconnected components in time O(n).

Step 1. Test whether G is planar. If G is planar then embed it in the plane and
change the initial list representation of G into that in which for every
vertex v, the edges incident to v are listed in A(v) in clockwise order
according to the plane embedding of G. Such a representation of a planar
graph G is called a plane list representation of G.

Step 2. Number the faces of G and give each edge e of G two labels, which are
the numbers of the faces containing e.

Step 3. Using the cycle numbers and the edge labels obtained in step 2, construct
the plane list representation {B(v)[v V(GC)} of the plane cycle graph G
of G.

Step 4. Find the code d(G c) of G and label the elements of d(Gc) as feasible or
infeasible.

Step 5. Starting from d(Gc) and using only the plane list representation {B(v)} of
G generate the codes of all feasible subgraphs of Gc.

Step 5 is the core of the algorithm. Notice that in fact the generation of cycles of
G is performed on Gc, which indicates only the mutual relations between the basic
cycles of G. The main advantage of such an approach is that once the graph G is
constructed and its code determined, the basic cycles of G are represented by single
elements--the nodes in G and all other cycles of G can be generated in unique form
as the ring-sums of the basic cycles of G, without referring to G. Evidently, every cycle
of G can be also produced in the usual form as a sequence of edges of G. The former
form however may be more convenient in some applications than the latter.

We now discuss an implementation of steps 1-5 which gives rise to an algorithm
with the same asymptotic time and space requirements as for the backtracking
algorithm presented in [7].

A graph G can be tested for planarity by using a modified version of the algorithm
of Hopcroft and Tarian [3], which if G is planar also constructs in O(n) time a plane
representation of G, so that a plane list representation of G can easily be obtained.
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Let r be a fixed vertex of G belonging to the exterior cycle of G. In step 2, first,
we give each exterior cycle edge of G label 0 and then, starting from vertex r we remove
one interior face cycle of G at a time, and give all its edges the first unused label k.
Simultaneously, the plane list representation {B(v)lv V(G)} of G can be construc-
ted. For details see [13], where an Algol procedure for constructing a dual graph and
a cycle graph of a plane graph and their plane list representations, is presented. It is
not hard to implement steps 2 and 3 in time bounded by O(n).

The code d(G) and labels of its elements can be derived from the elements of
the exterior cycle of G by applying Lemma 3.2 and using the plane list representations
of G and G. This step also requires O(n) time.

Thus, steps 1-4 can be implemented in O(n) time and it is also easy to see that
these steps require O(n) storage space.

As has already been noted, the method of listing all feasible subgraphs of G,
which results from Lemma 3.4, corresponds to a breadth-first seach of 3, the family of
all feasible subgraphs of G. Since such an approach requires very much computer
space, we present an implementation of step 5, which uses depth-first search of 3. The
complete implementation of step 5 is presented below in an Algol-like notation.
Procedure CYCLE GENERATION uses a plane list representation of G and starting
with the code of G obtained in step 4 and stored in CYCLE, produces all feasible
subgraphs of Gc, from which the cycles of G can easily be obtained. Array CYCLE is
a double-linked array containing nodes of the exterior cycle of a current feasible
subgraph of G, see Fig. 3.3 as an illustration. Array OCC contains the information
about the nodes of G in a current feasible subgraph F of G: if a node v does not
belong to the exterior cycle of F then OCC Iv] 0, otherwise OCC Iv] 1, if v is
feasible in F; OCC Iv] -1, if v is a cutnode of F; and OCC Iv] -2 if v is infeasible
and is not a cutnode of F. COUNT is equal to the number of nodes in a current feasible
subgraph.

procedure CYCLE GENERATION;
comment Given a plane list representation and the code of G, procedure CYCLE
GENERATION produces all feasible subgraphs of G from which all cycles of G
can be obtained;
integer L K;
begin

procedure DELETE (IS, IT);
integer IS, IT;

comment Assume that F is a current feasible subgraph of G and
d(F) (v:t, v2, , v,). IS and IT are integers such that there exist and k, where
1 _-< I, k -<_ p, and CYCLE [IS] v and CYCLE [IT] v, respectively. Procedure
DELETE generates the subfamilies (W._,{v.}) of the family of all
feasible subgraphs of F, where W._={v, v+,..., v, vt+:t,"’,

( l, + 1,. ., k- 1) and vi is a feasible node of F. All indices of array CYCLE
are taken mod p + 1, where p is the current length of array CYCLE;

begin
integer I, J, IS1, IT1, SW;
for I := IS, CYCLE[J] while I IT do
begin
i OCC [CYCLE [I33-
then begin
A: delete feasible node CYCLE [I] from current feasible subgraph and

modify arrays CYCLE and OCC;
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B: output the cycle of G which corresponds to current feasible subgraph of

COUNT := COUNT 1
if COUNT> 2
then begin

if SW=0
then begin
comment SW 0 when every feasible node of the code of a
current feasible subgraph can be removed, i.e., when no back-
tracking step has been performed. In this case, IS1 is such that
OCC[CYCLE[IS1]] 1 and we set IT1 IS1;
IS1 := S;
C: while OCC [CYCLE [IS1]]# 1 do ISI:=CYCLE [IS1+ 1];
IT1 := IS 1

end SW 0
else begin
comment When SW 0, then IS1 points either to the node
which precedes node CYCLE [I] in current code provided it was
not a feasible node, or to node CYCLE [I];
ISl:=if OCC [CYCLE [CYCLE [I+2]]] 1 then CYCLE
[I+2]
if IS1 IT then go to BACK;
IT1 := IT

end SW 1;
DELETE (IS1, IT1)

end COUNT> 2
else begin
comment If COUNT 2 then backtracking follows;
SW:= 1;
go to BACK

end COUNT 2
end OCC [CYCLE [I]]-- 1;
J:=I+l

end I;
BACK: COUNT:= COUNT + 1;
D: add to current feasible subgraph the node which was deleted most recently

and modify arrays CYCLE and OCC;
end DELETE;
K:=S; COUNT:=m-n+I; SW:= 0;
comment S is given, such that CYCLE IS] is a node belonging to the exterior cycle
of G;
for I := CYCLE [K] while OCC [I 1 do K := CYCLE [K + 1;
comment CYCLE [K] is a feasible node of GC;
DELETE (K, K)

end CYCLE GENERATION;

In procedure DELETE for a current feasible subgraph F of G, the labeled code
of a subgraph of G obtained from F by deleting a feasible, exterior node of F or by
adding the most recently deleted node can be found easily by using the plane list
representation of G to determine the elements of array CYCLE and applying Lemma
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3.3 to determine values of array OCC. Details are left to the reader, who should not
have any difficulty with the implementation of procedure steps A and D in time O(n).

Step B outputs a current cycle of G. As already pointed out, a cycle which is to
be printed out is of the form C Gii-i’, Ci, where {Ci}i, is the set of basic cycles which
correspond to the nodes that do not belong to current feasible subgraph of Gc.
Therefore, we may simply print out the elements of !- I’. On the other hand, we can
also obtain C as a sequence of the graph vertices. To this end we should keep track of
the cycle which corresponds to current feasible subgraph of G (this can be incorporated
in steps A and D and implemented, also, in O(n) time) and then use the edge sets of
the basic cycles which can be produced in step 3 of the Algorithm. In both cases, step
B can easily be implemented in O(n) time.

Thus, after a feasible node v of current feasible subgraph is found, a new cycle
which corresponds to the subgraph with v deleted can be generated in O(n) time. Since
the number of calls on DELETE is c, where c is the number of cycles of G, the total
time required by procedure CYCLE GENERATION is O(n + cn).

It can easily be checked that the total storage required by the procedure is O(n).
Therefore the algorithm can be implemented in O(n + cn) time and it requires

O(n storage.
Thus we have presented the method, which for planar graphs is asymptotically as

efficient as the backtrack algorithms; see [7].

G

(a)

2

a
c(Gc)=! 25

array CYCLE
with the code of G

(c)

FIG. 3.3

432_5_

125/

1234

_3/25
3_ 2_ 5_ -2=-35

5\5 323 45
435

43

1434 -3.--14
2

12-14_ _4 _12

1232

FIG. 3.5. The tree of codes generated by the algorithm for the graph shown in Fig. 3.3. Numbers on arrows
indicate nodes which are deleted. The codes are generated from left to right and from top down.
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TABLE 3.4
List ofcodes produced by the algorithm for the graph ofFig. 3.3. Numbers with signs in the

column "node operation" indicate nodes which are either deleted in statement A (sign -) or

added in statement D (sign +).

Codes Actual parameters
of feasible of DELETE (IS, IT) node
subgraphs IS IT operation COUNT SW

125 1=4 1- 5 0
4325 1=5 4- 4 0
325 1=3 3- 3 0
25 3+ 2
325 2 2- 3
35 2+ 2
325 3 5- 3
}g 5+ 2
325 4+ 3
4325 3 2- 4
435 2 1=4 2 3- 3
45 3+ 2
435 3 5- 3
43 5+ 2
435 2+ 3
4325 4 5- 4
432 4=1 1=4 5+ 3
4325 1+ 4
125 3 5- 5
1234 2 1=5 2 2- 4
1434 3 1=5 3 3- 3
14 3+ 2
1434 2+ 3
1234 3 3- 4
1214 3 1=5 4 4- 3
! 4+ 2
1214 3+ 3
1234 4 4- 4
1232 4 1=5 4+ 3
1234 5+ 4
125 5

Figures 3.3(a) and (b) show a graph and its cycle graph, which we shall use to
illustrate the algorithm. Array CYCLE with the code of G is shown in Fig. 3.3(c).
Codes of all feasible subgraphs of Gc, produced by the algorithm, together with some
additional quantities used, are presented in Table 3.4 and Fig. 3.5.

4. Application and extension. Since every tree is planar, steps 4 and 5 of the
algorithm presented in the previous section, applied to a tree, can be used for listing
all subtrees of the tree. In this case, the algorithm can be simplified, since for a tree a
node v is feasible if and only if it is a pendant node; all other nodes are cutnodes.

One might ask whether the method proposed in this paper can be extended to the
case of an arbitrary graph. We conjecture that it is possible. It seems that first a com-
plete characterization of cycle graphs should be found. Only some partial characteriza-
tions are known; however, the following lemma and theorem allow us to conjecture
that there exists a characterization of cycle graphs in terms of their planar subgraphs.
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LEMMA 4.1. A triangle-free 2-connected graph G is a cycle graph if and only if G
is a planar graph.

THEOREM 4.1. If a graph F is a cycle graph, then every triangle-free induced
subgraph ofF is planar.

Some other partial characterizations of cycle graphs and fundamental cycle graphs
(i.e., cycle graphs with respect to fundamental cycle sets) have been presented in [8].

Acknowledgment. The author is very grateful to the referee for many substantial
corrections which improved the paper.
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Abstract. Consider an m-processor distributed system having both local node and network traffic.
Because users have incomplete information about the state of the queues at remote nodes, they can be
tempted to shorten the expected completion time of a job by running multiple incarnations of each task
in parallel on all m processors. To assess the temptation of such a "user countermeasure," a job consisting
of a sequence of n tasks to be performed sequentially is considered. Under simple assumptions about
execution and network times, users can cut their expected job completion time by a factor of the square
root of m. The implications of such user countermeasures on system design are discussed.

Key words. Distributed computing, system performance analysis, queuing theory

1. Introduction. Suppose a husband and wife arrive at their bank to cash a check
and find equally long queues in front of the two available tellers. The couple can
shorten the expected time to cash their check by each joining a different line. Assuming
that every customer requires service time exponentially distributed with mean % and
that each line has n customers (excluding our couple), then the expected waiting time
for one or the other spouse to arrive at a teller is [Dow80]

"r[n- () 2nn(2nn) ],
which asymptotically is

By contrast, if the service time of each customer were exactly - (no uncertainty) then
each spouse would "expect" to wait ’n units of time for service. There would then
be no point in each joining a separate queue.

From this simple example we see that variance in the service distribution of tasks
can induce customers to join many queues, provided that both task replication and
task intercommunication are easy to accomplish. We shall refer to such replication
as cloning, for while all tasks replicated are identical, their future life courses are
unknown a priori and are independent. A distributed computing system provides an
example of a service system in which there are many processors with queues, incom-
plete information for users, ready facilities for cloning tasks (programs or processes)
and communication facilities designed specifically for the efficient intercommunication
of widely dispersed tasks. In this paper we suggest that such a system is prone to an
Achilles heel" users aware of the advantages of cloning tasks will be tempted to use
such tricks; wide use of cloning will obviously degrade the system. In the bank line
example, if all customers always clone, the bank may as well fire one of the two tellers.

* Received by the editors March 17, 1978, and in final revised form January 8, 1981.
5" Department of Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
t Department of Computer Science, University of Arizona, Tucson, Arizona 85721. The work of this

author was supported by the National Science Foundation under grant MCS80-04679.
We assume this bank is not sophisticated about queuing theory, and so has not roped off a single

multi-server queue. Many movie theatre ticket lines encourage the behavior described.
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ARRIVALS
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SERVER

FIG. 1.1. Model of a network node.

In the present paper we will assess the payoff to a user who clones in a distributed
system in which all other users "behave themselves," and discuss implications of this
result upon scheduling distributed systems.

Consider a distributed computer system having m nodes, each supported by its
own processor. Each processor will serve local traffic--tasks entering the processor
queue at the node, and network traffic--tasks entering the processor queue but
originating from some other node. We will model network communication delays by
assuming the existence of a network server along with each node. Refer to Fig. 1.1.
If node wishes to run a task on node/’, the task is queued at the ]th node’s network
server. When the task leaves network server j it queues at processor j (along with
local and other network traffic).

The network will be completely symmetric and homogeneous: all processors are
assumed to be identical and every node can be reached from every other node with
equal ease through the network. The model will not distinguish among different
methods for internode communication; thus the network could be implemented by
telecommunications, shared bus or shared memory, as long as symmetry is preserved.

Consider a potential user observing such a network. Because the user does not
have complete information about future demands upon service centers in the network,
he observes irregularity in the system. Local arrivals and network arrivals are
irregularly spaced in time; the demands of tasks for processor time vary; different
propagation times occur in the network because of differing message sizes. This
irregularity leads to congestion at both the processor and network server.

Consider a user on processor who wishes to run the same task T on two distinct
processors ] and k. In a network free of irregularities and uncertainties caused by
competing arrivals, the execution time of T on both j and k would be identical. If
such a system enjoyed a completely symmetric network, the propagation time to j
and k from would be identical. There would thus be no variation in the user’s
response time from ] or k. The user would have no inducement to replicate T. He
should be content to execute T on his "home" processor i.

However, the completely deterministic situation described above is never the
case. Irregularities in arrival and service patterns lead to congestion at the queues.
The user has incomplete information about the future state of the queues at nodes i,
] and k (and typically may not even know the current state of remote queues). This
is much like the situation encountered by our couple in the bank line example described
above. Rather than choosing one particular node’s queue for task T and sticking to
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it, the user may wish to hedge by cloning task T and queuing the clones on nodes i,, k and perhaps others. He can accept results from the first node that answers, and
abandon the remaining clones.

The above considerations suggest that the irregularities in the network nodes be
modeled by treating each node as a queuing system having a processor, network server
and associated queues, as well as predicating a stochastic arrival process at each queue
(Fig. 1.1). It is important to stress that while a user’s own tasks have deterministic
running times known to the user, incomplete information about the system state and
contention for processors leads to the need for a stochastic model of the system as a
whole.

Given a distributed system described above, suppose a user wishes to run a job
consisting of a chain of n tasks in sequence (Fig. 1.2). Examples of such jobs are a
lengthy UNIX pipeline [Rit74] or n iterations of a simulation or approximation step.
Such a tasking structure has no inherent parallelism, and it is not obvious how to
utilize multiple processors to decrease the expected finishing time of the job.

FIG. 1.2. Task chain C.

After describing a simple model of the distributed system in 2, we will analyze
in 3 the expected finishing time of a user who methodically exploits cloning. Section
4 develops an asymptotic expansion for the expected finishing time. In 5 we measure
the speed-up to be expected from the use of cloning. We conclude that such speed-up
is considerable for a large number of nodes, and hence does provoke the use of cloning
as a scheduling countermeasure.

The model used to derive these results is overly simplistic; we will review its
deficiencies and their effects upon the interpretation of our results.

Since ruthless cloning must be undesirable if widespread, we discuss the implica-
tions for the design of distributed systems.

2. The model. We will model each node of the distributed system as a feed-
forward queuing network having two service stations and depicted in Fig. 1.1. All rn
nodes will be assumed statistically identical. Service at both the processor and network
server will be assumed to be first-come-first-served.

We will make certain simplifying assumptions about the arrival and service
distributions at each node. These assumptions are made for reasons of analytic
tractability, but should allow us at least to explore the qualitative effects of cloning
on the distributed system.

All tasks run on the system will be assumed statistically identical. Task execution
times are assumed to be independent and identically distributed random variables
having an exponential distribution with mean 1/z. Similarly, task service times on
the network server are independent, identically distributed exponential random vari-
ables with mean 1/r. Local arrivals are governed by a Poisson process with rate A,
while network arrivals are assumed to be Poisson with rate u. These assumptions are
summarized in Fig. 1.1.

It should be noted that in our model of an individual node we are ignoring the
effects of departures from the processor which feed back into the network of m nodes.
Modeling such effects would not allow us to assume that network arrivals are Poisson
[Kle76].
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Imagine now that to such a system of m nodes, a user arrives bent upon cloning
to reduce his expected job completion time. We will assume that no other users are
employing cloning; this will be the situation of maximum temptation for our arriving
user. The user wishes to run the task structure shown in Fig. 1.2.

The user’s strategy is as follows. When he reaches the server on his "home"
node, he immediately initiates task TI and queues m- 1 clones of this task on the
other system nodes. Any clone which finishes sends a time-stamped notification of its
finish, along with the resulting data, to every other node on the network, with
instructions to run the next task in sequence (TE). The sending clone will immediately
initiate T2 by entering this task in its processor queue. Only the notification from the
first clone to finish will be acted upon by other nodes; all other clones finishing the
task later will be ignored. Clones running T1 which receive the message will immedi-
ately initiate T2 at their node by entering this task at the end of the processor queue
and terminating TI. If no clone is running when the message arrives, the task T2
simply enters the end of the processor queue. Eventually, some clone becomes the
first to finish T2, and the process of notification and queuing is repeated, with
instructions to run T3. This strategy is continued until the first finish of Tn.

We may imagine that the code sequences for tasks T1, Tn have been preposi-
tioned in a local memory device at each node. This is particularly relevant, for example,
when the tasks are operating system commands.

3. Analysis. Referring once again to Fig. 1.1, we can immediately simplify the
description of the node. By Burke’s theorem [Bur66] the departure process from the
network server is Poisson with rate ,, and so the arrival process at the processor
queue is Poisson with rate A / t,. Consider the subsystem consisting of the network
server and queue. This is an M/M/1 queuing system, and the distribution of total
system time (queuing plus service) is exponential with rate 7r-t, [Kle75]. Thus a
network arrival perceives this subsystem as if it were an M/M/ system with service
distribution exponential of rate r- ,. In other words, an arrival does not queue but
is immediately served at rate 7r- ,.

Similar reasoning implies that the processor subsystem can be replaced by an
M/M/ system with arrival rate A / , and service distribution exponential with rate
/x-A -,.

In summary, an arrival from the network sees the node as a single M/M/ server
with a service distribution which is the sum of two exponential stages of differing
rates. The first (network) stage has service time which is exponentially distributed
with mean

1

and the second (processor) stage has service time which is exponentially distributed
with mean

This equivalent configuration is summarized in Fig. 3.1.
From now on we refer to the node modeled as in Fig. 3.1, the node server. For

convenience in the derivation below, we define the effective service rates for the stages
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FIG. 3.1. Equivalent server.

of the node server as follows"

1

and

1
/3 =-=g-h-u.

Baudet, Brent and Kung [Bau78], [Bau80], [Kun76] have analyzed what is in
effect a special case of our model in which c =/, in the context of modeling an
asynchronous multiprocessing system such as C.mmp [Wu172]. These authors were
the first to suggest the strategy of cloning as a method for reducing expected finishing
time in the presence of multiple processors. The present paper can be considered a
generalization of their work, reinterpreted in the context of distributed processing.

In the remainder of this section, we derive an expression for the expected time
to the first finish of the job of Fig. 1.2 using the cloning strategy.

Let the random variable si, 1 -< -< n, denote the finishing time of the clone of Ti
which finishes first; So=0. We shall call these epochs useful finishes. A typical
realization under the cloning strategy is depicted in Fig. 3.2 for m 4.

o

p4

p5

p2

s s

MT’ 1T
i T’ / Ti-.

J T, i_

I,. T, Ti-.

-I si Sn-I Sn

Ti Ti+l ’)-’

FIG 3.2. Realization of the cloning strategy. The shaded areas represent execution of U. Heavy bars are

useful finishes of tasks in job C.

Whenever a useful finish occurs on crocessor, we imagine that a message is
instantaneously sent to all other processors through the network. That is, the message
to run the successor task is queued on the target node’s network server. The service
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time necessary for the message to reach the target processor is exponentially distributed
with mean tr, as developed above; this is the service time of a task U run on the node
server of Fig. 3.1. We will refer to it as the network task. Clearly each node server
must process the network task U before initiating the appropriate task in chain C.

At time So 0, one processor (the user’s "home" processor) begins execution of
T1 and all other node servers begin processing U. Since all chain tasks Ti are i.i.d.,
and all tasks U are i.i.d., and because of the memoryless property of the exponential
distribution [Kle75], all of the "interfinish" random variables

ti Si Si-1, 1 <--__ <-- n

are i.i.d. Denote this random variable’s expectation by t.
Our objective is to compute the expected time to the first finish of C, i.e., E(sn).

Now

(s) tZ(t)+ +
(3.1)

Thus we need to concentrate on deriving an expression for the expectation t. It
is enough to analyze the expectation E(si s_) for some i, 1 -< <- n. In what follows,
let be fixed. Reference to Fig. 3.2 will prove helpful.

Between the successive useful finishes s_ and si there are 0 or 1 or or m 1
finishes of network tasks U; we call these network finishes. A network finish coincides
with the starting time of a clone of T on the node server. These network finishes
partition the time from s_ to si into 1 or 2 or... or m intervals. Task Ti may have
its first finish at the end of interval 1 or 2 or... or m; these possibilities are mutually
exclusive and exhaustive.

Let us calculate the probability that the first finish of Ti occurs at or after the end
of the jth interval. For 1 <-j-< m, let

p Pr {Ti first finishes at the end of some interval k -> j}
and let

e. E(length of interval j).

Clearly, p 1. Also
(m 1)c

P2 =/ + (m 1)a’

which is the probability that some one of the m- 1 tasks U of mean 1/a finishes
before the single task Ti of mean 1//3. The expected length of this first interval is

1
el--

/3 +(m- 1)a"

Now T will finish at or after the end of the third interval if and only if it finishes
past the first interval and one of the m- 2 tasks U in the second interval finishes
before the two clones of Ti in that interval. Thus

(m- 1)c (m-2)a
P3

/3 +(m 1)a 2/3 +(m -2)a
and

1
e2

2fl +(m-2)ce
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In general for 1 -<_ j -<_ m

(m 1)c
PJ /3+(m-1)a

(3.)
1

e f/ + (m

(m-j+ 1)a
(y-)+(m-y+)’

To compute E(si Si-1) we can weight each e/. by the probability of its contribu-
tion to the expectation:

(3.3) t= Y. pje.
/’=1

Simplifying notation in (3.2) by setting

(3.4) 8

we obtain

(3.5)

(m-l) (m-j+l)
8+(m-l)

ej --7
]8 +(m -])"

(j-1)+(m-j+l)’

Finally, combining (3.1), (3.3) and (3.5) and simplifying yields
THEOREM 3.1. The expected time to complete a chain C of n tasks on m processors

using the cloning strategy is given by

I(rn, )= n,rK(m, 8)

where for 8 tr/ r

(3.6) K(m, 8) =3-- m! 1

m ]=1 (m-i)! (m-(1-8))... (m-/(1-8))"
From the above result we can see that the user who does not employ cloning,

but runs job C on his home node, will expect a time of

(3.7) I(1, 8) nrK(1, 8) n’r nrK(m, oo) I(m, co).

The latter equalities simply reflect the fact that huge network propagation delays limit
the user to his home node only.

The first finish of Tn could occur on any node. If the user must have the results
of his job reported back to his "home" node, we must allow for some notification
time at the end of the run. If the user accepts results from the first node reporting
back, a successful finish of Tn, then we have

COROLLARY 3.2. The expected time to complete a chain C of n tasks using cloning
on m processors and to notify the user at his home node is bounded by

(3.8) n’rK(m, 8)+o" n’[K(m, 8) +].
In a distributed system with memory shared among all m processors, the "delay"

term in (3.8) would not be needed. This is the model studied in [Bau78], [Bau80].
In the next section we will examine the behavior of (3.6) for large values of m.
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4. Asymptotic approximation. To describe the behavior of I(m, 8) for fixed 6
but a large number of processors m, we resort to an asymptotic approximation for
the sum in (3.6). Following this development we will interpret our findings.

The sum K(m, 8) in (3.6) is a generalization of a sum treated by Knuth [Knu73,
1.2.11.3, eq. (25)] using a different technique. The approach here will be to express

the sum in terms of an integral, which then can be approximated by the method of
Laplace [Olv74].

We first define e 1- 6 and rewrite (3.6) as

(4.1)

Observe that

(4.2)

K(m, 6):6
rn i:l (m-])! (m-e). (m-]e)

1 fO )i-1 m/e-i-1

(/- 1)!
(1-x x dx

1 r(j)r(m/e -j)
(j- 1)! F(m/e)

(m/e-1)...(m/e-j)

(m-e). (m ej)

is a beta function,

Substituting this into (4.1) gives

e-i 1 fo )J_lxm/e_j_(4.3) K(m, 8)= 6(m 1)! ._
;=1 (--)’)! (j- 1)!

(1-x dx.

The change of variable k =/"- 1 gives

(4.4)

K(m, 8)=8 e (l-x) dx

_6ilmil(m--I)_e k=o k
[(1 X)/g_.x]kxm/ -2 dx

6Io11 i-x]
m-1

1 + x m/-2 dx
8 8X

1/e -1 1/e -2x (1 6x) x dx.
8

Now make the change of variable u x l/e-1 x 8/e. Then (4.4) becomes

(4.5) K(m, 6)= Io [(1/e)(u--6ul/8)]m-1 du.

The method of Laplace [Olv74] suggests that we express the integrand as
exp (f(u)) and expand f(u) about the point where it achieves its maximum within the
interval of integration. It is readily verified that this maximum point is u 1. Next
we change variables to bring this maximum point to the origin by setting 1- u.
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This yields

(4.6)

where

K(m, 6)= Io e-’P(t)q(t) dt,

p(t) -ln 1[(1 t)- 6(1 t)a/],

q(t) e[(1- t)-6(1- t)l/]-1.

Since only the contribution near the peak value of the integrand is important,
we approximate the integrand by using a Taylor expansion of p(t) and q(t) about

0 and replace the upper limit of integration by . This yields the approximation

(4.7) K(m, 6)-- Jo e-"/ dt.

This can be directly integrated to yield the first term of the asymptotic approximation
1/2

A more careful treatment of (4.6) allows us to compute higher order terms in
the asymptotic expansion [Olv74]. The result is:

TEOREM 4.1. For large m and fixed

(6)
1/2 (1-26)+0(m-3/).(4.8) K(m, 6)= + 3

The special case found in Knuth [Knu73, 1.2.11.3, eq. (25)] is identical to
mK(m, 1).

5. Interpretation. The foregoing sections were concerned with an expression for
the expected time to complete a chain of n tasks on m nodes. However, we are usually
interested in questions of relative merit" how much faster can C be completed by
using cloning on m nodes than on a single processor?

Define the speed-up factor S achievable by cloning to be the time needed to
complete job C on one node divided by the time needed if cloning on m nodes is used.

From (3.7) and (3.8) we have

nr[K(m, 6)+6/n] K(m, 6)+6/n

For large m this gives, from (4.8), a lower bound of

s + o

Since much recent interest has centered on distributed systems having a very
large number of identical microprocessors, these results indicate that a motivation to
clone exists in such systems, provided network delays are not severe. Since one of
the design objectives of such distributed systems is to make network delays as
qnvisible" as possible to encourage parallel processing, such a system will be par-
ticularly vulnerable to cloning.
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One conclusion from (5.2) is that the ratio n/ controls the amount of speed-up
achievable by cloning. Network delay and number of tasks thus have directly inverse
effects on speed-up, as long as the number of nodes is large relative to the number
of tasks. As remarked, the direction of present and future research on distributed
systems will be to decrease and increase m.

As more and more users employ cloning, the system degenerates from a distributed
facility to m stochastically identical copies of the same uniprocessor system. What is
needed is a method for discouraging such behavior.

In [Cof68], Coffman and Kleinrock evaluated scheduling methods for timesharing
systems in terms of their vulnerability to countermeasures which a user might employ
in an attempt to defeat the intent of the scheduling method. From this point of view,
a scheduling policy is thought of as designed to encourage user behavior perceived
as desirable for the normal running of the system. In timesharing systems, scheduling
methods (such as generalized foreground-background [Cof68]) are designed to
encourage short jobs. To be practical, such scheduling methods must also be simple,
efficient and use only readily available information to discriminate among tasks.

In the context of distributed processing, most scheduling algorithms which have
been suggested tend to encourage the use of multiple nodes where possible in
completing a job. After all, such systems are presumably designed to facilitate the
execution of jobs having highly parallel tasking structure. It would require an imprac-
tical amount of computation for a scheduler to discriminate, for example, between
jobs consisting of n tasks in parallel and those consisting of n tasks in sequence.
Furthermore, it is virtually impossible to tell a clone from a legitimately different task
if the user is subtle enough.

We have remarked in 1 that cloning is attractive in the face of incomplete
information about the future status of the system. It is unlikely that even complete
instantaneous information about queue lengths at each node, even if it could be
provided, would discourage a user bent on decreasing his expected finishing time.

The above observations indicate that cloning cannocprevented in a distributed
system. Keeping such behavior under control will have to be done by economic
sanctions--charging a user for time spent on every processor.

With such a costing scheme, a user who clones will pay for every clone spawned
to finish a task. The rate at which he pays to finish a job will be the average number
of clones created per task. If a user has a job consisting of m tasks in parallel, and
uses m processors to finish quickly, he pays the same cost as a user with m tasks in
sequence who does not clone. Such legitimate uses of the distributed system are not
penalized. The costing scheme allows cloning to be used, but at a premium rate.

Model limitations. The present model has limited applicability to real distributed
systems, because of the many simplifying assumptions used. We enumerate here the
directions for further improvement of the model.

The most severe restriction occurs in modeling the node server as a sequence of
two exponential servers. More general service time distributions might be handled by
decomposing them as a feedforward network of exponential stages [Kle76] and
generalizing the derivation of Theorem 3.1 and the approximation of 4. Any service
time distribution which has nonzero variance will be susceptible to cloning, but the
degree to which the user is tempted to employ it will depend on the distribution.

The present model fails to take into account feedback effects in the network of
m nodes. In particular, the arrival process at the network server should be generalized
from the Poisson. Another feedback effect to be taken into account is the extra traffic
fed back to the processor queue by the cloning of tasks.
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The present analysis assumes only one user will clone. Clearly the effect upon
the system of several cloning users needs to be examined.

In real systems, not all tasks make identical demands upon the processor. Real
systems are never completely symmetrical and homogeneous, especially with regard
to local traffic rates. Progress needs to be made in assessing the effect of such
nonuniformities upon cloning.

6. Conclusion. We have suggested in this paper that a type of user behavior
which is observed where there are multiple identical servers will occur in distributed
systems, given their future direction. The behavior, called here cloning, is encouraged
by large numbers of processors and small network delays. For a simple model of a
symmetric distributed system, we have been able to estimate the reduction in expected
finishing time of a "sequential" task structure obtained by cloning. Since it is difficult
in distributed systems to identify clones from legitimate tasks, we have proposed
economic controls for limiting the overuse of such cloning. The distributed system
model used here is admittedly a poor approximation to reality; we have proposed
directions in which improvements on these results could be made.
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